Ecuaciones Diferenciales I: Ecuaciones diferenciales como modelos matemáticos

Introducción

En la entrada anterior vimos algunas propiedades de las soluciones a las ecuaciones diferenciales ordinarias, en particular vimos que una ecuación diferencial puede tener infinitas soluciones y el intervalo de solución puede ser cualquiera en el que la función esté definida, sea derivable $n$ veces y cuyas derivadas sean continuas. En esta entrada estudiaremos cómo obtener una solución particular de una solución general dados unos valores prescritos conocidos como condiciones iniciales y veremos la importancia de saber elegir el intervalo de solución en estos casos particulares.

En esta entrada también estudiaremos algunos problemas de la vida real que involucran ecuaciones diferenciales, a través de estos problemas introduciremos la idea de ecuación diferencial como modelo matemático. Los problemas que estudiaremos son con el objetivo de ver el tipo de análisis que debemos hacer al intentar modelar un problema usando ecuaciones diferenciales y no con fines de resolver el problema mismo pues solucionarlo significa resolver las ecuaciones diferenciales que surjan y hasta este momento aún no hemos visto métodos de resolución.

Problema con valores iniciales

Definición: En algún intervalo $\delta$ que contiene a $x_{0}$, el problema de resolver la ecuación diferencial

\begin{align*}
\frac{d^{(n)}y}{dx^{(n)}} = f(x, y, y^{\prime}, …, y^{(n –1)})
\end{align*}

sujeto a que se cumpla que

\begin{align*}
y(x_{0}) = y_{0}, \hspace{0.2cm} y^{\prime}(x_{0}) = y_{1}, \hspace{0.2cm}…, \hspace{0.2cm} y^{(n-1)}(x_{0}) = y_{n-1}
\end{align*}

donde $y_{0}$, $y_{1}$, …, $y_{n-1}$ son contantes reales arbitrarias dadas, se llama problema con valores iniciales (PVI), o problema con valores iniciales de $n$-ésimo orden.

Definición: Los valores de $y(x)$ y de sus $n-1$ derivadas en el punto $x_{0}$, es decir

\begin{align*}
y(x_{0}) = y_{0}, \hspace{0.2cm} y^{\prime}(x_{0}) = y_{1}, \hspace{0.2cm}…, \hspace{0.2cm} y^{(n-1)}(x_{0}) = y_{n-1}
\end{align*}

se llaman condiciones iniciales.

De manera resumida podemos decir que un problema con valores iniciales es la ecuación diferencial acompañada de condiciones iniciales.

En el caso de ecuaciones diferenciales de primer y segundo orden tendríamos el siguiente PVI respectivamente:

  • Resolver $\dfrac{dy}{dx} = f(x, y)$ $\hspace{1.2cm}$ sujeto a $\hspace{0.5cm}$ $y(x_{0}) = y_{0}$
  • Resolver $\dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$ $\hspace{0.5cm}$ sujeto a $\hspace{0.5cm}$ $y(x_{0}) = y_{0}$ $\hspace{0.3cm}$ y $\hspace{0.3cm}$ $y^{\prime}(x_{0}) = y_{1}$

En el caso del PVI de primer orden, geométricamente implica que estamos buscando una solución $y(x)$ de la EDO en un intervalo $\delta$ que contenga a $x_{0}$ tal que su gráfica pase por el punto dado $(x_{0}, y_{0})$.

En el caso del PVI de segundo orden queremos determinar una solución $y(x)$ de la EDO en un intervalo $\delta$ que contenga a $x_{0}$ de tal manera que su gráfica no sólo pase por el punto dado $(x_{0}, y_{0})$, sino que también la pendiente a la curva en ese punto tenga como valor $m = y_{1}$.

