Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Moderna I: Punto de Nagel

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada mostraremos la existencia del punto de Nagel como el conjugado isotómico del punto de Gergonne; estudiaremos algunas propiedades de otros objetos geométricos relacionados con el punto de Nagel, a saber, la recta de Nagel, la circunferencia de Spieker y la circunferencia de Fuhrmann.

Punto de Nagel

Teorema 1. Las rectas que unen los vértices de un triángulo con el punto de tangencia entre el lado opuesto y el excírculo relativo a ese lado son concurrentes, al punto de concurrencia, $N_a$, se le conoce como punto de Nagel.

Demostración. Sean $\triangle ABC$ y $X_a \in BC$, $Y_b \in CA$, $Z_c \in AB$, los puntos de tangencia de los excírculos opuestos a $A$, $B$, $C$ respectivamente

Considera $X$, $Y$ , $Z$ los puntos de tangencia del incírculo con $BC$, $CA$ y $AB$.

Figura 1

En la entrada triángulos en perspectiva vimos que $AX$, $BY$, $CZ$ concurren en el punto de Gergonne, $G_e$.

En la entrada circunferencias tritangentes vimos que los pares de puntos $X$, $X_a$; $Y$, $Y_b$; $Z$, $Z_b$ son puntos isotómicos, es decir, su punto medio coincide con el punto medio del lado al que pertenecen.

Por la proposición 1 de la entrada anterior, $AX_a$, $BY_b$, $CZ_c$ concurren en el conjugado isotómico de $G_e$.

$\blacksquare$

Recta de Nagel

Teorema 2.
$i)$ El incentro de un triángulo es el punto de Nagel de su triángulo medial,
$ii$) el incentro $I$, el centroide $G$ y el punto de Nagel $N_a$, de un triángulo, son colineales, a dicha recta se le conoce como recta de Nagel,
$iii)$ $IG = 2GN_a$.

Demostración. Sean $\triangle ABC$, $\Gamma(I)$ su incírculo y $\Gamma(I_c)$ el excírculo opuesto al vértice $C$.

Considera $Z$ y $Z_c$ los puntos de tangencia de $BC$ con $\Gamma(I)$ y $\Gamma(I_c)$ respectivamente, sea $T$ el punto diametralmente opuesto a $Z$ en $\Gamma(I)$.

Figura 2

Como $CA$ y $BC$ son tangentes exteriores comunes a $\Gamma(I)$ y $\Gamma(I_c)$, entonces $C$ es un centro de homotecia entre $\Gamma(I)$ y $\Gamma(I_c)$.

Por otra parte, como $I$, $I_c$ son puntos correspondientes de esta homotecia y $I_cZ_c \parallel IT$ entonces $I_cZ_c$, $IT$ son rectas homotéticas.

Por lo tanto, $Z_c$ y $T$ son puntos homólogos y así, $Z_c$, $T$ y $C$ son colineales.

Ahora consideremos $\triangle A’B’C’$, el triángulo medial de $\triangle ABC$, recordemos que existe una homotecia con centro en $G$ y razón $– 2$, que lleva a $\triangle A’B’C’$ en $\triangle ABC$.

Recordemos que $Z$ y $Z_c$ son puntos isotómicos, por lo tanto, $\dfrac{ZC’}{C’Z_c} = \dfrac{ZI}{IT} = 1$, por el reciproco del teorema de Tales, $C’I \parallel Z_cT$.

Como $C’$ y $C$ son puntos homólogos de esta homotecia y $CI \parallel CZ_c$, entonces $C’I$ y $CZ_c$ son rectas homotéticas.

Como $CZ_c$ pasa por $N_a$, el punto de Nagel de $\triangle ABC$, entonces $CI$ pasa por el punto de Nagel de $\triangle A’B’C’$.

Igualmente podemos ver que $B’I$, $A’I$ pasan por el punto de Nagel de $\triangle A’B’C’$.

Por lo tanto, el incentro de $\triangle ABC$ es el punto de Nagel de $\triangle A’B’C’$.

Como los puntos notables de dos triángulos homotéticos son puntos homólogos, entonces $I$, $G$ y $N_a$ son colineales.

Dado que la razón de homotecia es $– 2$, entonces $G$ triseca al segmento $IN_a$, es decir, $IG = 2GN_a$.

$\blacksquare$

Circunferencia de Spieker

Definición 1. El incírculo del triángulo medial de un triángulo dado se conoce como circunferencia de Spieker y su centro $S$, como punto de Spieker.

Teorema 3. El punto de Spieker está en la recta de Nagel y biseca al segmento que une al incentro con el punto de Nagel.

Demostración. Sean $\triangle ABC$, $I$ el incentro, $N_a$ el punto de Nagel y consideremos $S$ el punto medio de $IN_a$.

Figura 3

Por el teorema anterior, $3IG = IN_a$, como $2IS = IN_a$ entonces $IG = \dfrac{2}{3}IS$, donde $G$ es el centroide de $\triangle ABC$.

Por lo tanto, $IG = 2GS$.

Sea $\triangle A’B’C’$ el triángulo medial de $\triangle ABC$, como $AG = 2GA’$, por criterio de semejanza LAL, $\triangle GAI \sim \triangle GA’S$

Por lo tanto, $\angle IAG = \angle SA’G$, es decir $AI \parallel SA’$.

Consideremos la homotecia con centro en $G$ que lleva a $\triangle ABC$ en $\triangle A’B’C’$.

Como $A$ y $A’$ son puntos correspondientes de esta homotecia, $AI \parallel A’S$ y $AI$ es bisectriz de $\angle BAC$ entonces $A’S$ es bisectriz de $\angle B’A’C’$.

Igualmente podemos ver que $B’S$ y $C’S$ son bisectrices de $\angle C’B’A’$ y $\angle A’C’B’$ respectivamente, por lo tanto, $S$ es el incentro de $\triangle A’B’C’$.

$\blacksquare$

Proposición 1. La circunferencia de Spieker está inscrita en el triángulo cuyos vértices son los puntos medios de los segmentos que unen el punto de Nagel con los vértices del triángulo.

Demostración. Sean $\triangle ABC$, $N_a$ su punto de Nagel, $A’’$, $B’’$, $C’’$ los puntos medios de $AN_a$, $BN_b$, $CN_c$ respectivamente.

Figura 4

En $\triangle ABN_a$, $A’’B’’$ es un segmento medio por lo que $AB \parallel A’’B’’$ y $AB = 2A’’B’’$.

Igualmente podemos ver que $BC \parallel B’’C’’$, $BC = 2B’’C’’$ y $CA \parallel C’’A’’$ y $CA = 2C’’A’’$.

Como los lados de $\triangle ABC$ también son paralelos y duplican a los lados de $\triangle A’B’C’$, su triangulo medial, entonces $\triangle A’B’C’$ y $\triangle A’’B’’C’’$ son congruentes y están en homotecia.

Por otra parte, sea $I$ el incentro de $\triangle ABC$ y $S$ el punto de Spieker, en $\triangle N_aAI$, $A’’S$ es un segmento medio por lo que $A’’S \parallel AI$.

Por el teorema anterior, $A’S \parallel AI$, en consecuencia, $A’$, $S$ y $A’’$ son colineales.

De manera análoga podemos ver que $B’$, $S$, $B’’$ y $C’$, $S$, $C’’$ son colineales.

Por lo tanto, $S$ es el centro de homotecia entre $\triangle A’B’C’$ y $\triangle A’’B’’C’’$.

Como $\triangle A’B’C’$ y $\triangle A’’B’’C’’$ son congruentes y $S$ es su centro de homotecia, entonces sus incírculos coinciden.

$\blacksquare$

Corolario. El punto de Nagel es un centro de homotecia entre el incírculo y la circunferencia de Spieker de un triángulo.

Demostración. Se sigue de que $\triangle ABC$ y $\triangle A’’B’’C’’$ están en homotecia desde el punto de Nagel y que el incírculo de $\triangle A’’B’’C’’$ es la circunferencia de Spieker.

$\blacksquare$

Circunferencia de Fuhrmann

Definición 2. Considera el circuncírculo de un triángulo $\triangle ABC$, el triángulo cuyos vértices son las reflexiones de los puntos medios de los arcos $\overset{\LARGE{\frown}}{AB}$, $\overset{\LARGE{\frown}}{BC}$ y $\overset{\LARGE{\frown}}{CA}$ que no contienen a $C$, $A$ y $B$ respectivamente, se conoce como triángulo de Fuhrmann y su circuncírculo como circunferencia de Fuhrmann.

Teorema 4. El segmento que une al ortocentro con el punto de Nagel de un triángulo, es diámetro de su circunferencia de Fuhrmann.

Demostración. Sean $\triangle ABC$ y $M_a$, $M_b$, $M_c$, los puntos medios de los arcos $\overset{\LARGE{\frown}}{BC}$, $\overset{\LARGE{\frown}}{CA}$, $\overset{\LARGE{\frown}}{AB}$ respectivamente, $M’_a$, $M’_b$, $M’_c$, sus respectivas reflexiones respecto de los lados $BC$, $CA$ y $AB$.

Sean $O$ el circuncentro de $\triangle ABC$, $A’$ el punto medio de $BC$ y $M$ el punto diametralmente opuesto de $M_a$.

Figura 5

Notemos que $M_a$, $A’$, $O$, $M’_a$ y $M$ son colineales y entonces
$M’_aM = M_aM – M_aM’_a = 2(M_aO – M_aA’) = 2A’O$.

