Archivo de la etiqueta: Estabilidad

Ecuaciones Diferenciales I – Videos: Funciones de Lyapunov

Introducción

En la entrada anterior definimos a los sistemas hamiltonianos, que son aquellos que tienen la forma $$\begin{array}{rcl} \dot{x} & = & \frac{\partial{H}}{\partial{y}} \\ \dot{y} & = & -\frac{\partial{H}}{\partial{x}} \end{array}$$ para cierta función $H:\mathbb{R}^{2} \rightarrow \mathbb{R}$ que llamamos función hamiltoniana. Vimos sus principales propiedades, una de las cuales nos dice que las curvas de nivel de $H$ coinciden con las curvas solución del sistema de ecuaciones. Así, estudiar el plano fase y la estabilidad de los puntos de equilibrio para este tipo de sistemas es bastante sencillo. Lamentablemente no todos los sistemas son hamiltonianos, y por lo tanto no es posible encontrar una función $H$ que sea una cantidad conservada para el sistema.

Comenzaremos estudiando el sistema de ecuaciones que modela el movimiento pendular con fricción. A diferencia del péndulo simple que no tiene fricción, este nuevo sistema no es hamiltoniano. Sin embargo, con ayuda de la función hamiltoniana que define al sistema del péndulo simple, podremos hacer un buen esbozo del plano fase. Esto ocurrirá ya que la derivada de $H$ respecto al tiempo satisface $$\dot{H}(x(t),y(t))\leq 0$$ para cualquier solución $(x(t),y(t))$ del sistema. Esto significa que las curvas solución al sistema recorren las curvas de nivel de $H$ de valores mayores a menores.

Con el análisis realizado para el sistema del péndulo con fricción, lo siguiente que haremos será estudiar un tipo de funciones que comparten las propiedades que satisface la función $H$ antes mencionada, y que llamaremos funciones de Lyapunov. Definiremos formalmente a dichas funciones y veremos sus principales propiedades, entre ellas el teorema de estabilidad de Lyapunov que nos dice que si existe una función de Lyapunov $L:U \rightarrow \mathbb{R}$ definida en una vecindad $U$ de un punto de equilibrio para un sistema de ecuaciones, entonces el punto de equilibrio es estable. Si además $\dot{L}<0$ en $U$, excepto en el punto de equilibrio, entonces este será asintóticamente estable.

¡Vamos a comenzar!

El péndulo con fricción

Comenzamos estudiando el sistema que modela el movimiento de un péndulo con fricción. Revisamos las diferencias y similitudes que mantiene con el sistema para el péndulo simple y esbozamos su plano fase con ayuda de la función hamiltoniana que define al sistema del péndulo simple.

Funciones de Lyapunov

En el video definimos a las funciones de Lyapunov, revisamos algunas propiedades interesantes y demostramos el Teorema de estabilidad de Lyapunov. Mediante un par de ejemplos observamos cuándo aplicar este último teorema.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Esboza el plano fase del sistema $$\begin{array}{rcl} \dot{x} & = & -xy^{4} \\ \dot{y} & = & x^{4}y. \end{array}$$ Verifica que el sistema no es hamiltoniano. Por lo tanto, existen sistemas no hamiltonianos para los cuales existen funciones que son cantidades conservadas. (Por lo dicho en el video, $L(x,y)=x^{4}+y^{4}$ es una cantidad conservada para el sistema).
  • Considera el sistema $$\begin{array}{rcl} \dot{x} & = & y-2x \\ \dot{y} & = & 2x-y-x^{3}. \end{array}$$ Prueba que el origen es un punto de equilibrio. Demuestra que la función $L(x,y)=(x+y)^{2}+\frac{1}{2}x^{4}$ es una función de Lyapunov para el origen. Determina la estabilidad del punto de equilibrio.
  • Considera el sistema $$\begin{array}{rcl} \dot{x} & = & y \\ \dot{y} & = & -\sin{x}-y. \end{array}$$ Prueba que los puntos de equilibrio de la forma $(m\pi,0)$ con $m$ par son asintóticamente estables, usando el último teorema del segundo video.
  • Prueba que el origen es el único punto de equilbirio para el sistema $$\begin{array}{rcl} \dot{x} & = & -xy \\ \dot{y} & = & x^{2}-y. \end{array}$$ Considera la función $L:U \rightarrow \mathbb{R}$ definida como $L(x,y)=x^{2}+y^{2}$ donde $U$ es un abierto que contiene a $(0,0)$. Prueba que $L$ es una función de Lyapunov para el punto de equilibrio. ¿Es $(0,0)$ asintóticamente estable?
  • Considera el sistema $$\begin{array}{rcl} \dot{x} & = & -2x \\ \dot{y} & = & x-y. \end{array}$$ y la función $L(x,y)=c_{1}x^{2}+c_{2}y^{2}$, $c_{1}, c_{2}$ constantes. Encuentra valores para las constantes de tal forma que $L$ sea una función de Lyapunov para el sistema.

Más adelante

En la próxima entrada definiremos un tipo particular de sistemas, los llamados sistemas gradiente. Al igual que los sistemas hamiltonianos, veremos sus principales propiedades. Además, probaremos la existencia de funciones de Lyapunov para algunos puntos de equilibrio en particular de dichos sistemas.

Entradas relacionadas

Ecuaciones Diferenciales I: El plano Traza – Determinante

Las matemáticas son la creación más poderosa y bella del espíritu humano.
– Stefan Banach

Introducción

Con esta entrada culminaremos el estudio de los sistemas lineales. En la unidad 3 hicimos un estudio analítico y en esta unidad un estudio cualitativo, aunque reducido a un sistema compuesto por dos ecuaciones, esto con el fin de hacer al mismo tiempo un estudio geométrico en el plano.

A continuación presentamos un breve resumen de los visto en las entradas anteriores.

Clasificación de los planos fase y los puntos de equilibrio

El sistema que estudiamos todo este tiempo fue

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{1} \tag{1}
\end{align*}

Este sistema lo podemos escribir en forma matricial como

$$\begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \begin{pmatrix}
x \\ y
\end{pmatrix} \label{2} \tag{2}$$

Si

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

entonces el sistema (\ref{2}) se escribe como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

Vimos que la naturaleza y estabilidad del punto de equilibrio quedó caracterizada por los valores propios de la matriz $\mathbf{A}$ del sistema.

El único punto de equilibrio de los sistemas lineales es el origen $Y_{0} = (0, 0)$, siempre que el determinante de $\mathbf{A}$ sea distinto de cero. En la entrada anterior teníamos que $|\mathbf{A}| = 0$, es por ello que obtuvimos infinitos puntos de equilibrio y es que el hecho de que tengamos valores propios nulos es un caso especial y poco común.

En el caso en el que no hay valores propios nulos, sabemos que en función del comportamiento de las trayectorias en relación con el punto de equilibrio aislado $Y_{0} = (0, 0)$, este punto se denominará: nodo, punto silla, centro, foco, atractor o repulsor. Recordemos cuando se da cada caso.