En la entrada anterior vimos que las soluciones generales tienen constantes arbitrarias, las condiciones iniciales de un PVI nos permitirá determinar el valor de esas contantes para obtener una solución particular, pues con frecuencia resolver un problema con valores iniciales de $n$-ésimo orden implica primero determinar una familia $n$-paramétrica de soluciones de la ecuación dada y después usando las $n$ condiciones iniciales en $x_{0}$ determinar los valores numéricos de las $n$ constantes en la familia. Es importante mencionar que la solución particular obtenida debe estar definida en algún intervalo $\delta$ que contenga al punto inicial $x_{0}$. Veamos un ejemplo de un PVI.

Ejemplo: Considera la solución general $y(x) = c_{1} e^{2x} + c_{2} e^{-x} + c_{3}e^{3x}$ de la ecuación diferencial $y^{\prime \prime \prime} -4 y^{\prime \prime} + y^{\prime} +6y = 0$ (más adelante en el curso estudiaremos la forma de obtener este tipo de soluciones). Encontrar la solución particular para las siguientes condiciones iniciales: $y(0) = 4$, $y^{\prime}(0) = -1$ y $y^{\prime \prime}(0) = 0$.

Solución: Como tarea moral verifica que en efecto la función $y(x) = c_{1} e^{2x} + c_{2} e^{-x} + c_{3}e^{3x}$ es solución de la ecuación diferencial, por ahora asumiremos que lo es.

Lo que tenemos es un problema con valores iniciales así que la solución está sujeta a las condiciones iniciales, lo que debemos hacer para obtener la solución particular no es más que aplicar las condiciones iniciales. En este caso $x_{0} = 0$, la primera condición inicial nos dice que se debe satisfacer que $y(x_{0}) = y(0) = 4$, entonces evaluemos la solución en $x_{0} = 0$ y el resultado lo igualamos a $4$.

\begin{align*}
y(0) &= c_{1} e^{2(0)} + c_{2} e^{-0} + c_{3}e^{3(0)} \\
&= c_{1} + c_{2} + c_{3} \\
&= 4
\end{align*}

Resultado de aplicar la primera condición inicial:

\begin{align}
y(0) = c_{1} + c_{2} + c_{3} = 4 \label{1} \tag{1}
\end{align}

Para aplicar la segunda condición inicial necesitamos la derivada de la solución, si la derivamos obtenemos la función $y^{\prime}(x) = 2c_{1}e^{2x} -c_{2}e^{-x} + 3c_{3}e^{3x}$. Apliquemos la segunda condición inicial, $y^{\prime}(0) = -1$.

\begin{align*} y^{\prime}(0) &= 2c_{1} e^{2(0)} -c_{2} e^{-0} + 3c_{3}e^{3(0)} \\
&= 2c_{1} -c_{2} + 3c_{3} \\ &
= -1
\end{align*}

Resultado de aplicar la segunda condición inicial:

\begin{align}
y^{\prime}(0) = 2c_{1} -c_{2} + 3c_{3} = -1 \label{2} \tag{2}
\end{align}

Calculemos la segunda derivada para finalmente aplicar la tercera condición inicial. Derivando la función $y^{\prime}(x) = 2c_{1}e^{2x} -c_{2}e^{-x} + 3c_{3}e^{3x}$ obtenemos la siguiente función: $y^{\prime \prime}(x) = 4c_{1}e^{2x} + c_{2}e^{-x} + 9c_{3}e^{3x}$, ahora aplicamos la condición inicial $y^{\prime \prime}(0) = 0$

\begin{align*}
y^{\prime \prime}(0) &= 4c_{1} e^{2(0)} + c_{2} e^{-0} + 9c_{3}e^{3(0)} \\
&= 4c_{1} + c_{2} + 9 c_{3} \\
&= 0
\end{align*}

Resultado de aplicar la tercera condición inicial:

\begin{align}
y^{\prime \prime}(0) = 4c_{1} + c_{2} + 9c_{3} = 0 \label{3} \tag{3}
\end{align}

Si juntamos las ecuaciones (\ref{1}), (\ref{2}) y (\ref{3}) construimos un sistema de ecuaciones que debemos resolver.

\begin{align*}
c_{1} + c_{2} + c_{3} &= 4 \\
2c_{1} – c_{2} + 3c_{3} &= -1 \\
4c_{1} + c_{2} + 9c_{3} &= 0
\end{align*}

Intenta resolver el sistema de ecuaciones usando el método que gustes. Una vez que lo resuelvas notarás que los valores para las incógnitas son: $c_{1} = \dfrac{10}{3}$, $c_{2} = \dfrac{29}{12}$ y $c_{3} = -\dfrac{7}{4}$. Ya podemos sustituir estos valores en la solución general de la ecuación diferencial para obtener la solución particular.

