Archivo de la etiqueta: Conjuntos numerables

Teoría de los Conjuntos I: Conjuntos numerables

Por Gabriela Hernández Aguilar

Introducción

Ahora que hemos introducido el concepto de contar elementos y hemos hablado acerca de conjuntos finitos e infinitos, hablaremos un poco más acerca de estos últimos, en especifico de aquellos que tienen la misma cantidad de elementos que el conjunto de los números naturales. El propósito de esta entrada es ver que existen infinitos más grandes que otros.

Conjuntos numerables

Definición. Sea $A$ un conjunto, decimos que $A$ es numerable si es equipotente a $\mathbb{N}$, es decir, si existe una función biyectiva $f:\mathbb{N}\to A$. De ser así, diremos que $|A|=|\mathbb{N}|$.

Ejemplo.

En la entrada de equipotencia vimos que existe una función biyectiva entre el conjunto de los números pares y los números naturales, por lo que podemos concluir que $$|\set{x\in \mathbb{N}:x=2k\ \text{para algún} \ k\in \mathbb{N}}|=|\mathbb{N}|.$$

$\square$

Ejemplo.

El conjunto $\mathbb{Z}$ de los números enteros es un conjunto numberable. (Puedes revisar la construcción del conjunto de los números enteros en el siguiente enlace: Álgebra Superior II: Construcción de los enteros y su suma)

Consideremos $f:\mathbb{N}\to \mathbb{Z}$ dada por:

$f(x)= \left\{ \begin{array}{lcc}
             \frac{x}{2} &   si  & x =2k\ \text{para algún}\ k\in \mathbb{N} \\
             \\ -\frac{x+1}{2} &  si & x=2k+1\ \text{para algún}\ k\in\mathbb{N}
             \end{array}
   \right.$

Resulta que $f$ es biyectiva. En efecto, veamos primero que $f$ es inyectiva.

Sean $x_1, x_2\in \mathbb{N}$ tales que $f(x_1)=f(x_2)$. Tenemos los siguientes casos:

Caso 1. Si $x_1=2k$ y $x_2=2m$ para algunos $n,m\in \mathbb{N}$, entonces $f(x_1)=\frac{x_1}{2}$ y $f(x_2)=\frac{x_2}{2}$ y así, $\frac{x_1}{2}=\frac{x_2}{2}$ y por lo tanto, $x_1=x_2$.

Caso 2. Si $x_1=2k+1$ y $x_2=2m+1$ para algunos $n,m\in \mathbb{N}$, entonces $f(x_1)=-\frac{x_1+1}{2}$ y $f(x_2)=-\frac{x_2+1}{2}$ y así, $-\frac{x_1+1}{2}=-\frac{x_2+1}{2}$, entonces $-(x_1+1)=-(x_2+1)$, entonces $x_1+1=x_2+1$ y por lo tanto, $x_1=x_2$.

El caso en el que $x_1=2k$ y $x_2=2m+1$ no puede ocurrir pues de lo contrario se tendría que $\frac{x_1}{2}=-\frac{x_2+1}{2}$ por lo que $x_1=-(x_2+1)$, lo cual es una contradicción pues $x_1\in \mathbb{N}$ y $-(x_2+1)\notin \mathbb{N}$. De manera análoga, no puede ocurrir que $x_1=2m+1$ y $x_2=2k$ para algunos $m,k\in\mathbb{N}$.

Por lo tanto, $f$ es inyectiva.

Ahora veamos que $f$ es suprayectiva. Sea $y\in \mathbb{Z}$, tenemos los siguientes casos:

Caso 1. Si $y\in \mathbb{Z}^+\cup\set{0}=\set{0,1,2,\dots}$, entonces para $x=2y\in \mathbb{N}$ se tiene que $f(2y)=\frac{2y}{2}=y$.

Caso 2: Si $y\in \mathbb{Z}^-=\set{-1,-2, \dots}$, entonces $x=-2y-1\in \mathbb{N}$ y se tiene que $f(-2y-1)=-\frac{-2y-1+1}{2}=y$.

Concluimos que $f$ es suprayectiva.

Por lo tanto, $f$ es biyectiva y así, $|\mathbb{N}|=|\mathbb{Z}|$.

$\square$

En los ejercicios explorarás algunas propiedades de los conjuntos numerables.