  1. El punto de equilibrio es un nodo.

    Este caso ocurre cuando los valores propios $\lambda_{1}$ y $\lambda_{2}$ son reales y del mismo signo.
  • Si $\lambda_{1} < \lambda_{2} < 0$, entonces todas las trayectorias se acercan al origen, de manera que el punto de equilibrio es un nodo atractor y será asintóticamente estable.
Nodo atractor.
  • Si $\lambda_{1} > \lambda_{2} > 0$, entonces todas las trayectorias se alejan del origen, por tanto, el punto de equilibrio es un nodo repulsor y será inestable.
Nodo repulsor.
  1. El punto crítico es un punto silla.

    Este caso se presenta cuando los valores propios $\lambda_{1}$ y $\lambda_{2}$ son reales y de distinto signo.
  • Si $\lambda_{1} < 0$ y $\lambda_{2} > 0$ ocurre que dos trayectorias rectas se acercan al origen y otras dos trayectorias rectas se separan de él, mientras que el resto de trayectorias al pasar cerca del origen inmediatamente se alejan de él. Esto nos permite concluir que todo punto silla es inestable.
Punto silla.
  1. El punto crítico es un centro.

    Este caso se presenta cuando los valores propios son imaginarios puros.
  • Si $\lambda_{1} = i \beta$ y $\lambda_{2} = -i \beta$, entonces las trayectorias serán curvas cerradas que rodean al origen, en general tienen forma de elipses, de modo que ninguna trayectoria tiende a él cuando $t \rightarrow + \infty $ o $t \rightarrow -\infty $, esto hace que el punto de equilibrio sea estable, pero no asintóticamente estable.
Centro.
  1. El punto crítico es un foco.

    En este caso los valores propios son complejos conjugados y tienen parte real no nula.
  • Si $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$, entonces las trayectorias son curvas en forma de espiral que, conforme $t \rightarrow + \infty$ todas se acercan al origen, es por ello que el punto de equilibrio es asintóticamente estable.
Foco estable.
  • Si $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$, entonces las trayectorias son curvas en forma de espiral que, conforme $t \rightarrow + \infty$ todas se separan del origen, es por ello que el punto de equilibrio es inestable.
Foco inestable.
  1. El punto crítico es un atractor o un repulsor.

    Este caso se presenta cuando un sistema lineal tiene valores propios reales, del mismo signo, pero además iguales.
  • Si $\lambda_{1} = \lambda_{2} < 0$, entonces las trayectorias tienden hacia el origen en forma de rayos o curvas dependiendo de si es posible determinar dos vectores propios o uno propio y otro generalizado. En este caso el punto de equilibrio es un atractor y es asintóticamente estable.
Atractor.
  • Si $\lambda_{1} = \lambda_{2} > 0$, entonces las trayectorias se alejan el origen en forma de rayos o curvas dependiendo de si es posible determinar dos vectores propios o uno propio y otro generalizado. En este caso el punto de equilibrio es un repulsor y es inestable.
Repulsor.
  1. Los puntos críticos son una recta.

    En este caso particular hay infinitos puntos de equilibrio, todos sobre una recta y ocurre cuando uno o ambos valores propios son cero.
Líneas de puntos fijos inestables.
Líneas de puntos fijos estables.

Como podemos ver, las características de las trayectorias y de los puntos de equilibrio en el plano fase quedan determinadas por los valores propios de la matriz de coeficientes $\mathbf{A}$. Sin embargo, estas características también se pueden describir en términos de la traza $T$ y del determinante $D$ de la matriz de coeficientes $A$, veamos como es esto.

La traza y el determinante de la matriz de coeficientes

Consideremos la matriz de coeficientes

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{4} \tag{4}$$

Sabemos que la traza de una matriz se define como la suma de los elementos de la diagonal principal de dicha matriz. En nuestro caso, la traza de $\mathbf{A}$ es

$$T = Tr(\mathbf{A}) = a + d \label{5} \tag{5}$$

Por otro lado, el determinante de la matriz $\mathbf{A}$ es

$$D = |\mathbf{A}| = ad -bc \label{6} \tag{6}$$

Consideremos la ecuación característica de $\mathbf{A}$.

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
a -\lambda & b \\ c & d -\lambda
\end{vmatrix} = 0 \label{7} \tag{7}$$

El polinomio característico es

$$P(\lambda) = (a -\lambda)(d -\lambda) -bc = \lambda^{2} -(a + d) \lambda + (ad -bc) \label{8} \tag{8}$$

Si sustituimos las ecuaciones (\ref{5}) y (\ref{6}) en la ecuación característica se tiene

$$\lambda^{2} -T \lambda + D = 0 \label{9} \tag{9}$$

Las raíces de esta ecuación cuadrática son

$$\lambda_{1} = \dfrac{T + \sqrt{T^{2} -4D}}{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = \dfrac{T -\sqrt{T^{2} -4D}}{2} \label{10} \tag{10}$$

Hemos logrado escribir a los valores propios de $\mathbf{A}$ en términos de la traza y del determinante de la misma matriz $\mathbf{A}$.

De tarea moral, usando (\ref{10}) calcula explícitamente las operaciones $(\lambda_{1} + \lambda_{2})$ y $(\lambda_{1} \cdot \lambda_{2})$ y verifica que se satisfacen las siguientes relaciones importantes.

$$T = \lambda_{1} + \lambda_{2} \label{11} \tag{11}$$

y

$$D = \lambda_{1} \lambda_{2} \label{12} \tag{12}$$

Es decir, la traza y el determinante de $\mathbf{A}$ también se pueden escribir en términos de los valores propios de $\mathbf{A}$.

El análisis cualitativo que hemos hecho a lo largo de las últimas entradas ha sido en función de los valores propios, recordemos que las posibilidades son

Valores propios reales y distintos:

  • $\lambda_{1} < \lambda_{2} < 0$.
  • $\lambda_{1} > \lambda_{2} > 0$.
  • $\lambda_{1} < 0$ y $\lambda_{2} > 0$.

Valores propios complejos:

  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha = 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$.

Valores propios repetidos:

  • $\lambda_{1} = \lambda_{2} < 0$.
  • $\lambda_{1} = \lambda_{2} > 0$.

Valores propios nulos

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

Sin embargo, ahora podemos analizar cada caso pero en función de los valores de la traza $T$ y el determinante $D$ de $\mathbf{A}$, ya que inmediatamente podemos notar de (\ref{10}) que los valores propios de $\mathbf{A}$ son complejos si $T^{2} -4D < 0$, son repetidos si $T^{2} -4D = 0$, y son reales y distintos si $T^{2} -4D > 0$.