La solución particular sujeta a las condiciones iniciales es:

$$y(x) = \dfrac{10}{3} e^{2x} + \dfrac{29}{12} e^{-x} -\dfrac{7}{4}e^{3x}$$

$\square$

En la entrada anterior vimos que el intervalo de solución $\delta$ no es necesariamente el dominio de la función sino que podemos tomar cualquier intervalo en el que la solución es derivable $n$ veces con derivadas continuas en ese intervalo, en el caso de problemas con valores iniciales es necesario que el punto $x_{0}$ pertenezca al intervalo solución $\delta $, esto en ocasiones establecerá un intervalo limitado para la solución así que debemos tener cuidado con los valores en los que la solución particular está definida. Para visualizar este hecho retomemos el ejemplo visto en la entrada anterior donde mostramos que la función $y(x) = \dfrac{1}{4 -x^{2}}$ es solución a la ecuación diferencial $\dfrac{dy}{dx} = 2xy^{2}$. Realicemos este mismo ejercicio pero ahora visto como un problema de valores iniciales y veamos la importancia del intervalo solución.

Ejemplo: La ecuación diferencial $\dfrac{dy}{dx} = 2xy^{2}$ tiene como solución general a la función $y(x) = -\dfrac{1}{x^{2} + c_{1}}$. Determinar la solución particular dada la condición inicial $y(0) = \dfrac{1}{4}$.

Solución: La solución general a la EDO es $y(x) = -\dfrac{1}{x^{2} + c_{1}}$, aplicando la condición inicial obtenemos lo siguiente:

\begin{align*}
y(0) = -\dfrac{1}{0^{2} + c_{1}} = -\dfrac{1}{c_{1}} = \dfrac{1}{4}
\end{align*}

De la última igualdad obtenemos que $c_{1} = -4$, sustituyendo en la solución general obtenemos

\begin{align*}
y(x) = -\dfrac{1}{x^{2} + c_{1}} = -\dfrac{1}{x^{2} -4} = \dfrac{1}{4 -x^{2}}
\end{align*}

Así que la solución particular $y(x) = \dfrac{1}{4 -x^{2}}$ corresponde a un PVI de $\dfrac{dy}{dx} = 2xy^{2}$ con la condición inicial $y(0) = \dfrac{1}{4}$. En la entrada anterior vimos la gráfica de esta función.

Gráfica de la función $y(x) = \dfrac{1}{4 -x^{2}}$.
Punto que satisface la condición inicial $y(0) = \dfrac{1}{4}$.

Pero ahora el intervalo de solución debe ser aquel en el que $x_{0} = 0 \in \delta$. El intervalo más grande que puede tomar la solución particular es $\delta = (-2, 2)$ pues es el intervalo donde está el punto $x_{0} = 0$ y donde la solución es continua. ¡La condición inicial ha restringido el intervalo de solución!

$\square$

Con este ejemplo vemos que las condiciones iniciales establecen un intervalo de solución especifico, en ocasiones (como en el primer ejemplo visto en esta entrada) no habrá mayor problema con el intervalo si la función es derivable y por tanto continua es todo su dominio. Es recomendable primero ver en donde la solución está definida (encontrar su dominio) y posteriormente revisar si se trata sólo de una solución general o si hay condiciones iniciales que determinarán una solución particular.