Por otro lado, sabemos que $AH = 2OA’$ donde $H$ es el ortocentro de $\triangle ABC$.

Como $AH = M’_aM$ y $AH \parallel M’_aM$, entonces $\square AHM’_aM$ es paralelogramo.

Ya que $M_aM$ es diámetro entonces $AM \perp AM_a$, en consecuencia, $HM’_a \perp AM_a$.

Sean $I$ el incentro, $N_a$ el punto de Nagel, $S$ el punto de Spieker, respectivamente y considera $L = N_aA’ \cap AM_a$.

Por el teorema anterior $A’S \parallel IL$ y como $S$ es el punto medio del $IN_a$ entonces $A’$ es el punto medio de $N_aL$.

Como $A’$ también es el punto medio de $M_aM’_a$ entonces $\square LM_aN_aM’_a$ es paralelogramo, es decir $M_a’N_a \parallel AM_a$.

En consecuencia, $HM’_a \perp M’_aN_a$ y por lo tanto $M’_a$ está en la circunferencia de diámetro $HN_a$.

De manera análoga vemos que $M’_b$ y $M’_c$ pertenecen a la misma circunferencia.

$\blacksquare$

Proposición 2. La circunferencia de Fuhrmann interseca a las alturas de un triángulo, en un punto (distinto del ortocentro) que está a una distancia del vértice respectivo, del doble del inradio del triángulo.

Demostración. Sea $\triangle ABC$ y $N_a$ su punto de Nagel, consideremos $\triangle A’’B’’C’’$ su triángulo anticomplementario, el triángulo cuyos lados son paralelos a los de $\triangle ABC$ y pasan por lo vértices de $\triangle ABC$.

Figura 6

Como $\triangle ABC$ es el triángulo medial de $\triangle A’’B’’C’’$ entonces $N_a$ es el incentro de $\triangle A’’B’’C’’$, sea $X$ la proyección de $N_a$ en $B’’C’’$, entonces $N_aX$ es el inradio de $\triangle A’’B’’C’’$.

Por lo tanto $N_aX$ es dos veces el inradio r, de $\triangle ABC$.

Completemos el rectángulo $\square ATN_aX$ de lados $N_aX$ y $AX$, entonces $AT = 2r$ y $AT$ es la altura por $A$.

Como $H$, el ortocentro de $\triangle ABC$, está en $AT$ o su extensión y $\angle N_a TH = \dfrac{\pi}{2}$, entonces $T$ está en la circunferencia de Fuhrnamm de $\triangle ABC$.

$\blacksquare$

Más adelante…

En la próxima entrada veremos algunas propiedades de la división armónica, las cuales nos ayudaran a demostrar el teorema de Feuerbach.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera los puntos de tangencia de los lados de un triángulo con un excírculo, muestra que las rectas que unen los vértices del triángulo con el punto de tangencia en el lado opuesto son concurrentes.
  2. Prueba que la recta que pasa por el incentro y el circuncentro de un triángulo es paralela a la recta que pasa por el ortocentro y el punto de Nagel y que $HN_a = 2OI$.
  3. A la recta que pasa por el punto medio de un triángulo y su punto de Spieker se le conoce como cuchilla, demuestra que las tres cuchillas de un triángulo bisecan su perímetro.
  4. Muestra que la reflexión del incentro de un triángulo respecto del centro de los nueve puntos es el centro de su circunferencia de Fuhrmann.
  5. En la figura 5, muestra que $\triangle M_aM_bM_c$ y $\triangle M’_aM’_bM’_c$ son semejantes.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 160-162.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 225-229.
  • Honsberger, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington: The Mathematical Association of America, 1995, pp 49-52.
  • University of Crete
  • Wolfram MathWorld
  • Wikipedia

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Exponencial de una matriz y matriz fundamental de soluciones

Por Omar González Franco

Las matemáticas son el arte de dar el mismo nombre a diferentes cosas.
– Henri Poincare

Introducción

Ya conocemos las propiedades de los sistemas de ecuaciones diferenciales lineales de primer orden, así como las de sus soluciones. Mucho de lo que vimos en las dos entradas anteriores es bastante similar a lo que desarrollamos en las dos primeras entradas de la unidad 2, sin embargo en esta entrada aprenderemos algo completamente nuevo, definiremos una herramienta matemática que nos será de bastante utilidad. ¡Se trata de la exponencial de una matriz!.

En esta entrada definiremos lo que significa $e^{\mathbf{A}t}$, donde $\mathbf{A}$ es una matriz de $n \times n$ con componentes reales constantes.

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{1} \tag{1}$$

Así mismo, estudiaremos algunas de sus propiedades y su utilidad en la resolución de sistemas lineales.

Operaciones sobre componentes de matrices

Muchas de las operaciones que se pueden hacer hacía una matriz son aplicables sobre cada una de las componentes que conforman a dicha matriz. Para comprender este hecho es conveniente definir lo que significa la derivada e integral de una matriz, esto nos permitirá ganar intuición.

Consideremos por un momento una matriz de $n \times n$ compuesta de funciones.

$$\mathbf{A}(t) = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \label{2} \tag{2}$$

donde $a_{i, j}(t)$, $i, j \in \{1, 2, 3, \cdots, n \}$ son funciones sobre algún intervalo común $\delta$. Comencemos por definir la derivada de una matriz.

Algunas reglas de derivación se enuncian a continuación.

De manera equivalente se puede definir la integral de una matriz.

Ejemplo: Calcular la derivada de la matriz

$$\mathbf{A}(t) = \begin{pmatrix}
\cos(t) & \sin(t) \\ \sin^{2}(t) & \cos^{2}(t)
\end{pmatrix}$$

Solución: Aplicamos la derivada sobre cada componente de la matriz.

$$\dfrac{d}{dt} \mathbf{A}(t) = \begin{pmatrix}
\dfrac{d}{dt} \cos(t) & \dfrac{d}{dt} \sin(t) \\ \dfrac{d}{dt} \sin^{2}(t) & \dfrac{d}{dt} \cos^{2}(t)
\end{pmatrix} = \begin{pmatrix}
-\sin(t) & \cos(t) \\ 2 \sin(t) \cos(t) & -2 \cos(t) \sin(t)
\end{pmatrix}$$

$\square$

De manera similar se puede hacer la integral de una matriz.

Definamos lo que es una serie de matrices. En este caso consideremos matrices constantes.

Si tenemos series de matrices es claro que algunas pueden o no converger. A continuación definimos la convergencia en matrices.

Con esto en mente puede resultar más comprensible la definición de la exponencial de una matriz.

Exponencial de una matriz

Recordemos que la función escalar de la exponencial se define como

$$e^{\alpha t} = 1 + \alpha t + \alpha^{2} \dfrac{t^{2}}{2!} + \cdots + \alpha^{k} \dfrac{t^{k}}{k!} = \sum_{k = 0}^{\infty} \alpha^{k} \dfrac{t^{k}}{k!} \label{9} \tag{9}$$

Con las definiciones anteriores podemos extender la serie de la exponencial anterior a una serie de matrices.

Se puede demostrar que la serie (\ref{10}) converge, sin embargo se requiere de un poco más de teoría que queda fuera de nuestro interés.

Veamos un ejemplo en el que determinemos la exponencial de una matriz.

Ejemplo: Determinar la matriz $e^{\mathbf{A}}$, en donde

$$\mathbf{A} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}$$

Solución: Para determinar la matriz $e^{\mathbf{A}}$ usemos directamente la definición (\ref{10}). Sabemos que

$$\mathbf{A}^{0} = \begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix} = \mathbf{I} \hspace{1cm} y \hspace{1cm} \mathbf{A}^{1} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} = \begin{pmatrix}
2^{0} & 2^{0} \\ 2^{0} & 2^{0}
\end{pmatrix}$$

Ahora bien,

$$\mathbf{A}^{2} = \mathbf{AA} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} = \begin{pmatrix}
2 & 2 \\ 2 & 2
\end{pmatrix} = \begin{pmatrix}
2^{1} & 2^{1} \\ 2^{1} & 2^{1}
\end{pmatrix}$$

$$\mathbf{A}^{3} = \mathbf{AA}^{2} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
2 & 2 \\ 2 & 2
\end{pmatrix} = \begin{pmatrix}
4 & 4 \\ 4 & 4
\end{pmatrix} = \begin{pmatrix}
2^{2} & 2^{2} \\ 2^{2} & 2^{2}
\end{pmatrix}$$

$$\mathbf{A}^{4} = \mathbf{AA}^{3} = \begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix} \begin{pmatrix}
4 & 4 \\ 4 & 4
\end{pmatrix} = \begin{pmatrix}
8 & 8 \\ 8 & 8
\end{pmatrix} = \begin{pmatrix}
2^{3} & 2^{3} \\ 2^{3} & 2^{3}
\end{pmatrix}$$

$$\vdots$$

$$\mathbf{A}^{k} = \mathbf{AA}^{k -1} = \begin{pmatrix}
2^{k -1} & 2^{k -1} \\ 2^{k -1} & 2^{k -1}
\end{pmatrix}$$

$$\mathbf{A}^{k + 1} = \mathbf{AA}^{k} = \begin{pmatrix}
2^{k} & 2^{k} \\ 2^{k} & 2^{k}
\end{pmatrix}$$

$$\vdots$$

Sustituimos en (\ref{10}).