El plano Traza – Determinante

Comenzaremos a hacer un nuevo bosquejo para los sistemas lineales examinando el conocido plano traza – determinante. El eje $T$ corresponderá a la línea horizontal y representa a la traza, mientras que el eje $D$ corresponderá a la vertical y representa al determinante. En este plano la curva

$$T^{2} -4D = 0$$

o su equivalente,

$$D(T) = \dfrac{T^{2}}{4} \label{13} \tag{13}$$

es una parábola con concavidad hacia arriba. Arriba de ésta encontramos $T^{2} -4D < 0$, y abajo de ella $T^{2} -4D > 0$, tal como se muestra en la siguiente figura.

Plano traza – determinante.

Para usar este plano, calculamos primero $T$ y $D$ para una matriz $\mathbf{A}$ dada y luego localizamos el punto $(T, D)$ en el plano. De forma inmediata podremos visualizar si los valores propios son reales, repetidos o complejos, dependiendo de la posición de $(T, D)$ respecto a la parábola.

Ejemplo: Determinar el tipo de valores propios que tiene el siguiente sistema lineal.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & 5 \\ -2 & 6
\end{pmatrix} \mathbf{Y}$$

Solución: La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
4 & 5 \\ -2 & 6
\end{pmatrix}$$

Vemos que

$$T = 4 + 6 = 10$$

y

$$D = 4(6) -5(-2) = 24 + 10 = 34$$

Ahora bien

$$T^{2} -4D = (10)^{2} -4(34) = 100 -136 = -36$$

Como $T^{2} -4D < 0$, entonces inmediatamente concluimos que los valores propios son complejos conjugados. Ahora bien, aún no sabemos si se trata de un centro o algún tipo de espiral, pero por el momento no nos preocupemos por ello.

Sólo con el fin de conocer el tipo de soluciones que tiene el sistema, su plano fase es el siguiente.

Plano fase del sistema.

Las trayectorias del sistema corresponden a espirales y el punto de equilibrio es un foco inestable. Observa que la figura ya nos da los valores de la traza, el determinante y el discriminante, aunque con una notación distinta.

Ahora puedes regresar a visualizar los planos fase de todos los ejemplos que hicimos en las 4 entradas anteriores y poner más atención en los valores de la traza y el determinante.

$\square$

Por su puesto que podemos hacer mucho más en el plano traza – determinante. Por ejemplo, desearíamos no sólo saber si los valores propios de $\mathbf{A}$ son complejos, repetidos o reales, sino que también conocer si tienen parte real nula o distinta de cero o si son reales positivos, negativos o de distinto signo, etcétera.

A continuación haremos un análisis más detallado sobre las raíces (\ref{10}) y veremos que tipo de información nos proporciona sobre los sistemas lineales.

Recordemos que los valores propios de $\mathbf{A}$, en términos de la traza y el determinante de $\mathbf{A}$ son

$$\lambda_{1} = \dfrac{T + \sqrt{T^{2} -4D}}{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = \dfrac{T -\sqrt{T^{2} -4D}}{2}$$

Atendiendo a los diferentes valores de $T$ y $D$, se tiene:

  1. Si $T^{2} -4D < 0$, entonces los valores propios $\lambda_{1}$ y $\lambda_{2}$ son complejos conjugados con parte real igual a $T /2$. Se tienen los siguientes casos:
  • Los valores propios son imaginarios puros si $T = 0$ (centro y estabilidad).
  • Los valores propios tienen parte real negativa cuando $T < 0$ (foco y estabilidad asintótica).
  • Los valores propios tienen parte real positiva cuando $T > 0$ (foco e inestabilidad).

    Si consideramos el plano traza – determinante y denotamos por $O$ al origen podremos asegurar que por encima de la parábola $T^{2} -4D = 0$ se tiene:
  • En el eje $OD$ se presentan los centros y hay estabilidad.
  • A la izquierda del eje $OD$ se presentan los focos y hay estabilidad asintótica.
  • A la derecha del eje $OD$ también se presentan focos, pero hay inestabilidad.
  1. Si $D < 0$, entonces se tiene $T^{2} -4D > T^{2}$. En este caso los valores propios son reales y de distinto signo, lo que significa que se presentarán puntos silla e inestabilidad. En el plano traza – determinante los encontraremos por debajo del eje $T$.
  1. Si $D > 0$ y $T^{2} -4D \geq 0$, entonces los valores propios son reales y tienen el mismo signo que $T$. Los casos posibles son:
  • Si $T < 0$, se tiene:
    • Cuando $T^{2} -4D = 0$, los valores propios son iguales y negativos (atractor y estabilidad asintótica).
    • Cuando $T^{2} -4D > 0$, los valores propios son reales, distintos y negativos (nodo atractor y estabilidad asintótica).
  • Si $T > 0$, se tiene:
    • Cuando $T^{2} -4D = 0$, los valores propios son iguales y positivos (repulsor e inestabilidad).
    • Cuando $T^{2} -4D > 0$, los valores propios son reales, distintos y positivos (nodo repulsor e inestabilidad).
  1. Si $D = 0$, entonces uno o ambos valores propios son cero. Los siguientes casos se obtienen directamente de (\ref{11}) y (\ref{12}).
  • Si $T = 0$ (origen), entonces ambos valores propios son cero (recta de puntos de equilibrio y trayectorias paralelas a dicha recta).
  • Si $T > 0$, entonces un valor propio es cero y el otro es positivo (recta de puntos de equilibrio inestables y trayectorias rectas que se alejan de la recta de puntos de equilibrio).
  • Si $T < 0$, entonces un valor propio es cero y el otro es negativo (recta de puntos de equilibrio asintóticamente estables y trayectorias rectas que tienden a la recta de puntos de equilibrio).

¡Todo lo que hemos aprendido sobre sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales de primer orden con coeficientes constantes, incluyendo todas las características anteriores, se resume en el siguiente diagrama!.

Plano traza – determinante con todas las posibilidades de planos fase.

Veamos un ejemplo.

Ejemplo: Caracterizar el siguiente sistema lineal.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
3 & -4 \\ 1 & -1
\end{pmatrix} \mathbf{Y}$$

Solución: La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
3 & -4 \\ 1 & -1
\end{pmatrix}$$

Vemos que

$$T = 3 + (-1) = 2$$

y

$$D = 3(-1) -(-4)(1) = -3 + 4 = 1$$

tenemos, entonces

$$T^{2} -4D = (2)^{2} -4(1) = 4 -4 = 0$$

Como $T > 0$, $D > 0$ y $T^{2} -4D = 0$, vamos al punto 3 y deducimos que el sistema lineal tiene valores propios iguales y positivos. De acuerdo a las ecuaciones (\ref{11}) y (\ref{12}) se tiene el siguiente sistema.

\begin{align*}
T &= 2 = \lambda_{1} + \lambda_{2} \\
D &= 1 = \lambda_{1}\lambda_{2}
\end{align*}

De la primer ecuación obtenemos $\lambda_{1} = 2 -\lambda_{2}$, sustituyendo en la segunda ecuación se tiene

$$1 = (2 -\lambda_{2}) \lambda_{2}$$

de aquí obtenemos la ecuación cuadrática

$$\lambda_{2}^{2} -2 \lambda_{2} + 1 = 0$$

Las raíces son

$$\lambda_{2} = \dfrac{2 \pm \sqrt{4 -4}}{2} = 1$$

La única raíz es $\lambda_{2} = 1$, sustituyendo en cualquier ecuación del sistema obtenemos que $\lambda_{1} = 1$. Por lo tanto, el único valor propio de la matriz $\mathbf{A}$ es $\lambda = 1$ (iguales y positivos, tal como lo habíamos deducido).