Existencia de una solución única

Al trabajar con problemas con valores iniciales debemos hacernos dos preguntas importantes. ¿Existe la solución del problema? y si existe la solución ¿es única?. Más adelante estudiaremos las ecuaciones diferenciales de primer orden y retomaremos con mayor profundidad este tema pero por ahora sólo vamos a enunciar un teorema que da las condiciones suficientes para garantizar la existencia y unicidad de una solución de un PVI de primer orden.

Teorema: Dada una ecuación diferencial de primer orden $\dfrac{dy}{dx} = f(x, y)$ donde $f(x, y)$ está definida en una región rectangular $U$ en el plano $XY$, la región está definida por $a \leq x \leq b$, $c \leq y \leq d$ y contiene al punto $(x_{0}, y_{0})$ en su interior. Si $f(x, y)$ satisface las condiciones:

  • $f(x, y)$ es continua en $U$ y
  • $\dfrac{\partial f}{\partial y}$ es continua en $U$

entonces existe algún intervalo $\delta_{0}: (x_{0} -h, x_{0} + h)$, $h > 0$, contenido en $[a, b]$, y una función única $y(x)$, definida en $\delta_{0}$, que satisface la condición inicial $y(x_{0}) = y_{0}$.

Dicho de otra manera, las condiciones para la existencia de soluciones son:

  • Continuidad de $f(x, y)$ en $U$.
  • Acotamiento de $f(x, y)$ por $U$.

Y las condiciones para la unicidad son:

  • Continuidad de $f(x, y)$ y $\dfrac{\partial f}{\partial y}$ en $U$.
  • Acotamiento de $f(x, y)$ y $\dfrac{\partial f}{\partial y}$ por $U$.

Estas condiciones son suficientes pero no necesarias, puede existir una solución única que satisface $y(x_{0}) = y_{0}$, pero que no cumple con alguna de las condiciones anteriores o que no cumple con ninguna.

Problemas que se modelan con ecuaciones diferenciales

Las matemáticas permiten modelar muchos de los fenómenos que ocurren en la vida real, a esta descripción matemática de un sistema de fenómenos se le llama modelo matemático y se construyen con la intención de representar algunas características del fenómeno para después hacer predicciones. Es cierto que esto puede ser un proceso muy difícil debido a que implica que las hipótesis que hagamos deben ser descritas en fórmulas muy precisas que nos permitan predecir lo que ocurrirá. Una vez hecho un modelo, las predicciones se deben comparar con los datos del sistema, dependerá de la compatibilidad entre las hipótesis y las predicciones lo que defina si debemos confiar en el modelo o debemos mejorar nuestras suposiciones.

En el caso de las ecuaciones diferenciales, éstas nos permiten modelar sistemas que evolucionan con el tiempo o sistemas que implican una razón de cambio de una o más variables. En este curso consideraremos a un modelo matemático como una ecuación diferencial o un sistema de ecuaciones diferenciales que describen el comportamiento de un fenómeno que estemos estudiando. Una vez que hemos formulado un modelo matemático surge el reto de resolver las ecuaciones diferenciales para saber si la solución es consistente con los hechos conocidos acerca del comportamiento del sistema y si no lo es debemos repetir un proceso de modelado en el que vamos ajustando las hipótesis, identificamos nuevas variables o incluso incluimos leyes empíricas que se puedan aplicar al sistema.

Hasta ahora ya hemos estudiado algunas ecuaciones diferenciales, sabemos cómo verificar cuando una función es solución de una EDO y hemos estudiado algunas propiedades de las soluciones. Para concluir esta entrada vamos a analizar algunos problemas de la vida real que son modelados con ecuaciones diferenciales. En esta parte nos enfocaremos en la forma en la que surgen las ecuaciones dado un problema y no nos preocuparemos por el momento en resolverlas pues esto es algo que aún no hemos visto.