Si recuerdas, en la entrada de conjuntos finitos demostramos que la unión de una cantidad finita de conjuntos finitos es un conjunto finito. Si la familia $A=\{A_n\}_{n\in \mathbb{N}}$ cumple que cada uno de sus conjuntos $A_n$ es numerable, ¿será cierto que la unión de $A$ es numerable? La respuesta es que sí, pero para demostrarlo necesitaremos llegar a la última unidad del curso, pues la prueba que daremos usará el axioma de elección. Como en temas anteriores, la intuición es que para mostrar $|\bigcap A|=\mathbb{N}$, debemos construir una función biyectiva, pero teniendo tantos conjuntos, suena plausible que esta función necesitará que tomemos una infinidad de decisiones.

Conjuntos no numerables

Hasta ahora todos los conjuntos infinitos que nos hemos encontrado son numerables. ¿Habrá algún conjunto infinito que no sea numerable? La respuesta es que sí. La existencia de conjuntos infinitos de «distintos tamaños» fue un resultado muy sorprendente. El ejemplo que veremos a continuación requerirá del argumento de la diagonal de Cantor.

Teorema. Sea $X$ un conjunto. Entonces no existe una biyección $f:\mathbb{N}\to \mathcal{P}(\mathbb{N})$.

Demostración. La demostración es por contradicción. Supongamos que sí existe tal biyección $f$. Construyamos un subconjunto $Y$ de $\mathbb{N}$ como sigue:

$$Y=\{n\in \mathbb{N}: n\not \in f(n)\}.$$

Por definición, $Y\subseteq \mathbb{N}$. Como $f$ es una biyección, debe existir un natural $y$ tal que $f(y)=Y$. Pero, ¿$y$ está en $Y$? Si $y\in Y$, entonces $y\in f(y)$, pero luego $y\not \in Y$, lo cual es una contradicción. Si $y\not \in Y$, entonces $y\not \in f(y)$ y así $y\in Y$, lo cual también es una contradicción. Cualquier opción lleva a una contradicción, que surgió de suponer que existía una biyección $f:\mathbb{N}\to \mathcal{P}(\mathbb{N})$. Por lo tanto, no puede existir dicha biyección.

$\square$

El argumento anterior debe recordarte mucho a la paradoja del barbero con la cual abrimos las primeras discusiones del curso.

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada.

  1. Si un conjunto $A$ es numerable y $x\in A$ es un elemento arbitrario, ¿será cierto que $A\setminus\set{x}$ es también numerable?
  2. Sea $\mathbb{N}_0:=\mathbb{N}\setminus\set{0}$. Muestra que $f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}_0$ dada por $f(n,m)=2^n(2m+1)$ es una función biyectiva.
  3. Utilizando el ejercicio anterior, muestra que si $A$ y $B$ son conjuntos numerables, entonces $A\times B$ también es numerable.
  4. Sean $A$ y $B$ conjuntos ajenos y numerables. Muestra que $A\cup B$ es numerable . ¿Y si los conjuntos $A$ y $B$ no son ajenos?
  5. Demuestra que, en general, para ningún conjunto $X$ se cumple que $X\sim \mathcal{P}(X)$.

Más adelante…

En la siguiente entrada concluiremos el contenido acerca de cardinalidad de conjuntos infinitos. Daremos cierre a esta unidad con el tema de aritmética cardinal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral I: Conjuntos infinitos (Adicional)

Por Karen González Cárdenas

Introducción

En esta última entrada de la unidad veremos un poco sobre la cardinalidad de un conjunto, un par de definiciones para decir cuando un conjunto es infinito o finito y algunos teoremas útiles. Dado que se trata de un tema adicional varios de los teoremas y resultados sólo serán enunciados.

Cardinalidad de un conjunto

Definición (Cardinalidad): Sea $A$ un conjunto. Definimos a la cardinalidad de $|A|$ como el número de elementos de $A$ y la denotaremos como:
$$|A|.$$

Ejemplo: Sea $A= \left\{ 1,2,3,g,y,b \right\}$ así tenemos que su cardinalidad sería:
$$|A|=6.$$

Definición: Decimos que $|A| \leq |B|$ si existe una función $f: A \rightarrow B$ inyectiva.