Si vamos al plano traza – determinante, como $T > 0$ y $D > 0$, entonces estamos en el primer cuadrante, pero además $T^{2} -4D = 0$, así que estamos situados sobre la parábola del primer cuadrante, exactamente en el punto $(T, D) = (2, 1)$, esto nos permite concluir que el plano fase del sistema corresponde a repulsor.

El plano fase del sistema es el siguiente.

Plano fase del sistema.

Efectivamente se trata de un repulsor.

$\square$

Debido a que cada punto del plano traza – determinante representa un plano fase distinto, el plano traza – determinante es un ejemplo de lo que se conoce como plano paramétrico.

El plano paramétrico

El plano traza – determinante es un ejemplo de un plano paramétrico. Los elementos de la matriz $\mathbf{A}$ son parámetros que se pueden ajustar, cuando esos elementos cambian, la traza y el determinante de la matriz también se modifican y el punto $(T, D)$ se mueve en el plano paramétrico. Cuando este punto entra en las diversas regiones del plano traza – determinante, debemos imaginar que los retratos fase asociados también experimentan transformaciones.

El plano traza – determinante es un esquema de clasificación del comportamiento de todas las posibles soluciones de sistemas lineales.

En este enlace se tiene acceso a una herramienta visual del plano paramétrico. En él se puede mover el punto $(T, D)$ a lo largo de las diferentes regiones del plano traza – determinante a la vez que visualizamos el tipo de planos fase que se generan. ¡Pruébalo y diviértete!

Con esto concluimos el estudio de los sistemas lineales. Cabe mencionar que el plano traza – determinante no da una información completa sobre el sistema lineal tratado.

Por ejemplo, a lo largo de la parábola $T^{2} -4D = 0$ tenemos valores propios repetidos, pero no podemos determinar si tenemos uno o varios vectores propios linealmente independientes. para saberlo es preciso calcularlos.

De modo similar, no podemos determinar la dirección en que las soluciones se mueven alrededor del origen si $T^{2}-4D < 0$. Por ejemplo, las dos matrices

$$\mathbf{A} = \begin{pmatrix}
0 & 1 \\ -1 & 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{B} = \begin{pmatrix}
0 & -1 \\ 1 & 0
\end{pmatrix}$$

tienen traza $T = 0$ y determinante $D = 1$, pero las soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ se mueven alrededor del origen en el sentido de las manecillas del reloj, mientras que las soluciones de $\mathbf{Y}^{\prime} = \mathbf{BY}$ viajan en el sentido opuesto.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Hacer un análisis cualitativo de los siguientes sistemas lineales apoyándose de la traza y el determinante de la matriz de coeficientes $\mathbf{A}$, así como del plano traza – determinante. Es decir, de acuerdo al valor de la traza $T$, el determinante $D$ y el discriminante $T^{2} -4D$, determinar que tipo de valores propios tiene el sistema, así como el tipo de plano fase y estabilidad del punto de equilibrio.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    5 & 4 \\ -2 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & -1 \\ -2 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 \\ 4 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -1 \\ 1 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & 3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & -5 \\ 2 & 2
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Estamos cerca de concluir el curso. En las próximas entradas estudiaremos de manera cualitativa a los sistemas no lineales compuestos por dos ecuaciones diferenciales de primer orden.

En particular, en la siguiente entrada veremos que alrededor de un punto de equilibrio de un sistema no lineal las trayectorias son muy parecidas a las de un sistema lineal lo que nos permitirá observar el comportamiento que tienen las soluciones del sistema no lineal, al menos cerca de un punto de equilibrio.

Entradas relacionadas

Ecuaciones Diferenciales I: Sistemas autónomos, puntos de equilibrio y su estabilidad

Si hay un Dios, es un gran matemático.
– Paul Dirac

Introducción

En la entrada anterior realizamos un desarrollo geométrico y un tanto cualitativo de un sistema de dos ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes con el fin de introducirnos a la teoría cualitativa de las ecuaciones diferenciales. En dicha entrada justificamos la razón por la que estudiaremos principalmente los sistemas compuestos por dos ecuaciones de primer orden.

En esta entrada presentaremos formalmente la teoría cualitativa y geométrica de los sistemas tanto lineales como no lineales compuestos por dos ecuaciones diferenciales de primer orden.

Teoría cualitativa

A lo largo del curso nos hemos centrado en el problema de obtener soluciones, hemos desarrollado una serie de métodos de resolución de ciertos tipos de ecuaciones diferenciales y sistemas lineales. Lo que haremos ahora es dar otro enfoque al estudio de las ecuaciones diferenciales planteándonos obtener información cualitativa sobre el comportamiento de las soluciones.

Hemos visto que, a medida que aumenta la complejidad de las ecuaciones diferenciales, o los sistemas lineales, mayor es la dificultad que tenemos para obtener soluciones. Existen incluso ecuaciones que no se sabe cómo se resuelven o ecuaciones en las que obtener su solución es bastante costoso, por lo que una alternativa será hacer un análisis cualitativo, pues muchas veces bastará conocer el comportamiento de las soluciones.

Recordemos que, además de hacer un análisis cualitativo, estamos interesados en hacer un análisis geométrico, así que centraremos nuestra atención en los sistemas de dos ecuaciones diferenciales ya que, como vimos en la entrada anterior, tenemos la oportunidad de hacer gráficas en dos dimensiones, es decir, podremos visualizar sin ningún problema el plano fase.

Sistemas autónomos

En la entrada anterior vimos la importancia de que el sistema no dependa explícitamente de la variable independiente $t$ para poder hacer nuestro desarrollo geométrico. Este tipo de sistemas tienen un nombre particular.

El sistema se denomina autónomo debido a que la variable independiente $t$ no aparece explícitamente en las ecuaciones del sistema. Las condiciones de $F_{1}$ y $F_{2}$ garantizan la existencia y unicidad de la solución definida $\forall$ $t \in \mathbb{R}$ del problema de valores iniciales

\begin{align*}
x^{\prime} &= F_{1}(x, y) \hspace{1.2cm} x(t_{0}) = x_{0} \\
y^{\prime} &= F_{2}(x, y), \hspace{1cm} y(t_{0}) = y_{0} \label{2} \tag{2}
\end{align*}

para cualquier $t_{0} \in \mathbb{R}$ y $(x_{0},y_{0}) \in \mathbb{R}^{2}$.