\begin{align*} e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} &= \dfrac{1}{0!} \mathbf{A}^{0} + \dfrac{1}{1!} \mathbf{A}^{1} + \dfrac{1}{2!} \mathbf{A}^{2} + \dfrac{1}{3!} \mathbf{A}^{3} + \dfrac{1}{4!} \mathbf{A}^{4} + \cdots + \dfrac{1}{k!} \mathbf{A}^{k} + \cdots \\
&= \dfrac{1}{0!} \begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix} + \dfrac{1}{1!} \begin{pmatrix}
2^{0} & 2^{0} \\ 2^{0} & 2^{0}
\end{pmatrix} + \dfrac{1}{2!} \begin{pmatrix}
2^{1} & 2^{1} \\ 2^{1} & 2^{1}
\end{pmatrix} + \dfrac{1}{3!} \begin{pmatrix}
2^{2} & 2^{2} \\ 2^{2} & 2^{2}
\end{pmatrix} + \dfrac{1}{4!} \begin{pmatrix}
2^{3} & 2^{3} \\ 2^{3} & 2^{3}
\end{pmatrix} + \cdots + \dfrac{1}{k!} \begin{pmatrix}
2^{k -1} & 2^{k -1} \\ 2^{k -1} & 2^{k -1}
\end{pmatrix} \\
&= \begin{pmatrix}
\dfrac{1}{0!}(1) & \dfrac{1}{0!}(0) \\ \dfrac{1}{0!}(0) & \dfrac{1}{0!}(1)
\end{pmatrix} + \begin{pmatrix}
\dfrac{1}{1!}(2^{0}) & \dfrac{1}{1!}(2^{0}) \\ \dfrac{1}{1!}(2^{0}) & \dfrac{1}{1!}(2^{0})
\end{pmatrix} + \begin{pmatrix}
\dfrac{1}{2!}(2^{1}) & \dfrac{1}{2!}(2^{1}) \\ \dfrac{1}{2!}(2^{1}) & \dfrac{1}{2!}(2^{1})
\end{pmatrix} + \begin{pmatrix}
\dfrac{1}{3!}(2^{2}) & \dfrac{1}{3!}(2^{2}) \\ \dfrac{1}{3!}(2^{2}) & \dfrac{1}{3!}(2^{2})
\end{pmatrix} + \cdots + \begin{pmatrix}
\dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{k!}(2^{k -1}) \\ \dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{k!}(2^{k -1})
\end{pmatrix} \\
&= \begin{pmatrix}
\dfrac{1}{0!}(1) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1}) \\ \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1}) & \dfrac{1}{0!}(1) + \dfrac{1}{1!}(2^{0}) + \dfrac{1}{2!}(2^{1}) + \dfrac{1}{3!}(2^{2}) + \cdots + \dfrac{1}{k!}(2^{k -1})
\end{pmatrix} \\
&= \dfrac{1}{2}\begin{pmatrix}
\dfrac{1}{0!}(2) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k}) & \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k}) \\ \dfrac{1}{0!}(0) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k}) & \dfrac{1}{0!}(2) + \dfrac{1}{1!}(2^{1}) + \dfrac{1}{2!}(2^{2}) + \dfrac{1}{3!}(2^{3}) + \cdots + \dfrac{1}{k!}(2^{k})
\end{pmatrix}
\end{align*}

¡Uff!. En la última igualdad lo que hicimos fue multiplicar por un uno en la forma $1 = \dfrac{2}{2}$, esto nos permitió hacer que la potencia de los $2$ sea la misma que en el factorial.

Escribamos la última matriz como series infinitas.

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
\dfrac{1}{0!}(2) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} & \dfrac{1}{0!}(0) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} \\ \dfrac{1}{0!}(0) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} & \dfrac{1}{0!}(2) + \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!}
\end{pmatrix}$$

Nos gustaría hacer que las series comiencen en $k = 0$. Notemos que, de acuerdo a la forma de la serie, el termino $k = 0$ daría como resultado un $1$, considerando esto la expresión anterior la podemos escribir como

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} & \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} \\ \sum_{k = 1}^{\infty} \dfrac{2^{k}}{k!} & 1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!}
\end{pmatrix}$$

Para las componentes de la matriz en las que la serie aún no comienza en $k = 0$ sumamos y restamos un $1$, así el $+1$ puede ser incluido en la serie.

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} & -1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} \\ -1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} & 1 + \sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!}
\end{pmatrix}$$

Ahora todas las series comienzan en $k = 0$. Sabemos que la serie converge a un número.

$$\sum_{k = 0}^{\infty} \dfrac{2^{k}}{k!} = e^{2}$$

Por definición de convergencia en matrices, se tiene

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \dfrac{1}{2} \begin{pmatrix}
1 + e^{2} & -1 + e^{2} \\ -1 + e^{2} & 1 + e^{2}
\end{pmatrix}$$

Por lo tanto, la matriz que buscamos es

$$e^{\begin{pmatrix}
1 & 1 \\ 1 & 1
\end{pmatrix}} = \begin{pmatrix}
\dfrac{e^{2} + 1}{2} & \dfrac{e^{2} -1}{2} \\ \dfrac{e^{2} -1}{2} & \dfrac{e^{2} + 1}{2}
\end{pmatrix}$$

$\square$

Como se puede notar, calcular la exponencial de una matriz usando la definición puede ser una tarea bastante tediosa. Por su puesto existen métodos que nos permiten calcular este tipo de matrices de forma más sencilla, más adelante revisaremos uno de ellos.

Algunas propiedades de la exponencial de una matriz se enuncian a continuación.

No demostraremos este teorema ya que nuestro principal interés está en conocer como estos conceptos y propiedades se pueden aplicar en nuestro estudio sobre sistemas lineales.

A continuación mostraremos un resultado importante e interesante y es que la función (\ref{11}) ¡es solución del sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$!.

La exponencial de una matriz y los sistemas lineales

Demostración: Consideremos la función $\mathbf{Y}(t) = e^{\mathbf{A} t}$. Apliquemos la derivada término a término de la definición (\ref{11}).

\begin{align*}
\dfrac{d}{dt} e^{\mathbf{A}t} &= \dfrac{d}{dt} \left[ \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \dfrac{t^{2}}{2!} + \cdots + \mathbf{A}^{k}\dfrac{t^{k}}{k!} + \cdots \right] \\
&= \dfrac{d}{dt} \mathbf{I} + \dfrac{d}{dt} \left( \mathbf{A}t \right) + \dfrac{d}{dt} \left( \mathbf{A}^{2} \dfrac{t^{2}}{2!} \right) + \cdots + \dfrac{d}{dt} \left( \mathbf{A}^{k}\dfrac{t^{k}}{k!} \right) + \cdots
\end{align*}

Como las matrices $\mathbf{I}$ y $\mathbf{A}$ son constantes, entonces se tiene lo siguiente.

\begin{align*}
\dfrac{d}{dt} e^{\mathbf{A}t} &= \mathbf{0} + \mathbf{A} + \mathbf{A}^{2}t + \dfrac{1}{2!}\mathbf{A}^{3}t^{2} + \cdots + \mathbf{A}^{k} \dfrac{t^{k -1}}{(k -1)!} + \mathbf{A}^{k + 1}\dfrac{t^{k}}{k!} + \cdots \\
&= \mathbf{A} \left[ \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \dfrac{t^{2}}{2!} + \cdots + \mathbf{A}^{k}\dfrac{t^{k}}{k!} + \cdots \right] \\
&= \mathbf{A} e^{\mathbf{A}t}
\end{align*}

Con esto hemos mostrado que

$$\dfrac{d}{dt} e^{\mathbf{A}t} = \mathbf{A} e^{\mathbf{A}t} \label{12} \tag{12}$$

Es decir,

$$\mathbf{Y}^{\prime} = \mathbf{AY}$$

$\square$

La ecuación (\ref{12}) no sólo prueba que es solución del sistema lineal, sino que además muestra cuál es la derivada de la matriz $e^{\mathbf{A} t}$.

Veamos un problema de valores iniciales.

Demostración: Consideremos la función

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0}$$

con $\mathbf{Y}_{0}$ un vector constante, si la derivamos obtenemos lo siguiente.

$$\mathbf{Y}^{\prime} = \dfrac{d}{dt}(e^{\mathbf{A}t} \mathbf{Y}_{0}) = \left( \mathbf{A} e^{\mathbf{A}t} \right) \mathbf{Y}_{0} = \mathbf{A} \left( e^{\mathbf{A}t} \mathbf{Y}_{0} \right) = \mathbf{AY}$$

En donde se ha hecho uso del resultado (\ref{12}). Esto muestra que la función $\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0}$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Si tomamos $t = 0$ y considerando que $e^{\mathbf{A}0} = e^{\mathbf{0}} = \mathbf{I}$, se tiene

$$\mathbf{Y}(0) = e^{\mathbf{A}0} \mathbf{Y}_{0} = \mathbf{IY}_{0} = \mathbf{Y}_{0}$$

Es decir, se satisface la condición inicial $\mathbf{Y}(0) = \mathbf{Y}_{0}$.

$\square$

Nota: Es claro que la matriz $e^{\mathbf{A} t}$ es una matriz de $n \times n$, mientras que el vector constante $\mathbf{Y}_{0}$ es un vector de $n \times 1$, así que es importante el orden de las matrices, la función del teorema anterior es $\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{Y}_{0}$ la cual esta bien definida y el resultado es una matriz de $n \times n$, mientras que la operación $\mathbf{Y}_{0} e^{\mathbf{A} t}$ no está definida de acuerdo al algoritmo de multiplicación de matrices. Cuidado con ello.