Misma cardinalidad

Definición: Sean $A,B$ conjuntos. Decimos que $A$ y $B$ tienen la misma cardinalidad $$|A|=|B|,$$ si existe una función $f: A \leftrightarrow B$ biyectiva.

Ejemplo: Si consideramos los intervalos $[0,1]$ y $(0,1)$. Vemos que:
$$|[0,1]| = |(0,1)|.$$
Primero tomamos los valores $0$ y $1$ en el intervalo $[0,1]$ y los enviamos a los valores $\frac{1}{3}$ y $\frac{1}{2}$ respectivamente en el intervalo $(0,1)$.

Ahora consideramos los valores de la forma $\frac{1}{n}$ con $n \in \mathbb{N}\setminus \left\{0\right\}$ y $n \geq 2$. A estos valores los enviaremos a los de la forma $\frac{1}{x+2}$. De este modo lo que haremos será enviarlos al $(0,1)$ como en el ejemplo de la siguiente imagen:

Y por último, a los valores restantes los enviamos a ellos mismos en el intervalo $(0,1)$.

Así la función biyectiva sería $f: [0,1] \leftrightarrow (0,1)$:
\begin{equation*}
f(x)=
\begin{cases}
x &\text{si $x \neq 0,1,\frac{1}{n}$ con $n\geq 2$}\\
\frac{1}{2} & \text{si $x= 1$}\\
\frac{1}{3} &\text{si $x=0$}\\
\frac{1}{x+2} &\text{si $x = \frac{1}{n}$ con $n\geq 2$}\\
\end{cases}
\end{equation*}

Conjuntos finitos e infinitos

Definición (1): Sea $A$ un conjunto.

  • $A$ es finito si existe una función biyectiva $f: A \leftrightarrow \left\{1,2, \cdots , N \right\}$ para algún $N \in \mathbb{N}\setminus \left\{0\right\}$.
  • $A$ es infinito si no es finito.

Definición (2): Sea $A$ un conjunto.

  • $A$ es infinito si existe $A’ \subset A$ subconjunto propio de A y una función biyectiva $f: A’ \leftrightarrow A$.
  • $A$ es finito si no es infinito.

Teorema: Sean $A,B$ conjuntos no vacíos. Si $A \subseteq B$ entonces
$$|A| \leq |B|.$$
Demostración: Proponemos a la función $f: A \rightarrow B$ como $f(x)=x$. Observamos que $f$ es inyectiva y cumple que para todo $x \in A$ se sigue que $x \in B$. Por definición se sigue que $|A| \leq |B|.$

$\square$

Observación: Si $A,B$ son conjuntos infinitos puede ocurrir que $A \subset B$ y que $|A|=|B|.$

Teorema: Sean $A,B$ conjuntos finitos.

  • Si $A \cap B = \emptyset$ entonces:
    $|A \cup B|= |A|+|B|.$
  • Si $A \cap B \neq \emptyset$ entonces:
    $|A \cup B|= |A|+|B|-|A \cap B|.$

Definición (3): Un conjunto $A$ es infinito si existe $B \subseteq A$ tal que
$$|B|=|\mathbb{N}|.$$

Conjuntos numerables

Definición: Sea $A$ un conjunto no vacío. Decimos que $A$ es numerable si $|A|=|\mathbb{N}|$ es decir si existe una función biyectiva:
$$f: A \rightarrow \mathbb{N}.$$

Teorema: Sean $A,B$ conjuntos. Si $A$ es finito y $B$ es infinito numerable entonces $A \cup B$ es numerable.
Demostración: Como $A$ es finito consideremos que tiene $m$ elementos.
$$A = \left\{ a_{1}, a_{2}, \cdots , a_{m} \right\}.$$
Y como $B$ es infinito y numerable entonces es de la forma:
$$B = \left\{ b_{1}, b_{2}, \cdots , b_{n}, \cdots \right\}.$$
Así al considerar la unión $A \cup B$ tendríamos:
$$A \cup B = \left\{ a_{1}, a_{2}, \cdots , a_{m}, b_{1}, b_{2}, \cdots , b_{n}, \cdots \right\}.$$
Tenemos los siguientes dos casos:

  • Si $A\cap B = \emptyset$ y consideramos la siguiente indización:
    $$A \cup B = \left\{ a_{1}, a_{2}, \cdots , a_{m}, b_{m+1}, b_{m+2}, \cdots , b_{m+n}, b_{m+n+1}, \cdots \right\}.$$
    Vemos $|A \cup B|=|\mathbb{N}|.$
  • Si $A\cap B \neq \emptyset$. Supongamos que tenemos $k$ elementos en la intersección, es decir:
    $$a_{1}= b_{1}, a_{2}= b_{2}, \cdots , a_{k}= b_{k}$$
    $$A = \left\{ a_{1}, a_{2}, \cdots ,a_{k}, a_{k+1}, \cdots, a_{m} \right\}.$$
    Así consideramos la siguiente indización para la unión:
    $$A \cup B = \left\{ a_{k+1}, a_{k+2}, \cdots , a_{m}, b_{1}, b_{2}, \cdots , b_{n}, \cdots \right\}.$$
    Observamos que $|A \cup B|=|\mathbb{N}|.$

$\square$

Teorema: Si $A$ y $B$ son conjuntos infinitos y numerables entonces $A \cup B$ es infinito y numerable.
Demostración: Primero vemos que $A \cup B$ es infinito ya que al ocurrir que:

  • $A \subseteq A \cup B$ con $A$ infinito y numerable.
  • $B \subseteq A \cup B$ con $B$ infinito y numerable.

por definición (3) concluimos que $A \cup B$ es infinito.

Nos falta ver qué $A \cup B$ es numerable, ya que $A$ es numerable podemos escribirlo de la siguiente manera:
$$A = \left\{ a_{1}, a_{2}, \cdots \right\}.$$
Análogamente para $B$:
$$B = \left\{ b_{1}, b_{2}, \cdots \right\},$$
por lo que la unión se vería como:
$$A \cup B= \left\{ a_{1}, b_{1},a_{2}, b_{2},a_{3},b_{3} \cdots, a_{n}, b_{n}, \cdots \right\}.$$
Observemos que si consideramos la siguiente indización:
$$A \cup B= \left\{ a_{1}, b_{2},a_{3}, b_{4},a_{5},b_{6} \cdots, a_{2n-1}, b_{2n}, \cdots \right\},$$

el conjunto tiene una relación biunívoca con el conjunto de los naturales.
Veamos qué sucede en los siguientes casos:

  • Si $A \cap B = \emptyset \Rightarrow |A \cup B|=|\mathbb{N}|.$
  • Si $A \cap B \neq \emptyset$. Consideremos que existen k elementos en la intersección, por lo que serían de la forma:
    $$a_{1}= b_{1}, a_{2}= b_{2}, \cdots , a_{k}= b_{k}.$$
    Por lo que ahora la unión se vería como:
    $$A \cup B= \left\{ a_{1}, a_{2}, a_{3}, \cdots,a_{k}, a_{k+1}, b_{k+1},a_{k+2}, b_{k+2} \cdots, a_{k+n}, b_{k+n}, \cdots \right\}$$
    y si consideramos la siguiente nueva indización:
    $$A \cup B= \left\{ a_{1}, a_{2}, a_{3}, \cdots,a_{k}, a_{k+1}, b_{k+2},a_{k+3}, b_{k+4} \cdots, a_{k+(2n-1)}, b_{k+2n}, \cdots \right\},$$
    tenemos que tiene una relación biunívoca con $\mathbb{N}$ por lo que también se cumple que $|A \cup B|=|\mathbb{N}|$.

$\square$

A continuación enunciaremos un teorema que generaliza el resultado sobre conjuntos numerables ya visto.

Teorema: Sean $A_{1}, A_{2}, \cdots, A_{N}, \cdots $ conjuntos no vacíos.

  • Si $A_{1}, A_{2}, \cdots, A_{N}$ son numerables $\Rightarrow \begin{multline*} \bigcup_{i=1}^{N} A_{i} \end{multline*}$ es numerable.
  • Si $A_{1}, A_{2}, \cdots$ son numerables $\Rightarrow \begin{multline*} \bigcup_{i=1}^{\infty} A_{i} \end{multline*}$ es numerable.

Más adelante

Ahora que hemos concluido con la unidad relacionada a los Números reales, en la próxima iniciaremos el tema de funciones definiendo qué es el dominio, rango y regla de correspondencia de una función.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»