En el caso en el que tenemos una ecuación de segundo orden autónoma

$$\dfrac{d^{2}x}{dt^{2}} = f \left( x, \dfrac{dx}{dt} \right) \label{3} \tag{3}$$

Se puede convertir en un sistema autónomo introduciendo una nueva variable $y = \dfrac{dx}{dt}$, obteniendo el sistema

\begin{align*}
x^{\prime} &= y \\
y^{\prime} &= f(x, y) \label{4} \tag{4}
\end{align*}

Sistemas autónomos lineales

En el caso en el que el sistema autónomo es lineal y con coeficientes constantes, entonces lo podemos escribir como

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{5} \tag{5}
\end{align*}

En donde $a, b, c$ y $d$ son constantes, $x = x(t): \mathbb{R} \rightarrow \mathbb{R}$ y $y = y(t): \mathbb{R} \rightarrow \mathbb{R}$.

Definimos las funciones $F_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ y $F_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ como

$$F_{1}(x, y) = ax + by \hspace{1cm} y \hspace{1cm} F_{2}(x, y) = cx + dy \label{6} \tag{6}$$

Podemos definir la función vectorial $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ como

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) = (ax +by, cx +dy) \label{7} \tag{7}$$

Entonces el sistema autónomo (\ref{5}) se puede escribir como

$$Y^{\prime} = F(x, y) \label{8} \tag{8}$$

Por su puesto, si se define la matriz de coeficientes

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{9} \tag{9}$$

entonces el sistema lineal (\ref{5}) se puede escribir como

$$\begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \begin{pmatrix}
x \\ y
\end{pmatrix} \label{10} \tag{10}$$

o bien,

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{11} \tag{11}$$

como es costumbre.

Notación: Hemos visto que no necesariamente haremos uso de la notación vectorial como en la unidad anterior, así que con fines de notación usaremos letras en negrita cuando trabajemos con vectores (o matrices) y letras sin negrita cuando no usemos la notación vectorial a pesar de indicar lo mismo. Por ejemplo, la solución de un sistema en notación vectorial la escribiremos como

$$\mathbf{Y}(t) = \begin{pmatrix}
x(t) \\ y(t)
\end{pmatrix}$$

mientras que la misma solución sin notación vectorial como

$$Y(t) = (x(t), y(t))$$

Está última notación nos será de utilidad para representar coordenadas en el plano $\mathbb{R}^{2}$.

Algunas definiciones

Las siguientes definiciones son generales, para cualquier sistema autónomo de dos ecuaciones diferenciales de primer orden.

Las soluciones de un sistema autónomo reciben un nombre especial.

En la entrada anterior ya trabajamos con el plano fase, definámoslo formalmente.

Cada punto de la curva $C$ determina el estado del sistema en un instante $t$ correspondiente a una condición inicial determinada.

En la entrada anterior vimos que en cada punto $(x, y)$ de una curva solución, el vector

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y))$$

es un vector tangente a dicha curva en cada punto $(x, y)$. El conjunto de vectores tangentes recibe un nombre.

Con estas definiciones podemos decir que el plano fase es una representación geométrica de todas las trayectorias de un sistema dinámico en el plano, donde cada curva representa una condición inicial diferente. Entendemos por sistema dinámico al sistema cuyo estado evoluciona con el tiempo.

Como ejemplo visualicemos el campo vectorial de dos sistemas de ecuaciones diferenciales sencillos usando la herramienta que ya conocemos.

Ejemplo: Visualizar el campo vectorial del sistema lineal

\begin{align*}
x^{\prime} &= x \\
y^{\prime} &= y
\end{align*}

Solución: La función vectorial es

$$F(x, y) = (x, y)$$

El campo vectorial en el plano fase se ilustra a continuación.

Campo vectorial $F(x, y) = (x, y)$.

Los vectores del campo vectorial siempre señalan directamente alejándose del origen.

$\square$

Ejemplo: Visualizar el campo vectorial del sistema lineal

\begin{align*}
x^{\prime} &= -x \\
y^{\prime} &= -y
\end{align*}

Solución: La función vectorial es

$$F(x, y)= (-x, -y)$$

El campo vectorial se ilustra a continuación.

Campo vectorial $F(x, y)= (-x, -y)$.

En este caso los vectores del campo vectorial apuntan directamente hacia el origen.

$\square$

Como el campo vectorial es tangente a las soluciones del sistema, entonces en los dos ejemplos anteriores deducimos que las soluciones son rectas con distintas pendientes para cada solución particular.

En la herramienta que utilizamos se puede dar clic sobre el campo vectorial para trazar distintas soluciones. Inténtalo con los ejemplos anteriores.

Puntos de equilibrio

Por sí solo el campo vectorial de un sistema ya nos da información sobre el comportamiento que presentan las trayectorias sin siquiera conocer explícitamente las soluciones del sistema, sin embargo en cada plano fase existe al menos un punto particular sobre el cual dependerá casi por completo el comportamiento de las soluciones, dichos puntos se conocen como puntos de equilibrio.

Una solución constante

$$Y(t) = (x(t), y(t)) = (x_{0}, y_{0}) \label{13} \tag{13}$$

para todo $t \in \mathbb{R}$ define únicamente un punto $(x_{0}, y_{0})$ en el plano fase y verifica que

$$F_{1}(x_{0}, y_{0}) = F_{2}(x_{0}, y_{0}) = 0 \label{14} \tag{14}$$

es decir,

$$F(x_{0}, y_{0}) = (0, 0) \label{15} \tag{15}$$

Como ejemplo determinemos los puntos de equilibrio de dos sistemas de ecuaciones diferenciales.

Ejemplo: Hallar los puntos de equilibrio del siguiente sistema de ecuaciones diferenciales y visualizar que ocurre alrededor de ellos.

\begin{align*}
x^{\prime} &= (x -1)(y -1) \\
y^{\prime} &= (x + 1)(y + 1)
\end{align*}

Solución: La función vectorial es

$$F(x, y) = ((x -1)(y -1), (x + 1)(y + 1))$$

Los puntos de equilibrio $(x_{0}, y_{0})$ son tales que

$$F(x_{0},y_{0}) = (0, 0)$$

es decir, tales que

$$((x_{0} -1)(y_{0} -1), (x_{0} + 1)(y_{0} + 1)) = (0, 0)$$

El sistema de ecuaciones que se forma es

\begin{align*}
(x_{0} -1) (y_{0} -1) &= 0 \\
(x_{0} + 1) (y_{0} + 1) &= 0
\end{align*}

Los puntos que verifican el sistema son

$$(x_{0}, y_{0}) = (1, -1) \hspace{1cm} y \hspace{1cm} (x_{0}, y_{0}) = (-1, 1)$$

Hemos encontrado dos puntos de equilibrio. Veamos cómo se ve el campo vectorial del sistema y que forma tienen las soluciones alrededor de estos puntos.

Plano fase: Campo vectorial, puntos de equilibrio y trayectorias del sistema.

