Archivo del Autor: Aurora Martínez Rivas

Probabilidad I-Videos: Distribución Poisson

Por Aurora Martínez Rivas

Introducción

Estudiaremos en este video una distribución de probabilidad discreta qué se puede usar para aproximar probabilidades binomiales en las que el tamaño de la muestra es grande y la probabilidad de éxito es pequeña, mientras el producto del tamaño de la muestra por la probabilidad de éxito permanece constante. Está distribución se conoce con el nombre de distribución Poisson.

Distribución Poisson

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que la función de probabilidad de la distribución Poisson cumple las condiciones de una función de probabilidad.
  • Sea $X$ una variable aleatoria tal que $X∼ Poisson(λ)$. Demuestra que $f\left(x+1\right)=\frac{\lambda\ }{x+1}f\left(x\right)$ para $x=0, 1, 2, …$
  • Sea $X$ una variable aleatoria tal que $X∼ Poisson(λ)$. Si $λ-1$ es un entero. Demuestra que $f(x)$ alcanza su valor máximo en $x_1=\lambda-1$ y $x_2+1=\lambda$.
  • Sea $X$ una variable aleatoria tal que $X∼ Poisson(λ)$. Si $λ-1$ no es un entero. Demuestra que $f(x)$ alcanza su valor máximo en $x_1$ definido como el entero más pequeño mayor o igual a $λ-1$.
  • Llegan autos a un establecimiento de comida rápida de acuerdo con un proceso Poisson con media de 80 autos por hora. Si el empleado hace una llamada telefónica de 1 minuto, ¿Cuál es la probabilidad de que al menos 1 auto llegue durante la llamada?

Más adelante…

La distribución Poisson tiene muchas aplicaciones, es particularmente útil para los fenómenos de contar en unidades de tiempo o espacio. Por ejemplo, contar el número de llamadas telefónicas registradas por un centro en una semana o contar el número de accidentes ocurridos en dos horas en alguna avenida principal especifica.

La variable aleatoria X que corresponde a el número de elementos observados por unidad de tiempo, espacio, volumen o cualquier otra dimensión sigue una distribución Poisson con parámetro λ, donde λ es la media de la distribución.

Entradas relacionadas

Probabilidad I-Videos: Distribución hipergeométrica

Por Aurora Martínez Rivas

Introducción

La distribución hipergeométrica es una distribución de probabilidad discreta que nos proporciona una fórmula análoga a la de la distribución binomial, válida para el muestreo sin remplazo, en cuyo caso los ensayos no son independientes.

Distribución hipergeométrica

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que la función de probabilidad de la distribución hipergeométrica cumple las condiciones de una función de probabilidad.
  • Sea $X$ es una variable aleatoria tal que $X∼ hipergeométrica(N,k,n)$. Verifica que si $n=1$, la variable $X∼ Bernoulli\left(\frac{K}{N}\right)$.
  • Sea $X$ una variable aleatoria tal que $X∼ hipergeométrica(N,k,n)$. Demuestra que $f_X\left(x+1\right)=\frac{\left(k-x\right)\left(n-x\right)}{\left(x+1\right)\left(N-k-n+x-1\right)}f\left(x\right)$ para $x=0, 1, 2, …, n$.
  • Sea $X$ una variable aleatoria tal que $X∼ hipergeométrica(N,k,n)$. Demuestra que la función de probabilidad de $X$, converge a la función de probabilidad $binomial(n,p)$, cuando $N\rightarrow\infty$ y $k\rightarrow\infty$ de tal manera que $\frac{k}{N}\rightarrow p$.
  • Supongamos que una caja contiene 19 fresas, 3 de las cuales son de plástico y en consecuencia no se pueden comer. ¿Cuál es el número mínimo de fresas que deben ser seleccionadas, si requerimos que $P(al\ menos\ 1\ sea\ de\ plástico) ≥ .79$?

Más adelante…

La distribución hipergeométrica describe la probabilidad de éxito si se extrae, sin reemplazo una serie de objetos de una población que contiene algunos objetos que representan el «fracaso» mientras que otros representan el «éxito». Es común encontrar esta distribución en el control de calidad.

Entradas relacionadas

Probabilidad I-Videos: Distribución binomial negativa

Por Aurora Martínez Rivas

Introducción

Toca el turno de estudiar la distribución binomial negativa, otra distribución discreta que se origina de un contexto semejante al que da la distribución geométrica. Esta distribución, se aplica a la variable aleatoria X que determina el número del ensayo en el que ocurre el k–ésimo éxito (k= 2, 3, 4, etc.).