Propagación de una enfermedad contagiosa

Recientemente hemos tenido la experiencia de observar cómo es que una enfermedad contagiosa se puede propagar en la población. En términos muy generales intentemos modelar la propagación de una enfermedad contagiosa a través de una comunidad de personas que han estado en contacto con personas enfermas. Definamos a $x(t)$ como el número de personas que están enfermos en un cierto tiempo $t$ y sea $y(t)$ el número de personas que aún no han sido expuestas al contagio en ese momento $t$. Es claro que la razón $\dfrac{dx}{dt}$ con la que se propaga la enfermedad debe ser proporcional al número de encuentros o interacciones entre los dos grupos de personas. Si suponemos que el número de interacciones es conjuntamente proporcional a $x(t)$ y $y(t)$ entonces un modelo puede ser

$$\dfrac{dx}{dt} = cxy$$

donde $c$ es la constante de proporcionalidad. Consideremos una comunidad con una población fija de $n$ personas, si inicialmente nadie tiene la enfermedad entonces $y = n$, pero si a esa comunidad llega una persona enferma entonces podemos construir la siguiente relación: $x + y = n + 1$ de donde podemos despejar a $y$ como $y = n + 1 -x$ y sustituir en el modelo:

\begin{align}
\dfrac{dx}{dt} = cx(n + 1 -x) \tag{4}
\end{align}

Esta última ecuación sería el modelo que describe la propagación de la enfermedad a través del tiempo. Una condición inicial sería que en el momento en el que llego la persona enferma a la comunidad comenzó a propagarse la enfermedad, esto es, $x(0) = 1$.

$\square$

Ley de enfriamiento de Newton

La ley de enfriamiento de Newton establece que la razón de cambio de la temperatura $T(t)$ de un cuerpo con respecto al tiempo es proporcional a la diferencia entre la temperatura del cuerpo $T(t)$ y la temperatura del medio ambiente $T_{m}$. Esta ley puede ser modelada con la ecuación

\begin{align}
\dfrac{dT}{dt} = -k(T -T_{m}) \tag{5}
\end{align}

donde $k > 0$ es la contante de proporcionalidad y $T_{m}$ es la temperatura del medio ambiente y se considera también una constante. Si podemos resolver esta ecuación encontraríamos una función que podría predecir la temperatura del cuerpo en cualquier tiempo $t$. Puedes notar que si $T > T_{m}$ entonces $\dfrac{dT}{dt} < 0$ lo que significa que el cuerpo se estaría enfriando pues la función $T(t)$ sería una función decreciente mientras avanza el tiempo, por otro lado si $T < T_{m}$ entonces $\dfrac{dT}{dt} > 0$, es decir la función $T(t)$ sería una función creciente en el tiempo lo que físicamente significaría que el cuerpo se estaría calentando.

$\square$

Cuerpos en caída

Consideremos un objeto que es lanzado desde lo alto de un edificio, el problema que queremos resolver es conocer la posición del objeto con respecto al suelo en algún tiempo $t$ después de ser lanzado y antes de tocar el suelo. Por convención consideremos que la dirección hacía arriba es positiva.

Analicemos la situación. Consideremos un edificio de altura $r_{0}$, desde esa altura se lanza un objeto de masa $m$, la velocidad inicial con la que es lanzado es $v_{0}$. El objeto al caer esta sometido a la fuerza de gravedad y de acuerdo a la segunda ley de Newton que establece que cuando la fuerza neta $F$ que actúa sobre un cuerpo no es cero entonces la fuerza neta es proporcional a su aceleración $a$, estas cantidades están relacionadas por la ecuación $F = ma$ con $m$ la masa del cuerpo, entonces si el objeto esta en caída la fuerza neta será su peso $F = -W$ (el signo menos es porque el peso del objeto es una fuerza dirigida hacia abajo), recordando que el peso está dado como $W = mg$ donde $m$ es la masa del objeto y $g$ es la aceleración debido a la gravedad de la tierra, usando entonces la segunda ley de Newton podemos establecer que $F = ma = -mg = -W$, es decir $a = -g$. Recordemos que la aceleración de un objeto corresponde a la tasa de cambio de la velocidad del objeto y que a su vez la velocidad es la tasa de cambio de la posición del objeto, es decir, la aceleración es la segunda derivada de la posición con respecto al tiempo, si $r(t)$ es la posición del objeto entonces $a(t) = \dfrac{d^{2}r}{dt^{2}}$, por lo tanto la ecuación diferencial que modela nuestro problema es:

\begin{align}
\dfrac{d^{2}r}{dt^{2}} = -g \tag{6}
\end{align}

Las condiciones iniciales son claras, al tiempo $t = 0$ el objeto se encuentra en la posición mas alta del edificio es decir $r(0) = r_{0}$ y la velocidad con la que es lanzada al tiempo $t = 0$ es $v(0) = r^{\prime}(0) = v_{0}$. Resolviendo la ecuación diferencial y obteniendo la solución particular podríamos predecir la posición del objeto con respecto al suelo a cualquier tiempo $t$ antes de caer al suelo.

$\square$

Modelo logístico de la población

Este es uno de los modelos más estudiados y representativos al estudiar ecuaciones diferenciales. Lo que queremos estudiar en esta ocasión es el crecimiento de la población, queremos crear un modelo que prediga el crecimiento que puede haber en una población en función de su entorno y los recursos limitados a los que están sujetos. Para comenzar con este estudio podemos considerar las siguientes hipótesis.

  • Si la población es pequeña, la tasa de crecimiento de la población es proporcional a su tamaño.
  • Si la población es demasiado grande para ser soportada por su entorno y recursos, la población disminuirá, en este caso la tasa de crecimiento será negativa.

Las variables involucradas en este problema son las siguientes: por supuesto el tiempo $t$ es la variable independiente en la que queremos predecir. Otra variable es la población $P$, esta variable es dependiente del tiempo $P = P(t)$, $k$ será el parámetro que corresponde a la razón de crecimiento en el caso de poblaciones pequeñas y $N$ será otro parámetro que establece cuando la población comienza a ser demasiado grande. El parámetro $N$ se conoce como capacidad de soporte del entorno. De acuerdo a las hipótesis estamos suponiendo que $P(t)$ crece si $P(t) < N$ y decrece si $P(t) > N$. Ahora que conocemos las variables que estarán presente en el modelo, matemáticamente podemos escribir las hipótesis como:

  • $\dfrac{dP}{dt} = kP$ $\hspace{0.5cm}$ si $P$ es pequeña.
  • $\dfrac{dP}{dt} < 0$ $\hspace{0.8cm}$ si $P$ es grande tal que $P > N$

Queremos una expresión (ecuación diferencial) que involucre ambas hipótesis. Supongamos que la ecuación que buscamos es de la forma

$$\dfrac{dP}{dt} = k \alpha P$$

Donde $\alpha$ es una función que debe acoplarse a las hipótesis. Para que satisfaga la primea hipótesis debe ocurrir que $\alpha$ sea cercano a $1$ cuando $P$ es pequeño y que $\alpha < 0$ cuando $P > N$. La expresión más simple que satisface esto es

$$\alpha = 1 -\dfrac{P}{N}$$

Puedes notar que si $P = 0$ entonces $\alpha = 1$ y si $P > N$ entonces $\alpha < 0$. Por lo tanto la ecuación diferencial que describe esta situación es:

\begin{align}
\dfrac{dP}{dt} = k \left(1 -\dfrac{P}{N}\right) P \tag{7}
\end{align}

Éste es el modelo logístico de la población con velocidad de crecimiento $k$ y capacidad de soporte $N$. Como puedes ver es una ecuación diferencial no lineal y su solución la analizáremos con detalle más adelante.