Recordemos que la dirección de las trayectorias está definida por la dirección del campo vectorial. En el plano fase observamos que alrededor del punto de equilibrio $(-1, 1)$ las soluciones son trayectorias cerradas que giran en torno a dicho punto, mientras que alrededor del punto de equilibrio $(1, -1)$ las trayectorias tienden a acercarse a dicho punto, pero cuando se aproximan a él inmediatamente se alejan.

$\square$

Más adelante caracterizaremos a los puntos de equilibrio de acuerdo al tipo de comportamiento que tienen las trayectorias alrededor de él. Por ahora notemos estas características. Veamos un ejemplo más.

Ejemplo: Hallar los puntos de equilibrio del siguiente sistema de ecuaciones diferenciales y visualizar que ocurre alrededor de ellos.

\begin{align*}
x^{\prime} &= x^{2} -1 \\
y^{\prime} &= -y
\end{align*}

Solución: La función vectorial es

$$F(x, y) = (x^{2} -1, -y)$$

Si

$$F(x_{0}, y_{0}) = (0,0)$$

entonces,

$$(x^{2}_{0} -1, -y_{0}) = (0, 0)$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
x^{2}_{0} -1 &= 0 \\
-y_{0} &= 0
\end{align*}

De la segunda ecuación obtenemos inmediatamente que $y_{0} = 0$ y de la primer ecuación obtenemos que $x^{2}_{0}= 1$. Por lo tanto, los puntos de equilibrio son

$$(x_{0}, y_{0}) = (-1, 0) \hspace{1cm} y \hspace{1cm} (x_{0}, y_{0}) = (1, 0)$$

Veamos cómo se ve el plano fase.

Plano fase: Campo vectorial, puntos de equilibrio y trayectorias del sistema.

En esta ocasión observamos que las trayectorias tienden hacía el punto de equilibrio $(-1, 0)$, mientras que alrededor del punto de equilibrio $(1, 0)$ las trayectorias tienden a alejarse de él.

$\square$

Con estos dos ejemplos observamos tres cualidades de las trayectorias alrededor de los puntos de equilibrio. El primero de ellos es que hay trayectorias cerradas que permanecen cerca de un punto de equilibrio, pero que nunca llegan a él, por otro lado, hay trayectorias que tienden directamente hacía a un punto de equilibrio y finalmente hay puntos de equilibrio en los que las trayectorias tienden a alejarse de él. A esto se le conoce como estabilidad de los puntos de equilibrio y lo estudiaremos más adelante en esta entrada.

Un hecho importante es que los sistemas de los dos ejemplos anteriores son sistemas no lineales y ya comenzamos a caracterizar y visualizar el comportamiento de las soluciones a pesar de no conocer ningún método para obtener las soluciones explícitamente, de ahí la importancia de este análisis cualitativo.

Cabe mencionar que resolver sistemas no lineales puede ser muy complejo, al menos para un primer curso de ecuaciones diferenciales, es por ello que dedicamos la unidad anterior al caso exclusivamente lineal.

Por otro lado, es claro que cada punto del plano fase, o bien es un punto de equilibrio, o bien pasa por él una única trayectoria. Existe un resultado importante que nos permite saber cuando el único punto de equilibrio de un sistema lineal es el origen.

Demostración: Consideremos el sistema lineal ${\mathbf{Y}}’ = \mathbf{AY}$ cuya matriz de coeficientes es (\ref{9}), entonces podemos escribir al sistema lineal como

$$\begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \begin{pmatrix}
x \\ y
\end{pmatrix}$$

Sabemos que un punto $Y_{0} = (x_{0}, y_{0})$ es un punto de equilibrio del sistema si el campo vectorial en $Y_{0}$ es cero, es decir, si

$$F(x_{0}, y_{0}) = (0, 0)$$

Sabemos, por otro lado, que el sistema lineal también se puede escribir en términos de la función vectorial $F$ como

$$F(x, y) = (F_{1}(x, y), F_{2}(x, y)) = (ax + by, cx + dy)$$

Entonces $Y_{0} = (x_{0}, y_{0})$ es un punto de equilibrio si ocurre que

$$F(x_{0}, y_{0}) = (ax_{0} + by_{0}, cx_{0} + dy_{0}) = (0, 0) \label{16} \tag{16}$$

es decir, debe ocurrir que

$$\begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \begin{pmatrix}
x_{0} \\ y_{0}
\end{pmatrix} = \begin{pmatrix}
ax_{0} + by_{0} \\ cx_{0} + dy_{0}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix} \label{17} \tag{17}$$

El par de ecuaciones que se tiene es

\begin{align*}
ax_{0} + by_{0} &= 0 \\
cx_{0} + dy_{0} &= 0 \label{18} \tag{18}
\end{align*}

Es claro que $(x_{0}, y_{0}) = (0, 0)$ es una solución de las ecuaciones (\ref{18}). Por tanto, $Y_{0} = (0, 0)$ es un punto de equilibrio y la función constante

$$Y(t) = (0, 0) \label{19} \tag{19}$$

para toda $t \in \mathbb{R}$ es una solución del sistema lineal. Ahora veamos si existe otra solución que no sea la trivial.

Cualesquiera puntos de equilibrio $(x_{0}, y_{0}) \neq (0, 0)$ deben también satisfacer el sistema (\ref{18}). Para encontrarlos supongamos por ahora que $a\neq 0$, de la primer ecuación se obtiene que

$$x_{0} = -\dfrac{b}{a}y_{0} \label{20} \tag{20}$$

Sustituyendo en la segunda ecuación, se tiene

$$c \left( -\dfrac{b}{a} \right) y_{0} + dy_{0} = 0$$

que puede escribirse como

$$(ad -bc)y_{0} = 0 \label{21} \tag{21}$$

Entonces,

$$y_{0} = 0 \hspace{1cm} o \hspace{1cm} ad -bc =0$$

Si $y_{0} = 0$, entonces $x_{0} = 0$ y de nuevo obtenemos la solución trivial. Por tanto, un sistema lineal tiene puntos de equilibrio no triviales sólo si

$$ad -bc = 0$$

es decir si el determinante de $\mathbf{A}$ es igual a cero. Esto significa que si $|\mathbf{A}| \neq 0$, entonces el único punto de equilibrio del sistema lineal es el origen.

$\square$

Una observación importante en la demostración es que el cálculo que hicimos no depende de los valores de los coeficientes $a, b, c$ y $d$, sólo de la condición $a \neq 0$, por tanto ¡todo sistema lineal tiene un punto de equilibrio en el origen!.

Estabilidad de puntos de equilibrio

Veíamos que hay tres cualidades de las trayectorias alrededor de puntos de equilibrio. De acuerdo al comportamiento que tengan las trayectorias alrededor de los puntos de equilibrio éstos recibirán un nombre.

Lo que esta definición nos dice es que si una trayectoria está cerca del punto de equilibrio $(x_{0}, y_{0})$, entonces se mantendrá cerca de él para $t_{0} \leq t \rightarrow \infty$.