Para concluir esta entrada retomaremos el concepto de matriz fundamental de soluciones visto en la entrada anterior.

Matriz fundamental de soluciones

Retomemos la definición de matriz fundamental de soluciones.

En esta sección denotaremos por $\hat{\mathbf{Y}}(t)$ a una matriz fundamental de soluciones.

El objetivo de esta sección es mostrar que se puede determinar directamente la matriz $e^{\mathbf{A}t}$ a partir de cualquier matriz fundamental de soluciones. Antes de llegar a este resultado veamos unos resultados previos.

Demostración:

$\Rightarrow$) Por demostrar: $\hat{\mathbf{Y}}(t)$ satisface al sistema y se cumple que $W(0) \neq 0$.

Supongamos que $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ conformada por los vectores solución $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$, es decir,

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1} & \mathbf{Y}_{2} & \cdots & \mathbf{Y}_{n} \end{pmatrix} = \begin{pmatrix}
y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix}$$

Si $\mathbf{A}$ es la matriz de coeficientes (\ref{1}), entonces

$$\mathbf{A} \hat{\mathbf{Y}} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \begin{pmatrix}
y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix} \label{15} \tag{15}$$

La $i$-ésima columna del resultado de multiplicar estas matrices es

$$\mathbf{A} \mathbf{Y}_{i} = \begin{pmatrix}
a_{11}y_{1i}(t) + a_{12}y_{2i}(t) + \cdots + a_{1n}y_{ni}(t) \\
a_{21}y_{1i}(t) + a_{22}y_{2i}(t) + \cdots + a_{2n}y_{ni}(t) \\
\vdots \\
a_{n1}y_{1i}(t) + a_{n2}y_{2i}(t) + \cdots + a_{nn}y_{ni}(t)
\end{pmatrix} \label{16} \tag{16}$$

Identificamos que esta matriz corresponde a la derivada $\mathbf{Y}^{\prime}_{i}$ ya que cada $\mathbf{Y}_{i}$ es solución del sistema, es decir,

$$\mathbf{Y}^{\prime}_{i} =\mathbf{AY}_{i}, \hspace{1cm} i = 1, 2, \cdots, n \label{17} \tag{17}$$

Entonces $\mathbf{A\hat{Y}}(t)$ tiene por columnas a los vectores $\mathbf{Y}^{\prime}_{1}, \mathbf{Y}^{\prime}_{2}, \cdots, \mathbf{Y}^{\prime}_{n}$. Por lo tanto

$$\hat{\mathbf{Y}}^{\prime} = \mathbf{A\hat{Y}}$$

es decir, la matriz fundamental $\hat{\mathbf{Y}}(t)$ satisface al sistema.

Como $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones, entonces los vectores que la componen $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes, de manera que $\forall$ $t \in \mathbb{R}$ el Wronskiano es distinto de cero.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(t) \neq 0 \label{18} \tag{18}$$

en particular se cumple para $t = 0$, es decir,

$$W( \mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(0) \neq 0$$

Demostremos el regreso.

$\Leftarrow$) Por demostrar: $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones.

Sea $\hat{\mathbf{Y}}(t)$ una matriz compuesta por los vectores $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$ y cuya derivada es

$$\hat{\mathbf{Y}}^{\prime} = \mathbf{A \hat{Y}}$$

entonces las columnas satisfacen

$$\mathbf{AY}_{i} = \mathbf{Y}^{\prime}_{i}$$

así $\mathbf{Y}_{i}(t)$ es solución del sistema

$$\mathbf{Y}^{\prime} = \mathbf{AY}$$

para $i = 1, 2, \cdots, n$.

Por otro lado, por hipótesis

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(0) \neq 0$$

Como es distinto de cero en un punto, entonces lo debe ser en todo el dominio, es decir, $\forall$ $t \in \mathbb{R}$ se cumple que

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(t) \neq 0$$

lo que significa que $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes.

De ambos resultados concluimos que la matriz $\hat{\mathbf{Y}}(t)$ es una matriz fundamental de soluciones.

$\square$

Veamos un resultado interesante. Ya vimos que la matriz $e^{\mathbf{A} t}$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$, pero no solo resulta ser solución, sino que además ¡es una matriz fundamental de soluciones!.

Demostración: Anteriormente mostramos que

$$\dfrac{d}{dt} e^{\mathbf{A}t} = \mathbf{A} e^{\mathbf{A}t}$$

lo que prueba que $\mathbf{Y}(t) = e^{\mathbf{A} t}$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Supongamos que $e^{\mathbf{A} t}$ está compuesta por la matriz de vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$. Si $t = 0$, se tiene que

$$e^{\mathbf{A} 0} = e^{\mathbf{0}} = \mathbf{I}$$

y además el determinante es distinto de cero.

$$|e^{\mathbf{A} 0}| = |\mathbf{I}| = 1 \neq 0 \label{19} \tag{19}$$

o bien,

$$|e^{\mathbf{A} 0}| = W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n})(0) \neq 0 \label{20} \tag{20}$$

Por el teorema anterior concluimos que $\mathbf{Y}(t) = e^{\mathbf{A} t}$ es una matriz fundamental de soluciones del sistema lineal.

$\square$

Veamos un resultado más antes de llegar a nuestro objetivo.

Demostración: Sean $\hat{\mathbf{Y}}(t)$ y $\hat{\mathbf{Z}}(t)$ matrices fundamentales del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$. Supongamos que

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix} \mathbf{Y}_{1} & \mathbf{Y}_{2} & \cdots & \mathbf{Y}_{n} \end{pmatrix} \label{22} \tag{22}$$

y

$$\hat{\mathbf{Z}}(t) = \begin{pmatrix} \mathbf{Z}_{1} & \mathbf{Z}_{2} & \cdots & \mathbf{Z}_{n} \end{pmatrix} \label{23} \tag{23}$$

Donde la $i$-ésima columna de las matrices anteriores son

$$\mathbf{Y}_{i} = \begin{pmatrix}
y_{1i} \\ y_{2i} \\ \vdots \\ y_{ni}
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{Z}_{i} = \begin{pmatrix}
z_{1i} \\ z_{2i} \\ \vdots \\ z_{ni}
\end{pmatrix} \label{24} \tag{24}$$

Como ambas matrices son matrices fundamentales de soluciones, entonces cada $\mathbf{Y}_{i}$ y cada $\mathbf{Z}_{i}$ $i = 1, 2, 3, \cdots, n$ son linealmente independientes. Esto nos permite escribir cualquier columna de $\hat{\mathbf{Y}}(t)$ como combinación lineal de las columnas de $\hat{\mathbf{Z}}(t)$, es decir, existen constantes $c_{1i}, c_{2i}, \cdots, c_{ni}$, tales que

$$\mathbf{Y}_{i}(t) = c_{1i} \mathbf{Z}_{1}(t) + c_{2i} \mathbf{Z}_{2}(t) + \cdots + c_{ni} \mathbf{Z}_{n}(t) \label{25} \tag{25}$$

Donde el índice $i$ de las constantes indica el número de columna de la matriz $\hat{\mathbf{Y}}(t)$, es decir, si definimos el vector

$$\mathbf{c}_{i} = \begin{pmatrix}
c_{1i} \\ c_{2i} \\ \vdots \\ c_{ni}
\end{pmatrix} \label{26} \tag{26}$$

podemos escribir la combinación lineal (\ref{25}) como

$$\mathbf{Y}_{i}(t) = \begin{pmatrix} \mathbf{Z}_{1} & \mathbf{Z}_{2} & \cdots & \mathbf{Z}_{n} \end{pmatrix} \begin{pmatrix}
c_{1i} \\ c_{2i} \\ \vdots \\ c_{ni}
\end{pmatrix} = \begin{pmatrix}
c_{1i}z_{11} + c_{2i}z_{12} + \cdots + c_{ni}z_{1n} \\
c_{1i}z_{21} + c_{2i}z_{22} + \cdots + c_{ni}z_{2n} \\
\vdots \\
c_{1i}z_{n1} + c_{2i}z_{n2} + \cdots + c_{ni}z_{nn}
\end{pmatrix} \label{27} \tag{27}$$

Definamos la matriz constante $\mathbf{C}$ como

$$\mathbf{C} = \begin{pmatrix} \mathbf{c_{1}} & \mathbf{c_{2}} & \cdots & \mathbf{c_{n}} \end{pmatrix} = \begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & & & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix} \label{28} \tag{28}$$

En forma matricial la operación $\hat{\mathbf{Z}}(t) \mathbf{C}$ corresponde al producto de las siguientes matrices de $n \times n$.

$$\hat{\mathbf{Z}}(t) \mathbf{C} = \begin{pmatrix}
z_{11} & z_{12} & \cdots & z_{1n} \\
z_{21} & z_{22} & \cdots & z_{2n} \\
\vdots & & & \vdots\\
z_{n1} & z_{n2} & \cdots & z_{nn}
\end{pmatrix} \begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & & & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix} \label{29} \tag{29}$$

Observemos con cuidado que el resultado (\ref{27}) corresponde a la $i$-ésima columna de hacer el producto $\hat{\mathbf{Z}}(t) \mathbf{C}$. Por lo tanto, las $n$ ecuaciones (\ref{25}) son equivalentes al sistema

$$\hat{\mathbf{Y}}(t) = \hat{\mathbf{Z}}(t) \mathbf{C}$$

$\square$

Hemos llegado al resultado final. Dicho resultado involucra el concepto de matriz inversa, recordemos este concepto de álgebra lineal.