Distribución binomial negativa

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestre que la función de probabilidad de la distribución binomial negativa efectivamente es una función de probabilidad.
  • Sea $X$ una variable aleatoria, tal que $X\sim binomial\ negativa\left ( k,p\right ) $.Determina una relación repetitiva entre probabilidades binomiales negativas sucesivas.
  • Supongamos, se realizan ensayos Bernoulli independientes tal que, $P(E) = p$. ¿Cuál es la probabilidad de que exactamente $x$ intentos ocurran antes que se presente el $k– ésimo$ éxito?
  • Sea $X$ una variable aleatoria tal que $X\sim binomial\ negativa(k,p)$ y sea $Y = X – k$. La variable aleatoria $Y$, se puede interpretar como el número de fracasos antes del $k-ésimo$ éxito. Demuestra que $P(Y= y)=\begin{cases} {y+r-1 \choose r-1}p^kq^y & \mbox{para y=0,1,2,…} \\ 0 & \mbox{en otro caso} \end{cases}$.
  • Supongamos, se realizan ensayos Bernoulli independientes tal que, $P(E) = p$. Si $X\sim binomial\ negativa(k,p)$ y observamos el $k-ésimo$ éxito en el intento $y_0$. Encuentra el valor de $p$ que maximice $P(Y = y_0)$.

Más adelante…

La distribución binomial negativa es una generalización de la distribución geométrica, pues esta última se obtiene haciendo coincidir el parámetro k con 1. Esta distribución se ha aplicado en campos como la estadística, las ciencias biológicas, la ecología, también se ha utilizado en estudios de mercado, en la psicología y en investigaciones médicas.

Entradas relacionadas

Probabilidad I-Videos: Distribución geométrica

Por Aurora Martínez Rivas

Introducción

La distribución discreta que estudiaremos en este video se conoce como distribución de probabilidad geométrica. Esta distribución al igual que la distribución binomial se asocia a experimentos que comprenden pruebas idénticas e independientes, cada una de las cuales puede arrojar uno de dos resultados: éxito o fracaso cuya probabilidad de éxito p, es constante de una prueba a otra; sin embargo, en lugar de interesarnos en las variables aleatorias que consisten en determinar el número total de éxitos, nos interesará ahora estudiar las variables aleatorias que determinan el número del ensayo en el que ocurre el primer éxito.

Distribución geométrica

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que la función de probabilidad asociada a la distribución geométrica es efectivamente una función de probabilidad.
  • Sea $X$ una variable aleatoria tal que $X\sim geométrica\left ( n,p\right )$, demuestra que $P(X=k)$ decrece monótonamente alcanzando su valor más grande cuando $k$ es igual a $1$.
  • Sea $X$ una variable aleatoria tal que $X\sim geométrica\left ( n,p\right )$, demuestra que para un entero positivo $a$, $P\left ( X>a\right ) =q^a$.
  • Sea $X$ una variable aleatoria tal que $X\sim geométrica\left ( n,p\right )$, demuestra que $P\left ( X=\ un\ entero\ impar\right ) =\frac{p}{1-q^2}$.
  • Dos personas, por turnos, lanzan un dado equilibrado hasta que una de ellas obtiene un 6. La persona $A$ tiró primero, la $B$ en segundo, $A$ en tercero y así sucesivamente. En vista de que la persona $B$ tiró el primer 6, ¿Cuál es la probabilidad de que $B$ obtenga el primer 6 en su segundo tiro (es decir, en el cuarto tiro total)?

Más adelante…

La distribución geométrica también puede ser utilizada para estimar probabilidades, asociadas a resultados, en un subconjunto de ensayos que impliquen éxitos o fracasos. Esta distribución es empleada en procesos estocásticos. Se utiliza para modelar la duración de tiempos de espera permitiéndonos encontrarla con relativa frecuencia en modelos meteorológicos.

Entradas relacionadas

Probabilidad I-Videos: Distribución binomial

Por Aurora Martínez Rivas

Introducción

Esta vez, nos enfocaremos en el estudio de la distribución discreta: asociada a las variables aleatorias que surgen, al tratar con repeticiones de ensayos Bernoulli independientes y que consisten en determinar el número total de éxitos sin importar su orden. Esta distribución se conoce como distribución binomial.

Distribución binomial

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que la función de probabilidad asociada a la distribución binomial es efectivamente una función de probabilidad.
  • Sea $X$ una variable aleatoria tal que $X\sim binomial\left ( n,p\right ) $, demuestra que cuando $k$ pasa de 0 a n.$\ P(X=k)$ primero aumenta monótonamente y luego disminuye monótonamente alcanzando su valor más grande cuando $k$ es el entero más grande menor o igual que $(n+1)p$.
  • Basándote en la demostración del inciso anterior, da una relación recursiva entre las probabilidades asociadas con valores sucesivos de $X$ y con ella encuentra $P(X<4)$ cuando $X\sim binomial\left ( 50,.4\right ) $.
  • Demuestra que si $X$ es una variable aleatoria tal que $X\sim binomial\left ( n,p\right ) $, entonces la función de masa de probabilidad $f_X\left ( k\right ) $ tiene la siguiente propiedad: $f\left ( k-1\right ) f\left ( k+1\right ) \le f\left ( k\right ) ^2$.
  • Sea $X$ una variable aleatoria tal que $X\sim binomial\left ( n,p\right ) $, encuentra la distribución de probabilidad de $n-X$.

Más adelante…

La distribución binomial, es utiliza para la Estimación de probabilidades: asociadas a resultados, en cualquier subconjunto de ensayos que impliquen éxitos o fracasos. Así, como para estimar probabilidades asociadas a juegos de azar.

Por sus aplicaciones en la teoría de probabilidad y estadística, la distribución binomial es probablemente la de uso más frecuente entre las distribuciones discretas,

Entradas relacionadas