$\square$

Sistemas Depredador-Presa

Para concluir estudiemos otro de los modelos más estudiados en ecuaciones diferenciales, el modelo depredador-presa. En el mundo ninguna especie vive aislada y sus interacciones pueden proporcionar algunos de los modelos más interesantes por estudiar. El problema que analizaremos es en el que una especie se come a otra, con fines ilustrativos consideremos a la especie depredador como zorros y a la especie presa como conejos. Llamemos $Z(t)$ a la variable dependiente que describe el número de zorros que hay en una cierta región y sea $C(t)$ otra variable dependiente que describe el número de conejos que hay en esa misma región, ambas funciones son dependientes del tiempo $t$. Nuestras hipótesis tienen que ser tales que describan el aumento o disminución de ambas poblaciones de acuerdo a las interacciones que hay entre zorros y conejos, es claro que si hay muchos conejos los zorros tendrán alimento y su población crecerá mientras que la de conejos disminuirá y por otro lado si hay pocos conejos la población de zorros disminuirá (morirán por falta de alimento) mientras que la de conejos aumentará. Las hipótesis que consideraremos son las siguientes:

  • Si no hay zorros presentes, los conejos se reproducen a una tasa proporcional a su población y no les afecta la sobrepoblación.
  • Los zorros se comen a los conejos y la razón a la que los conejos son devorados es proporcional a la tasa a la que los zorros y conejos interactúan.
  • Sin conejos que comer, la población de zorros disminuirá a una tasa proporcional a ella misma.
  • La tasa de nacimientos de los zorros crece en proporción al número de conejos comidos por zorros que, por la segunda hipótesis, es proporcional a la tasa a la que los zorros y conejos interactúan.

Las variables que tenemos hasta ahora son el tiempo $t$ y las poblaciones $Z(t)$ y $C(t)$, para satisfacer las hipótesis necesitamos de parámetros que las modelen. Los parámetros que consideraremos son los siguientes:

  • $a$ es el coeficiente de la tasa de crecimiento de conejos.
  • $b$ es la constante de proporcionalidad que mide el número de interacciones conejos-zorros en las que el conejo es devorado.
  • $c$ es el coeficiente de la tasa de muertes de zorros.
  • $d$ es la constante de proporcionalidad que mide el beneficio a la población de zorros de un conejo devorado.

Tomaremos la convención de que todos estos parámetros son positivos. En este caso particular tenemos dos variables dependientes del tiempo por lo tanto será necesario encontrar dos ecuaciones que modelen al sistema. Para que sea más intuitivo entender el modelo vamos a mostrar las ecuaciones que modelan el sistema y veamos por qué son así.

$$\dfrac{dC}{dt} = aC -bCZ$$

\begin{align}
\dfrac{dZ}{dt} = -cZ + dCZ \tag{8}
\end{align}

La primer hipótesis nos habla de una relación proporcional en el crecimiento de la población de conejos cuando no hay zorros presentes, de ahí el término $aC$ de la primer ecuación, lo mismo ocurre con la tercera hipótesis, pero en este caso se trata de un decremento de población de zorros tras la falta de conejos, por ello el signo menos en el término $-cZ$ de la segunda ecuación. Por otro lado, la segunda y cuarta hipótesis nos habla de una interacción entre los zorros y los conejos, esta interacción puede ser modelada con el producto $CZ$, con este producto hacemos que la interacción aumente si $C$ o $Z$ aumentan pero desaparece si $C = 0$ o $Z = 0$, así en el caso de la segunda hipótesis los conejos son devorados de manera proporcional a la interacción entre zorros y conejos, por ello agregamos el término $-bCZ$ en la primer ecuación, el signo menos indica que el número de conejos debe disminuir pues están siendo devorados, así mismo la cuarta hipótesis nos habla de un crecimiento en el número de zorros al comer conejos, esta interacción es modelada con el término $dCZ$, en este caso es positivo ya que los zorros están aumentando en número. Este análisis es lo que le da sentido al modelo (ambas ecuaciones diferenciales) que hemos creado.

Algo curioso que seguramente ya habrás notado es que ahora tenemos dos ecuaciones diferenciales que modelan al sistema, cuando hay dos o más ecuaciones diferenciales decimos que es un sistema de ecuaciones diferenciales, en este caso este sistema de ecuaciones lo llamamos sistema de primer orden de ecuaciones diferenciales ordinarias, se dice también que el sistema es acoplado porque las tasas de cambio $\dfrac{dC}{dt}$ y $\dfrac{dZ}{dt}$ dependen tanto de $C$ como de $Z$. Los sistemas de ecuaciones diferenciales será un tema que estudiaremos en la segunda unidad.