La ecuación anterior queda como

$$\mathbf{AA}^{-1} = \mathbf{A}^{-1} \mathbf{A} = \mathbf{I} \label{31} \tag{31}$$

Demostremos el resultado que nos muestra cómo obtener la matriz $e^{\mathbf{A}t}$ a partir de una matriz fundamental de soluciones.

Demostración: Sabemos que $e^{\mathbf{A} t}$ y $\hat{\mathbf{Y}}(t)$ son matrices fundamentales de soluciones de $\mathbf{Y}^{\prime} = \mathbf{AY}$, de acuerdo al teorema anterior ambas funciones se relacionan de la siguiente forma.

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \mathbf{C} \label{33} \tag{33}$$

para alguna matriz constante $\mathbf{C}$.

Tomemos $t = 0$, por un lado

$$e^{\mathbf{A} 0} = e^{\mathbf{0}} = \mathbf{I}$$

Por otro lado, de (\ref{33})

$$e^{\mathbf{A} 0} = \hat{\mathbf{Y}}(0) \mathbf{C}$$

De ambas ecuaciones tenemos que

$$\hat{\mathbf{Y}}(0) \mathbf{C} = \mathbf{I} \label{34} \tag{34}$$

Esta ecuación obliga que

$$\mathbf{C} = \hat{\mathbf{Y}}^{-1}(0) \label{35} \tag{35}$$

Sustituyendo en (\ref{33}) concluimos que

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0)$$

$\square$

Finalicemos con un ejemplo.

Ejemplo: Determinar la matriz $e^{\mathbf{A} t}$, donde

$$\mathbf{A} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix}$$

Solución: Imagina lo complicado que sería este problema si lo intentáramos resolver usando la definición (\ref{11}).

En la entrada anterior vimos que una matriz fundamental de soluciones del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\hat{\mathbf{Y}}(t) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

Determinemos la matriz $e^{\mathbf{A} t}$ usando la expresión (\ref{32}).

Calcular la matriz inversa puede ser una tarea larga y debido a que no es el objetivo llevar a cabo estas operaciones se puede comprobar que la matriz inversa de $\hat{\mathbf{Y}}(t)$ es

$$\hat{\mathbf{Y}}^{-1}(t) = \begin{pmatrix}
\dfrac{1}{2} & -\dfrac{1}{2} & 0 \\ \dfrac{1}{2 e^{2t}} & \dfrac{1}{2 e^{2t}} & 0 \\ 0 & 0 & \dfrac{1}{e^{3t}}
\end{pmatrix}$$

Basta probar que $\hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(t) = \mathbf{I}$. Para calcular la inversa se puede hacer uso de algún programa computacional. Si en la matriz inversa evaluamos en $t = 0$, se tiene

$$\hat{\mathbf{Y}}^{-1}(0) = \begin{pmatrix}
\dfrac{1}{2} & -\dfrac{1}{2} & 0 \\ \dfrac{1}{2} & \dfrac{1}{2} & 0 \\ 0 & 0 & 1
\end{pmatrix}$$

Por lo tanto,

$$e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix} \begin{pmatrix}
\dfrac{1}{2} & -\dfrac{1}{2} & 0 \\ \dfrac{1}{2} & \dfrac{1}{2} & 0 \\ 0 & 0 & 1
\end{pmatrix}$$

Haciendo la multiplicación de matrices correspondiente obtenemos finalmente que

$$e^{\mathbf{A} t} = \begin{pmatrix}
\dfrac{e^{2t} + 1}{2} & \dfrac{e^{2t} -1}{2} & 0 \\ \dfrac{e^{2t} -1}{2} & \dfrac{e^{2t} + 1}{2} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

$\square$

Existen otras formas de calcular la exponencial de una matriz, una de ellas es usando la transformada de Laplace y otra puede ser diagonalizando matrices. Si lo deseas puedes investigar sobre estos métodos en la literatura, por nuestra parte serán temas que no revisaremos ya que, más que obtener exponenciales de matrices, estamos interesados en obtener soluciones de sistemas de ecuaciones diferenciales, aunque como vimos, están estrechamente relacionados.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Sea

    $\mathbf{A}(t) = \begin{pmatrix} \sin(2t) \\ e^{3t} \\ 8t -1 \end{pmatrix}$
  • Demostrar que la derivada de la matriz $\mathbf{A}$ es

    $\dfrac{d}{dt} \mathbf{A}(t) = \begin{pmatrix} 2 \cos(2t) \\ 3e^{3t} \\ 8 \end{pmatrix}$
  • Demostrar que la integral de $0$ a $t$ de la matriz $\mathbf{A}$ es

    $\int_{0}^{t} \mathbf{A}(s) ds = \begin{pmatrix} -\dfrac{1}{2} \cos(2t) + \dfrac{1}{2} \\ \dfrac{1}{3} e^{3t} -\dfrac{1}{3} \\ 4t^{2} -t \end{pmatrix}$
  1. Demostrar que

    $\int{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} ds} = t \mathbf{I} + \mathbf{C}$

    Donde,

    $\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{C} = \begin{pmatrix} 0 & c & c \\ c & 0 & c \\ c & c & 0 \end{pmatrix}$

    con $c$ una constante.
  1. Obtener la matriz $e^{\mathbf{A}t}$ para los siguientes casos:
  • $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$
  1. Sea $\hat{\mathbf{Y}}(t)$ una matriz fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$. Demostrar que $$e^{\mathbf{A} (t -t_{0})} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(t_{0})$$
  1. Una matriz fundamental del sistema

    $\mathbf{Y}^{\prime} = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \mathbf{Y} = \mathbf{AY}$

    es

    $\hat{\mathbf{Y}}(t) = \begin{pmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -(1 + t) e^{2t} \end{pmatrix}$
  • Demostrar que la matriz anterior en efecto es una matriz fundamental de soluciones del sistema.
  • Demostrar que la matriz $e^{\mathbf{A} t}$ está dada por

    $e^{\mathbf{A} t} = \begin{pmatrix} (1 -t) e^{2t} & -te^{2t} \\ te^{2t} & (1 + t) e^{2t} \end{pmatrix}$

Más adelante…

En estas tres primeras entradas de la unidad 3 establecimos la teoría básica que debemos conocer sobre los sistemas lineales de primer orden compuestos por $n$ ecuaciones diferenciales lineales de primer orden. En particular, esta entrada es de interés, pues más adelante la exponencial de una matriz volverá a aparecer cuando estudiemos métodos de resolución y cuando justifiquemos los teoremas de existencia y unicidad.

En las siguientes entradas comenzaremos a desarrollar los distintos métodos de resolución de estos sistemas lineales. En particular, en la siguiente entrada desarrollaremos el método de eliminación de variables, éste método en realidad es muy sencillo, útil y práctico en muchas ocasiones, aunque también es un método muy limitado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Método de eliminación de variables

Por Omar González Franco

En las matemáticas no entiendes las cosas. Te acostumbras a ellas.
– John Von Neumann

Introducción

Estamos listos para comenzar a desarrollar los distintos métodos de resolución de sistemas lineales de primer orden.

En esta entrada desarrollaremos un método relativamente sencillo, pero muy limitado, ya que en general se utiliza cuando sólo tenemos un sistema lineal de dos ecuaciones diferenciales. Este método se conoce como método de eliminación de variables y, como su nombre lo indica, lo que se intenta hacer es eliminar las variables dependientes de $t$ hasta quedarnos con sólo una, esto produce que el resultado sea una sola ecuación diferencial de orden superior (la ecuación correspondiente a la única variable dependiente que nos queda), la cual es posible resolver aplicando alguno de los métodos vistos en la unidad anterior, la solución de dicha ecuación diferencial servirá para obtener el resto de funciones solución del sistema lineal.

Es importante mencionar que para que este método sea práctico y sencillo se requiere que los coeficientes de las ecuaciones que conforman al sistema lineal sean constantes y como el problema se reduce a resolver una ecuación de orden superior es conveniente usar este método sólo cuando tenemos dos ecuaciones diferenciales en el sistema, ya que esto involucrará resolver una ecuación diferencial de segundo orden con coeficientes constantes.

Desarrollemos el método de manera general.

Método de eliminación de variables

Los sistemas de ecuaciones diferenciales que estamos estudiando son de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + \cdots + a_{1n}(t)y_{n} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + \cdots + a_{2n}(t)y_{n} + g_{2}(t) \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \cdots + a_{nn}(t)y_{n} + g_{n}(t) \label{1} \tag{1}
\end{align*}

Este método lo desarrollaremos para un sistema lineal de dos ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas. De manera general desarrollemos el caso no homogéneo, el caso homogéneo será un caso particular.

Consideremos el siguiente sistema de ecuaciones diferenciales en su forma normal.

$$\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + g_{2}(t)
\end{align*} \label{2} \tag{2}$$

Debido a que se trata de un sistema pequeño regresemos a nuestra notación usual de derivada y sean $x$ y $y$ las variables dependientes de la variable independiente $t$. Así mismo, usemos una distinta notación para los coeficientes $a_{i, j}$, $i, j \in \{1, 2\}$, de tal manera que el sistema lineal (\ref{2}) lo podamos escribir de la siguiente forma.