Es este caso las trayectorias cercanas al punto de equilibrio $(x_{0}, y_{0})$ no sólo se mantendrán cerca de dicho punto, sino que tenderán a él para $t_{0} \leq t \rightarrow \infty$.

Contrario a un punto de equilibrio estable, si las trayectorias están cerca del punto de equilibrio $(x_{0}, y_{0})$, entonces se alejarán de él para $t_{0} \leq t \rightarrow \infty$.

Las definiciones anteriores son aplicables a cualquier punto de equilibrio $(x_{0}, y_{0})$, sin embargo las definiciones se vuelven más intuitivas si el punto de equilibrio sobre el que se trabaja es el origen $(x_{0}, y_{0}) = (0, 0)$ del plano $XY$ o plano fase.

Supongamos que el punto de equilibrio del sistema (\ref{1}) es el origen y que está aislado, esto es que existe un entorno donde no hay otro punto de equilibrio. Notemos que el hecho de que el punto de equilibrio sea el origen no supone ningún tipo de restricción ya que se puede hacer el cambio de variable

\begin{align*}
\hat{x} &= x -x_{0} \\
\hat{y} &= y -y_{0} \label{24} \tag{24}
\end{align*}

y transformar al sistema (\ref{1}) en

\begin{align*}
\hat{x}^{\prime} &= F(\hat{x} + x_{0}, \hat{y} + y_{0}) \\
\hat{y}^{\prime} &= G(\hat{x} + x_{0}, \hat{y} + y_{0}) \label{25} \tag{25}
\end{align*}

cuyo punto de equilibrio es el punto $(0, 0)$. En estas condiciones definimos de manera más intuitiva la estabilidad de un punto de equilibrio.

Realicemos algunos ejemplos de manera gráfica.

Ejemplo: Definir el tipo de punto de equilibrio del siguiente sistema visualizando el comportamiento de las trayectorias alrededor de dicho punto.

\begin{align*}
x^{\prime} &= 5y \\
y^{\prime} &= -2x
\end{align*}

Solución: Es claro que el punto de equilibrio es el origen ya que si $x = 0$ y $y = 0$, entonces

$$F(0, 0) = (0, 0)$$

El campo vectorial y algunas trayectorias del sistema se muestran a continuación.

Plano fase del sistema.

Observamos que las trayectorias son cerradas, lo que significa que todas las que están cerca del punto de equilibrio permanecerán cerca de él, pero nunca llegarán a él conforme $t \rightarrow \infty$. De acuerdo a las definiciones anteriores, el punto de equilibrio corresponde a un punto estable. Veremos más adelante que este tipo de trayectorias corresponden a soluciones periódicas.

$\square$

Ejemplo: Definir el tipo de punto de equilibrio del siguiente sistema visualizando el comportamiento de las trayectorias alrededor de dicho punto.

\begin{align*}
x^{\prime} &= -3x -4y \\
y^{\prime} &= 2x + y
\end{align*}

Solución: Como el sistema es lineal podemos aplicar el teorema visto para verificar que el único punto de equilibrio del sistemas es el origen. La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
-3 & -4 \\ 2 & 1
\end{pmatrix} $$

Calculemos el determinante.

$$\begin{vmatrix}
-3 & -4 \\ 2 & 1
\end{vmatrix} = -3 + 8 = 5 \neq 0$$

Como $|A| \neq 0$, entonces el único punto de equilibrio es el origen.

El plano fase del sistema se ilustra a continuación.

Plano fase del sistema.

Es este caso se logra observar que las trayectorias cerca del punto de equilibrio tienden a él conforme $t \rightarrow \infty$, lo que lo define como un punto de equilibrio asintóticamente estable.

$\square$

Veamos un último ejemplo.

Ejemplo: Definir el tipo de punto de equilibrio del siguiente sistema visualizando el comportamiento de las trayectorias alrededor de dicho punto.

\begin{align*}
x^{\prime} &= 5x -2y \\
y^{\prime} &= 2x -3y
\end{align*}

Solución: Nuevamente se puede verificar que el único punto de equilibrio del sistema es el origen. Observemos el plano fase.

Plano fase del sistema.

En este caso se observa que cerca del punto de equilibrio las trayectorias se alejan de él, por lo que dicho punto es un punto inestable.

$\square$

Al menos geométricamente ya somos capaces de identificar el tipo de comportamiento que tienen las trayectorias alrededor de los puntos de equilibrio según su clasificación.

Más adelante resolveremos algunos sistemas lineales y haremos este mismo análisis desde una perspectiva analítica analizando las soluciones que obtengamos. Más aún, veremos que de acuerdo al valor de los eigenvalores del sistema será el tipo de punto de equilibrio que tendrá dicho sistema. Pero antes de ello, en la siguiente entrada estudiemos algunas propiedades cualitativas de las trayectorias.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Visualizar el campo vectorial y algunas trayectorias de los siguientes sistemas. ¿Tienen puntos de equilibrio?.
  • $x^{\prime} = (y -x)(y -1)$
    $y^{\prime} = (x- y)(x -1)$
  • $x^{\prime} = -y(y -2)$
    $y^{\prime} = (x -2)(y -2)$
  1. Determinar los puntos de equilibrio de los siguientes sistemas y clasificarlos como estables, asintóticamente estables o inestables. Visualizar el campo vectorial y algunas trayectorias.
  • $x^{\prime} = 2y$
    $y^{\prime} = 2x$
  • $x^{\prime} = -8y$
    $y^{\prime} = 18x$
  • $x^{\prime} = 2x + y + 3$
    $y^{\prime} = -3x -2y -4$
  • $x^{\prime} =-5x + 2y$
    $y^{\prime} = x -4y$
  • $x^{\prime} = 2x + 13y$
    $y^{\prime} = -x -2y$
  • $x^{\prime} = x(7 -x -2y)$
    $y^{\prime} = y(5 -x -y)$
  1. Analizar el comportamiento de las curvas solución del siguiente sistema.
  • $x^{\prime} = 3/y$
    $y^{\prime} = 2/x$

    ¿Qué se puede observar?. ¿Hay puntos de equilibrio?.

Más adelante…

Conforme avanzamos nos damos cuenta que es posible describir cualitativamente las soluciones de un sistema tanto lineal como no lineal compuesto por dos ecuaciones diferenciales de primer orden homogéneas con coeficientes contantes, esto tiene la enorme ventaja de que ya no es necesario conocer explícitamente las soluciones del sistema para poder trabajar.

Continuando con nuestro desarrollo cualitativo, en la siguiente entrada estudiaremos algunas propiedades de las trayectorias en el plano fase.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: El plano traza – determinante

Introducción

Antes de finalizar con el estudio cualitativo a sistemas de ecuaciones de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$, vamos a clasificar la estabilidad del punto de equilibrio, y por tanto el plano fase, en un diagrama que resume toda la información que estudiamos en las últimas entradas. Este diagrama es llamado plano traza – determinante. En esta entrada veremos cómo interpretar dicho diagrama.