Una solución al modelo que hemos construido es encontrar un par de funciones $C(t)$ y $Z(t)$ que describen las poblaciones de conejos y zorros como funciones del tiempo. Como el sistema es acoplado, no podemos determinar cada una de esas funciones de forma aislada sino que debemos resolver ambas ecuaciones diferenciales de forma simultánea, sin embargo en este caso no es posible determinar de modo explícito formulas para $C(t)$ y $Z(t)$, no pueden ser expresadas en términos de funciones conocidas tales como polinomios, senos, cosenos, exponenciales, etcétera. Más adelante veremos que las funciones $C(t)$ y $Z(t)$ existen pero entonces, ¿cómo conocerlas?. En la siguiente entrada estudiaremos un método cualitativo de las ecuaciones diferenciales que puede ser un método que nos ayude en estos casos por ejemplo.

$\square$

Por supuesto estos son sólo algunos problemas ilustrativos en los que las ecuaciones diferenciales permiten construir un modelo sobre un fenómeno, pero la cantidad de fenómenos que involucran ecuaciones diferenciales son enormes y mientras vayas aprendiendo más del tema seguramente serás capaz de tu mismo o tu misma construir tus propios modelos sobre algún fenómeno que ocurra a tu alrededor.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Dada la ecuación diferencial y su solución general, verifica que la función $y(x)$ es solución de la ecuación diferencial, determina la solución particular dadas las condiciones iniciales y determina el intervalo de solución en donde puede estar definida dicha solución.
  • La solución general a la ecuación $\dfrac{dy}{dx} = y^{2}$ es $y(x) = \dfrac{1}{c_{1} -x}$, encuentra la solución particular con el valor inicial $y(1) = 2$.
  • La solución general a la ecuación $\dfrac{dy}{dx} + y = 0$ es $y(x) = c_{1}e^{-x}$, encuentra la solución particular con el valor inicial $y(0) = 2$.
  • La solución general a la ecuación $\dfrac{d^{2}y}{dx^{2}} + y = 0$ es $y(x) = c_{1} \cos(x) + c_{2} \sin(x)$, encuentra la solución particular con los valores iniciales $y(0) = -1$ y $y^{\prime}(0) = 8$.
  1. Considera el modelo de población

$$\dfrac{dP}{dt} = 0.4 P \left( 1 -\dfrac{P}{230} \right)$$

donde $P(t)$ es la población en el tiempo $t$.

  • ¿Para qué valores de P está en equilibrio la población?
  • ¿Para qué valores de P está creciendo la población?
  • ¿Para qué valores de P está decreciendo la población?

3. El sistema

$$\dfrac{dx}{dt} = ax -by\sqrt{x}$$

$$\dfrac{dy}{dt} = cy\sqrt{x}$$

ha sido propuesto como un modelo para un sistema depredador-presa de dos especies particulares de microorganismos (con $a$, $b$ y $c$ parámetros positivos).

  • ¿Qué variable, $x(t)$ o $y(t)$, representa a la población depredadora? y ¿qué variable representa a la población presa?.
  • ¿Qué le pasa a la población depredadora si la presa se extingue?.

Más adelante…

Más adelante aprenderemos a resolver ecuaciones diferenciales ordinarias de primer orden de manera analítica, una vez que aprendas a resolverlas será muy conveniente que regreses a esta entrada e intentes resolves las ecuaciones diferenciales que modelan cada uno de los problemas que vimos para que puedes extrapolar en los resultados, pero antes de estudiar el método analítico vamos a estudiar un método geométrico o mejor conocido como método cualitativo de las ecuaciones diferenciales que nos permitirá describir las soluciones sin conocer explícitamente la forma analítica de las funciones solución.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.