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by + g_{1}(t) \\
\dfrac{dy}{dt} &= cx + dy + g_{2}(t)
\end{align*}\label{3} \tag{3}$$

Con $a$, $b$, $c$ y $d$ constantes. El método que desarrollaremos es para sistema de la forma (\ref{3}).

De la primer ecuación del sistema despejamos a la variable $y$.

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \label{4} \tag{4}$$

Sustituyamos en la segunda ecuación.

$$\dfrac{d}{dt} \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] = cx + d \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] + g_{2}$$

Derivemos en el lado izquierdo y operemos en el lado derecho de la ecuación.

\begin{align*}
\dfrac{1}{b} \left[ \dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} \right] &= cx + \dfrac{1}{b} \left( d \dfrac{dx}{dt} -adx -dg_{1} \right) + g_{2} \\
\dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} &= bcx + d \dfrac{dx}{dt} -adx -dg_{1} + bg_{2}
\end{align*}

Reordenando los términos se tiene lo siguiente.

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc) x = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2} \label{5} \tag{5}$$

Si definimos

$$p = -(a + d), \hspace{1cm} q = (ad -bc) \hspace{1cm} y \hspace{1cm} g(t) = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2}$$

entonces el resultado (\ref{5}) se puede escribir como

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + q x = g(t) \label{6} \tag{6}$$

Con $p$ y $q$ constantes. En esta forma es claro que tenemos una ecuación diferencial lineal de segundo orden con coeficientes constantes, basta resolver la ecuación usando los métodos desarrollados en la unidad anterior para obtener la función $x(t)$. Una vez obtenida la solución de (\ref{6}) sustituimos en el despeje inicial que hicimos para $y(t)$ (\ref{4}) y resolvemos, con ello estaremos obteniendo la solución del sistema lineal (\ref{3}).

Caso homogéneo

El caso homogéneo es un caso particular del desarrollo anterior, pues el sistema a resolver es

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by \\
\dfrac{dy}{dt} &= cx + dy
\end{align*}\label{7} \tag{7}$$

El desarrollo es exactamente el mismo considerando que $g_{1}(t) = 0$ y $g_{2}(t) = 0$.

Despejando a $y$ de la primer ecuación, obtenemos

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax \right) \label{8} \tag{8}$$

Sustituyendo en la segunda ecuación y siguiendo el mismo procedimiento obtendremos que la ecuación diferencial de segundo orden homogénea para $x$ es

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc)x = 0 \label{9} \tag{9}$$

Si nuevamente definimos

$$p = -(a + d), \hspace{1cm} y \hspace{1cm} q = (ad -bc)$$

entonces podemos escribir

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + qx = 0 \label{10} \tag{10}$$

Resolvamos un par de ejemplos, comencemos con un sistema lineal homogéneo.

Ejemplo: Resolver el siguiente sistema lineal homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 2x -y \\
\dfrac{dy}{dt} &= 5x -2y
\end{align*}

Solución: Comencemos por despejar a la variable $y$ de la primer ecuación.

$$y = 2x -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 2x -\dfrac{dx}{dt} \right) = 5x -2 \left( 2x -\dfrac{dx}{dt} \right)$$

Operando, se tiene

\begin{align*}
2 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 5x -4x + 2 \dfrac{dx}{dt} \\
-\dfrac{d^{2}x}{dt^{2}} &= x
\end{align*}

La ecuación de segundo orden a resolver es

$$\dfrac{d^{2}x}{dt^{2}} + x = 0$$

Por supuesto esta ecuación se puede obtener sustituyendo los coeficientes directamente en la ecuación (\ref{9}).

Resolvamos la ecuación. La ecuación auxiliar es

$$k^{2} + 1 = 0$$

cuyas raíces son $k_{1} = i$ y $k_{2} = -i$.

Recordemos que la forma de la solución para raíces complejas $k_{1} = \alpha + i \beta$ y $k_{2} = \alpha -i \beta$ es

$$x(t) =e^{\alpha t}(c_{1} \cos(\beta t) + c_{2} \sin(\beta t)) \label{11} \tag{11}$$

En nuestro caso $\alpha =0$ y $\beta = 1$, entonces la solución es

$$x(t) = c_{1} \cos(t) + c_{2} \sin(t)$$

Vemos que

$$\dfrac{dx}{dt} = -c_{1} \sin(t) + c_{2} \cos(t)$$

Sustituimos en el despeje de $y$.

\begin{align*}
y(x) &= 2(c_{1} \cos(t) + c_{2} \sin(t)) -(-c_{1} \sin(t) + c_{2} \cos(t)) \\
&= 2c_{1} \cos(t) + 2c_{2} \sin(t) + c_{1} \sin(t) -c_{2} \cos(t)
\end{align*}

Esta solución la podemos escribir de dos formas.

$$y(x) = c_{1}(2 \cos(t) + \sin(t)) + c_{2}(2 \sin(t) -\cos(t))$$

o bien,

$$y(x) = (2c_{1} -c_{2})\cos(t) + (c_{1} + 2c_{2})\sin(t)$$

Por lo tanto, la solución general del sistema homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
\cos(t) \\ 2 \cos(t) + \sin(t)
\end{pmatrix} + c_{2} \begin{pmatrix}
\sin(t) \\ 2 \sin(t) -\cos(t)
\end{pmatrix}$$

o bien,

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ 2c_{1} -c_{2}
\end{pmatrix} \cos(t) + \begin{pmatrix}
c_{2} \\ c_{1} + 2c_{2}
\end{pmatrix} \sin(t)$$

$\square$

Ahora resolvamos un sistema no homogéneo como ejemplo.

Ejemplo: Resolver el siguiente sistema lineal no homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 4x -y + t + 1 \\
\dfrac{dy}{dt} &= 2x + y + t + 1
\end{align*}

Solución: En este caso no homogéneo se tiene que

$$g_{1}(t) = t + 1 = g_{2}(t)$$

De la primer ecuación despejamos a $y$.

$$y = 4x + t + 1 -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 4x + t + 1 -\dfrac{dx}{dt} \right) = 2x + \left( 4x + t + 1 -\dfrac{dx}{dt} \right) + t + 1$$

En el lado izquierdo aplicamos la derivada y en el lado izquierdo operamos.

\begin{align*}
4 \dfrac{dx}{dt} + \dfrac{d}{dt}(t + 1) -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2 \\
4 \dfrac{dx}{dt} + 1 -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2
\end{align*}

Reordenando los términos, se tiene

\begin{align*}
5 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 6x + 2t + 1 \\
-\dfrac{d^{2}x}{dt^{2}} + 5 \dfrac{dx}{dt} -6x &= 2t + 1 \\
\end{align*}

La ecuación diferencial de segundo orden no homogénea a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

Para obtener la función $x(t)$ primero resolveremos el caso homogéneo y posteriormente aplicaremos el método de coeficientes indeterminados para resolver el caso no homogéneo. Recordemos que la solución general será la superposición de ambos resultados.

$$x(t) = x_{c}(t) + x_{p}(t) \label{12} \tag{12}$$

Para el caso homogéneo la ecuación a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = 0$$

La ecuación auxiliar es

$$k^{2} -5k + 6 = 0$$

Resolviendo para $k$ se obtiene que $k_{1} = 2$ y $k_{2} = 3$. Como las raíces son reales y distintas, la forma de la solución es

$$x_{c}(t) = c_{1}e^{k_{1}t} + c_{2}e^{k_{2}t} \label{13} \tag{13}$$

Por lo tanto, la solución complementaria es

$$x_{c}(t) = c_{1}e^{2t} + c_{2}e^{3t}$$

Ahora resolvamos la ecuación no homogénea.

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

En este caso la función $g$ es

$$g(x) = -2t -1$$

la cual corresponde a un polinomio de grado $1$, entonces proponemos que la solución particular tiene, de igual manera, la forma de un polinomio de grado $1$, esto es

$$x_{p}(t) = At + B$$

Con $A$ y $B$ constantes por determinar. La primera y segunda derivada están dadas como

$$\dfrac{dx_{p}}{dt} = A \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x}{dt^{2}} = 0$$

Sustituimos en la ecuación diferencial.

$$0 -5A + 6(At + B) = -2t -1$$

Reordenando, se tiene

$$6At + 6B -5A = -2t -1$$

Para que se cumpla la igualdad es necesario que ocurra lo siguiente.

\begin{align*}
6A &= -2 \\
6B -5A &= -1
\end{align*}

De la primer igualdad se obtiene que

$$A = -\dfrac{1}{3}$$

Sustituyendo este resultado en la segunda igualdad se obtiene que

$$B = \dfrac{1}{9}$$

Por lo tanto, la solución particular es

$$x_{p}(t) = -\dfrac{1}{3}t + \dfrac{1}{9}$$

Entonces concluimos que la solución general de la ecuación diferencial de segundo orden para $x$ es

$$x(t) = c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9}$$

Sustituimos este resultado en la ecuación de $y$.

$$y = 4 \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right) + t + 1 -\dfrac{d}{dt} \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right)$$

Operando, se tiene

$$y = 4c_{1}e^{2t} + 4c_{2}e^{3t} -\dfrac{4}{3}t + \dfrac{4}{9} + t + 1 -2c_{1}e^{2t} -3c_{2}e^{3t} + \dfrac{1}{3}$$

De donde se obtiene finalmente que la solución $y(t)$ es

$$y(x) = 2c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{16}{9}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix}$$

$\square$

Hemos concluido con esta entrada. Este método resulta sencillo y práctico para resolver sistemas lineales de este tipo, sin embargo está limitado a sistemas pequeños y realmente estamos interesados en resolver sistemas mucho más complejos.