Vimos que el plano fase y la estabilidad de los puntos de equilibrio depende de la forma de los valores propios asociados. Es fácil observar que los valores propios del sistema son las soluciones a la ecuación $$\det{(\textbf{A}-\lambda\textbf{Id})}=\lambda^{2}-(a+d)\lambda+(ad-bc)=0.$$ Notemos que podemos reescribir la ecuación anterior en términos de dos propiedades de la matriz asociada $\textbf{A}$: su traza y su determinante. En efecto, resulta que $$ \lambda^{2}-(a+d)\lambda+(ad-bc)=\lambda^{2}-\lambda\mathrm{tr}{A}+\det{A}.$$ Entonces los valores propios están dados por la fórmula $$\lambda=\frac{\mathrm{tr}{A}\pm\sqrt{\mathrm{tr}{A}^{2}-4\det{A}}}{2}$$ Así, el plano fase y la estabilidad de los puntos de equilibrio dependerán de la traza y el determinante de la matriz asociada. Analizaremos la forma de los valores propios según la última fórmula.

La información obtenida se podrá resumir en el plano traza – determinante, que puedes observar en la siguiente imagen (tomada del siguiente sitio) que nos indica la forma del plano fase, según los valores de la traza y el determinante.

Plano traza determinante
Plano traza – determinante. Imagen tomada de https://es.m.wikipedia.org/wiki/Archivo:Stability_Diagram.png

El plano traza – determinante

Clasificamos la naturaleza del plano fase y la estabilidad de los puntos de equilibrio del sistema de ecuaciones $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$ según la traza y el determinante de la matriz asociada. Englobamos toda la información obtenida en el plano traza – determinante.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Considera el sistema de ecuaciones $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$ Muestra que los valores propios del sistema $\lambda_{1}, \lambda_{2}$ satisfacen las identidades $$\lambda_{1}+\lambda_{2}=\mathrm{tr}{A}$$ $$\lambda_{1}\lambda_{2}=\det{A}.$$ Recuerda considerar los casos cuando los valores propios son distintos o iguales.

Clasifica el plano fase y puntos de equilibrio de los siguientes sistemas de ecuaciones, calculando únicamente la traza y el determinante de la matriz asociada:

  • $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 15 & -1 \\ -60 & 4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$
  • $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} \pi & 0 \\ e & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$
  • Considera el sistema de ecuaciones $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & a+2 \\ a-2 & a \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$ Determina la forma del plano fase y la estabilidad del punto de equilibrio según la traza y el determinante de la matriz asociada, y el valor $a$.
  • Para el ejercicio anterior, identifica la región del plano traza – determinante donde los planos fase tienen comportamientos similares.
  • Realiza el mismo análisis de los dos ejercicios anteriores para el sistema $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & a+b \\ a-b & a \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$ para cualquier valor de $a$ y $b$.

Más adelante

Con todo el conocimiento adquirido acerca de sistemas de ecuaciones lineales, es momento de estudiar, al menos de manera cualitativa, sistemas de ecuaciones no lineales. En la próxima entrada daremos una breve introducción a tales sistemas.

Además, veremos que es posible linealizar este tipo de sistemas para obtener un sistema de ecuaciones lineales equivalente que nos brinde la información cualitativa de las soluciones al sistema no lineal. Así, podremos dibujar el plano fase de un sistema no lineal, sin conocer explícitamente las soluciones a dicho sistema.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Plano fase para sistemas lineales con cero como valor propio

Introducción

Vamos a finalizar esta serie de entradas referentes al plano fase de sistemas de dos ecuaciones lineales homogéneas con coeficientes constantes de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ estudiando el caso cuando el sistema tiene al menos un cero como valor propio.

En las entradas anteriores revisamos los casos cuando los valores propios son reales distintos y no nulos, son complejos o se repiten, por lo que el caso que revisaremos en esta entrada es el último por estudiar. En todos los casos anteriores el punto de equilibrio es único y se encuentra en el punto $(0,0)$ del plano fase. Sin embargo, cuando el cero es un valor propio de la matriz asociada al sistema resultará que no habrá un único punto equilibrio, sino que tendremos una infinidad de dichos puntos. Es por eso que dejamos este caso al final.

Veremos cómo se distribuyen los puntos de equilibrio en el plano fase. Finalmente las curvas solución serán muy fáciles de dibujar según el análisis que realizaremos de la solución general al sistema, que será de la forma $$\textbf{X}(t)=c_{1}\begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}+c_{2}e^{\lambda_{2} t}\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$ donde $(u_{1},u_{2})$ es un vector propio asociado al valor propio $\lambda_{1}=0$ y $(v_{1},v_{2})$ es un vector propio asociado al valor propio $\lambda_{2} \neq 0$ (si $\lambda_{2}=0$ la solución general se simplifica aún más y es igualmente sencillo hacer el análisis del plano fase).

Dicho lo anterior, vamos a comenzar.

Plano fase para sistemas con cero como valor propio

En el primer video analizamos el plano fase para un sistema de ecuaciones de la forma $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$ cuando este tiene a cero como un valor propio asociado.

En el segundo video dibujamos el plano fase de algunos sistemas en particular que tienen al menos un valor propio igual a cero.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Encuentra todas las matrices de tamaño $2 \times 2$ diagonalizables cuyo único valor propio es cero.
  • Encuentra todos los sistemas de ecuaciones lineales homogéneos con coeficientes constantes cuyo campo vectorial se ve de la siguiente manera:
Campo vectorial 1 cero valor propio
Campo vectorial. Elaboración propia.
  • En el segundo video dibujamos los planos fase de los siguientes sistemas $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$ $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$ ¿Qué puedes decir acerca de los puntos de equilibrio en cada caso? ¿Son estables, asintóticamente estables, inestables, o ninguno de los tres?
  • Encuentra la solución general del siguiente sistema y dibuja su plano fase: $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 2 \\ 0 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Resuelve el siguiente sistema y dibuja su plano fase: $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 5 & 0 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$
  • Encuentra la solución general y dibuja el plano fase del siguiente sistema: $$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}=\begin{pmatrix} 4 & 6 \\ -2 & -3 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}.$$

Más adelante

Hemos terminado de estudiar el plano fase para sistemas de dos ecuaciones lineales homogéneas con coeficientes constantes. Determinamos el comportamiento de las soluciones en el plano y la estabilidad de los puntos de equilibrio en función de los valores propios del sistema.

Estamos a punto de comenzar a estudiar sistemas no lineales, al menos de manera cualitativa (ya que estos sistemas no los sabemos resolver analíticamente). Pero antes vamos a hacer un resumen de todo el análisis realizado recientemente en un dibujo que clasifica las formas del plano fase según dos características de la matriz asociada al sistema: la traza (que es la suma de los elementos en la diagonal) y su determinante.

¡Hasta la próxima!

Entradas relacionadas