En las siguientes entradas desarrollaremos otros métodos más generales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y \\
    \dfrac{dy}{dt} &= 4x + 3y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y \\
    \dfrac{dy}{dt} &= 3x -2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x -4y \\
    \dfrac{dy}{dt} &= -x + 2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} = 2x -3y \\
    \dfrac{dy}{dt} = 3x + 2y
    \end{align*}$
  1. Resolver los siguientes sistemas lineales no homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y + 3t \\
    \dfrac{dy}{dt} &= 3x -2y + 2t + 4
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y + e^{t} \\
    \dfrac{dy}{dt} &= 3x -2y + 3e^{2t} + 2
    \end{align*}$

Más adelante…

En esta entrada presentamos un método sencillo para resolver sistemas lineales compuestos por dos ecuaciones diferenciales lineales de primer orden con coeficientes constantes tanto homogéneas como no homogéneas.

En la siguiente entrada comenzaremos a desarrollar otros métodos de resolución a sistemas lineales, sin embargo estos métodos suelen ser tratados desde una perspectiva del álgebra lineal, así que será importante hacer una pequeño repaso de algunos conceptos y teoremas de álgebra lineal. Unos de los conceptos más importantes que utilizaremos es el de valores y vectores propios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Calculo Diferencial e Integral II: Series de Taylor y de Maclaurin

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series de potencias, en esta sección veremos las series de Taylor y de Maclaurin que tienen como base las series de potencias.

Series de Taylor y Maclaurin

Definición. Sea $f$ una función tal que $f^{1}(a)…f^{(k)}(a)$ existen, es decir, la k-esima derivada de la función $f$ existe. Si $p(x)=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+…+a_{n}(x-a)^{n}$ entonces decimos que $p(x)$ es el polinomio de Taylor de grado $n$ alrededor de $a$ para $f$, denotado como:

$$P^{(k)}_{n,a}=\sum_{n=0}^{\infty}\frac{f^{(k)}(a)}{n!}(x-a)^{n}$$

En el caso cuando $a=0$ la serie es conocida como serie de Maclaurin:

$$P^{(k)}_{n}=\sum_{n=0}^{\infty}\frac{f^{(k)}(0)}{n!}(x)^{n}$$

Vemos que estas series aproximan una función $f(x)$ por medio de polinomios, es decir, para $x=a$ los polinomios de Taylor o series de Taylor por medio de polinomios proporcionan un ajuste a $f(x)$.

Veamos unos ejemplos.

Ejemplos

  • Calcule el polinomio de Taylor de grado $2n+1$ alrededor de $0$ para la función $\sin(x)$.

Calculando las derivadas, se tiene que:

$\sin'(x)=\cos(x), \sin^{\prime \prime}(x)=-\sin(x), \sin^{\prime \prime \prime}(x)=-\cos(x), \sin^{\prime \prime \prime \prime}(x)=\sin(x)$.

Observación: Vemos que las derivadas de orden impar involucra el término de coseno y las de orden par a los términos de seno, por lo que $\sin^{2n+1}(0)=(-1)^{n}$

Asi tenemos que:

$$p_{2n+1, 0} \space \sin(x)=\frac{\sin(0)(x-0)}{0!}+\frac{\sin'(0)(x-0)}{1!}+\frac{\sin^{\prime \prime}(0)(x-0)^{2}}{2!}+\frac{\sin^{\prime \prime \prime}(0)(x-0)^{3}}{3!}+…$$

$$…+\frac{\sin^{2n+1}(0)(x-0)^{2n+1}}{(2n+1)!}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+….+\frac{(-1)^{n}x^{2n+1}}{(2n+1)!}$$

  • Calcule el polinomio de Taylor de grado $2n+1$ alrededor de $0$ para $\cos(x)$

Tenemos que $\cos'(x)=-\sin(x), \cos^{\prime \prime}(x)=-\cos(x), \cos’^{\prime \prime \prime}x)=\sin(x), \cos^{\prime \prime \prime \prime}(x)=\cos(x)$

Observación: Vemos que las derivadas de orden impar involucra el término de seno y las de orden par al coseno, por lo que $\cos^{2n}(0)=(-1)^{n}$.

Así tenemos que:

$$p_{2n, 0} \space \cos(x)=\frac{\cos(0)(x-0)}{0!}+\frac{\cos'(0)(x-0)}{1!}+\frac{\cos^{\prime \prime}(0)(x-0)^{2}}{2!}+\frac{\cos^{\prime \prime \prime}(0)(x-0)^{3}}{3!}+…$$

$$…+\frac{\cos^{2n}(0)(x-0)^{2n}}{(2n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4}+….+\frac{(-1)^{n}x^{2n}}{(2n)!}$$

Observamos que los polinomios de Taylor se aproxima a una función $f(x)$ mediante sus derivadas hasta el orden enésimo. Veamos el siguiente teorema.

Residuo

Teorema de Taylor:

Supongamos que $f'(x), f^{\prime \prime}(x),…., f^{n+1}(x)$ existen, es decir, la $n+1$ derivadas existen, definimos en el intervalo cerrado $[a, x]$ al residuo o el resto $R_{n, a, f}(x)$ que está definida por $f(x)=f(a)+f'(a)(x-a)+….+\frac{f^{(n)}(a)}{n!}+R_{n,a}(x)$ entonces el residuo se puede definir de 3 maneras distintas:

  • Forma de cauchy:

$$R_{n,a,f}(x)=\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}(x-a)$$

Para algún $t$ en $[a, x]$.

  • Forma de Lagrange:

$$R_{n,a, f}(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$$

Para algún $t$ en $[a, x]$ y $f^{n+1}$ es integrable en $[a, x]$.

  • Forma integral:

$$R_{n,a, f}(x)=\int_{a}^{x}\frac{f^{(n+1)}(t)}{n!}(t)(x-t)^{n}dt$$

Demostración:

Demostremos la forma de Cauchy, sea $S:[a, x]\rightarrow \mathbb{R}$ definida como:

$$S(t)=f(x)-(f(t)+f'(t)(x-t)+….+\frac{f^{n}(t)(x-t)}{n!}) \tag{3}$$

La función $S$ es continua en $[a, x]$ y diferenciable en $(a ,x)$, por el teorema del valor medio $\exists \space t^{*}\epsilon \space (a, x)$ tal que:

$$\frac{S(x)-S(a)}{x-a}=S'(t^{*}) \tag{1}$$

Sea $S(x)$ definida anteriormente como:

$$S(x)=f(x)-(f(x)+f'(x)(x-x)+….+\frac{f^{n}(x)(x-x)^{n}}{n!})=0$$

y $S(a)$:

$$S(a)=f(x)-(f(a)+f'(a)(x-a)+….+\frac{f^{n}(a)(x-a)^{n}}{n!}=f(x)-p_{n, a, f}(x))=R_{n, a, f}(x)$$

Entonces por $(1)$:

$$S'(t^{*})=\frac{0-R_{n, a, f}(x)}{x-a}$$

Con $t^{*} \epsilon (a, x)$, por otro lado, derivamos la relación $(3)$ con respecto a $t$ como:

$$ S'(t)= 0-(f'(t)+f'(t)(-1)+f^{\prime \prime}(t)(x-t)+\frac{f^{\prime \prime}(t)^{2}}{2!}(x-t)(-1))+ \frac{f^{\prime \prime}(t)^{2}}{2!}(x-t)^{2}….)$$

$$=-\frac{f^{(n+1)}(t^{})(x-t)^{n}}{n!} \space \forall \space t \space \epsilon (0,x) \tag{2}$$

$$\Rightarrow S'(t^{*})=\frac{0-R_{n, a, f}(x)}{x-a} =\frac{-S(a)}{x-a}$$

Pero:

$$ S'(t)=-\frac{f^{(n+1)}(t^{})(x-t)^{n}}{n!}$$

$$\Rightarrow -S(a)=-\frac{f^{(n+1)}(t)(x-t)^{n}}{n!}(x-a)$$

$$\therefore R_{n, a, f(x)}=\frac{f^{(n+1)}(t)(x-t)^{n}}{n!}(x-a)$$

$\square$

Ahora demostremos la forma de Lagrange.

Apliquemos el teorema de valor medio de Cauchy a las funciones $S:[a, x] \rightarrow \mathbb{R}$ y $g(x)=(x-t)^{n+1}$, observemos que $g$ es continua en el intervalo $[a, x]$ y diferenciable en $(a, x), \space \exists \space t^{*} \space\epsilon \space (a, b)$ tal que:

$$\frac{ S'(t^{*})}{ g'(x) }=\frac{ S(x)-S(a) }{ (g(x)-g(a)) }$$

$$ \Rightarrow (g(x)-g(a))S'(t^{*})=(S(x)-S(a))g'(x)$$

$$\Rightarrow (g(x)-g(a))S'(t^{*})=(S(x)-S(a))(n+1)(x-t)^{n}$$

Donde:

$$g(x)=(x-x)^{n+1}=0$$

$$ \Rightarrow (0-g(a))S'(t^{*})=(0-S(a))(n+1)(x-t)^{n}$$

Utilizando la relación $(2)$, la evaluación correspondiente de $g(a)$ y $S(a)$, se tiene que:

$$\Rightarrow -(x-a)^{n+1}\frac{f^{(n+1)}(t^{})(x-t)^{n}}{n!}=R_{n, a, f(x)}(n+1)(x-t)^{n}(-1)$$

$$\therefore R_{n, a, f(x)}=\frac{f^{(n+1)}(t^{})(x-a)^{n+1}}{(n+1)!}$$

$\square$

Demostremos la última forma que es la forma de la integral. Tenemos que:

$$\int_{a}^{x}S'(t)dt=S(x)-S(a)=0-R_{n, a, f(x)}$$

Donde $s(x)=0$ y nuevamente utilizamos la relación $(2)$, por tanto:

$$\therefore R_{n, a, f(x)} = \int_{x}^{a}\frac{f^{n+1}(x)}{n!}(x-t)^{n}dt$$

$\square$

Una de las aplicaciones de las series de Taylor y Maclaurin es en la resolución de la ecuación diferencial para un péndulo no lineal, que viene dada como:

$$\ddot{\theta}=-\frac{g}{l}\sin(\theta )$$

Esta ecuación diferencial no se resuelve tan fácil y no hay solución que se pueda escribir en términos de funciones elementales, se puede solucionar esta ecuación para valores pequeños de $\theta$ con $\theta <<1$, aproximamos la función $\sin(\theta)$ en términos de una serie de Taylor:

$$\sin(\theta) \approx \theta-\frac{\theta^{3}}{3}+\frac{\theta^{5}}{5}+….+\frac{(-1)^{n}\theta^{2n+1}}{(2n+1)!}$$

Como queremos solamente valores pequeños de $\theta$, entonces:

$$\sin(\theta) \approx \theta$$

Así la ecuación diferencial se reescribe como:

$$\ddot{\theta}=-\frac{g}{l}\theta $$

Y la solución a esta ecuación diferencial está dada como:

$$\theta(t)=\theta_{0}\cos\left ( \sqrt{\frac{g}{l}}t \right )$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con serie de Taylor.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $f(x)=e^{x}$ al grado $n$ y alrededor de $0$.
  2. $f(x)=log(x)$ al grado $n$ y alrededor de $1$.
  3. Escriba la serie de Maclaurin de la función $f(x)=log(x+1)$ hasta grado $n$.
  4. $f(x)=x^{5}$ al grado $n$ alrededor de $1$ y calcule su residuo.
  5. $f(x)=\sqrt{x}$ al grado $n=3$ alrededor de $0$ y calcule su residuo.

Más adelante…

En esta sección vimos la definición de las series de Taylor y las series de Maclaurin que es un caso particular de las series de Taylor, también vimos los residuos en el caso de las series de Taylor. Con esta entrada acabamos con la unidad 7, en la siguiente entrada veremos las series de Fourier con el cual comenzaremos la unidad 8.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de potencia

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos el criterio de la convergencia absoluta para las series alternantes, en esta sección veremos las series de potencia, que, como bien dice el nombre, son series polinómicas, veamos la siguiente definición.

Series de potencia

Definición. Una serie de potencia es la serie de la siguiente forma:

$$\sum_{n=0}^{\infty}c_{n}x^{n}=c_{0}+c_{1}x+c_{2}x^{2}+…..$$

A la serie anterior, se le dice que es una serie de potencias alrededor de $x=0$, mientras que, la series de potencias alrededor de $x=a$ se le conoce como series de potencias centradas en $a$, y es de la siguiente forma:

$$\sum_{n=0}^{\infty}c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+…..$$

Donde $c_{n}$ son coeficientes en ambos casos.

Un ejemplo de estas series son las series geométricas que ya hemos visto, al hacer los n-coeficientes $c_{n}$ igual a 1:

$$\sum_{n=0}^{\infty}x^{n}=1+x+x^{2}+x^{3}…..$$

Veamos el siguiente teorema de convergencia llamado el teorema de Abel para las series de potencias.

Teorema de Abel:

Sea la siguiente serie: $\sum_{n=0}^{\infty}c_{n}(x-a)^{n}$, entonces se cumple una y solo una de las siguientes afirmaciones:

$a)$ La serie converge solo cuando $x=a$.

$b)$ Existe un número positivo $R$ tal que la serie converge $|x-a|<R$ y diverge si $|x-a|>R$.

$c)$ La serie converge para toda $x$.

La demostración de este teorema es extensa, por lo que sería más conveniente analizarla que demostrarla.

Al número $R$ se le llama el radio de convergencia de la serie, notemos que la serie converge en el intervalo $(a-R, \space a+R)$, si $R=0$ tenemos el primer caso $a)$, es decir, el intervalo consta de un solo punto $x=a$, si $R \to \infty$ entonces tenemos el caso $c)$, es decir, el intervalo de convergencia en este caso es $(-\infty, \infty)$, en el intervalo $b)$ se tiene 4 casos posibles:

$$(a-R, \space a+R)$$

$$[a-R, \space a+R]$$

$$(a-R, \space a+R]$$

$$[a-R, \space a+R)$$

Es decir, la serie puede diverger en ambos extremos o solo un extremo, al igual que la convergencia de la serie.

El teorema de Cauchy-Hadamard nos permite conocer la convergencia de la serie de potencias:

Teorema de Cauchy-Hadamard:

Consideremos la serie de potencias $\sum_{n=0}^{\infty}c_{n}(x-a)^{n}$ y consideremos a $A$ como:

$$A=\lim_{n \to \infty}\sqrt[n]{|c_{n}|}$$

Entonces la serie de potencias converge si el radio de convergencia $R$ se define como:

$$R=\frac{1}{A}$$

De este teorema podemos concluir lo siguiente, dependiendo del valor de $A$ podemos decir que si:

  • $$A=0 \Rightarrow R \to \infty$$
  • $$A \to \infty \Rightarrow R=0$$
  • $$0<A<\infty \Rightarrow R=\frac{1}{A}$$

Demostración:

Sin perdida de generalidad podemos suponer que $a=0$. Supongamos que $|x|<R$, entonces:

$$|c_{n}x^{n}|\leq |c_{n}|R^{n} \tag{1}$$

Ahora, como:

$$\lim_{n \to \infty}\sqrt[n]{|c_{n}|}=A= \frac{1}{R}$$

Para casi todos los índices de $n$, ya que:

$$ \sqrt[n]{|c_{n}|} \leq \frac{1}{R} \Rightarrow |c_{n}| \leq R^{-n}$$

Por lo que en $(1)$:

$$|c_{n}x^{n}|\leq |c_{n}|R^{n} \leq R^{n} R^{-n}=1 $$

Lo cual vemos que es una serie absolutamente convergente, por el criterio de la absoluta convergencia:

$$ \sum_{n=0}^{\infty}c_{n}(x-a)^{n} \space converge $$

Para el caso cuando $|x|>R $, de la misma manera anterior obtendremos que:

$$ |c_{n}x^{n}| \geq 1 $$

Lo que significa que no puede convergir a cero, lo que significa que la serie diverge.

$$ \sum_{n=0}^{\infty}c_{n}(x-a)^{n} \space diverge $$

$\square$

El teorema nos dice que podemos usar el criterio de la raíz, también podemos usar el criterio de la razón.

Veamos unos ejemplos.

Ejemplos

  • $$\sum_{n=0}^{\infty}(n!)x^{n}$$

En esta serie notamos que $c_{n}=n!$, entonces calculamos al valor $A$ como sigue:

$$A=\lim_{n \to \infty}\frac{|a_{n}+1|}{|a_{n}|}=\lim_{n \to \infty}\frac{|(n+1)!|}{|n!|}=\lim_{n \to \infty}(n+1) \rightarrow \infty \Rightarrow R=0$$

Por lo que el radio de convergencia es $R=0$ y la serie solo converge cuando $x=0$ según el teorema de Abel.

  • $$\sum_{n=0}^{\infty}\frac{n^{2n+1}}{2^{n^{2}+1}}x^{n}$$

Vemos en este caso que $c_{n}=\frac{n^{2n+1}}{2^{n^{2}+1}}$, utilizamos el criterio de la raíz como sigue:

$$A=\lim_{n \to \infty}\sqrt[n]{|c_{n}|}=\lim_{n \to \infty}\sqrt[n]{\frac{n^{2n+1}}{2^{n^{2}+1}}}=\lim_{n \to \infty}\frac{n^{2+1/n}}{2^{n+1/n}}=0 \Rightarrow R\rightarrow \infty$$

Por lo que el intervalo de convergencia es: $R \space \epsilon \space (-\infty, \infty)$ y la serie es convergente para cualquier valor de $x$.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o diverge.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\sum_{n=0}^{\infty}\frac{n^{3}}{4^{n}}x^{n}$$
  2. $$\sum_{n=1}^{\infty}\frac{x^{n}}{n}$$
  3. $$\sum_{n=1}^{\infty}\frac{(2x)^{n}}{n^{2}}$$
  4. $$\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^{n}}{n}$$
  5. $$\sum_{n=1}^{\infty}\frac{(-3)^{n}x^{n}}{\sqrt{n+1}}$$

Más adelante…

En esta sección vimos las series de potencias y dos teoremas importantes para la convergencia de estas series que son el teorema de Abel y el teorema de Cauchy-Hadamard, en la siguiente sección veremos los polinomios de Taylor y de Mclaurin que están relacionados con estas series de potencias.

Entradas relacionadas