Archivo de la etiqueta: series de fourier

Cálculo Diferencial e Integral II: Forma exponencial de las series de Fourier

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series de Fourier para las funciones pares e impares, en esta sección veremos la forma exponencial de las series de Fourier por la fórmula reducida del matemático Jonhard Euler, aunque esta fórmula está dada en un plano complejo, se puede entender a este nivel utilizando unas cuantas propiedades sencillas de los números complejos.

Forma exponencial de las series de Fourier

La fórmula de Euler o relación de Euler esta dada como:

$$e^{ix}=\cos(x)+i\sin(x)$$

Donde $i$ es un número complejo o imaginario, aunque esta identidad se deducirá en el curso de variable compleja. De esta fórmula se puede deducir fácilmente las siguientes relaciones:

$$\cos(x)=\frac{e^{ix}+e^{-ix}}{2}$$

$$\sin(x)=\frac{e^{ix}-e^{-ix}}{2i} \tag{1}$$

De los coeficientes de Fourier, observamos los términos de las funciones trigonométricas seno y coseno y sustituimos en las fórmulas anteriores como sigue:

$$\cos(\frac{2\pi n}{T}x)=\frac{e^{\frac{2\pi n}{T}ix}+e^{-\frac{2\pi n}{T}ix}}{2}$$

$$y$$

$$\sin(\frac{2\pi n}{T}x)=\frac{e^{\frac{2\pi n}{T}ix}-e^{-\frac{2\pi n}{T}ix}}{2i}$$

Así tenemos que:

$$a_{n}\cos(\frac{2\pi n}{T}x)+b_{n}\sin(\frac{2\pi n}{T}x)=a_{n} \left [ \frac{e^{\frac{2\pi n}{T}ix}+e^{-\frac{2\pi n}{T}ix}}{2}\right ]+b_{n} \left [\frac{e^{\frac{2\pi n}{T}ix}-e^{-\frac{2\pi n}{T}ix}}{2i} \right ]$$

Existe una propiedad en los números complejos que nos dice que:

$$i=-\frac{1}{i}$$

Aunque esta demostración se verá en el curso de variable compleja, utilizaremos solo esta propiedad de los números complejos, aplicando lo anterior en el segundo término como sigue:

$$=a_{n} \left [ \frac{e^{\frac{2\pi n}{T}ix}+e^{-\frac{2\pi n}{T}ix}}{2}\right ]-ib_{n} \left [\frac{e^{\frac{2\pi n}{T}ix}-e^{-\frac{2\pi n}{T}ix}}{2} \right ]$$

$$=\frac{a_{n} \space e^{\frac{2\pi n}{T}ix}+a_{n} \space e^{-\frac{2\pi n}{T}ix}}{2}+\frac{-ib_{n} \space e^{\frac{2\pi n}{T}ix}+ib_{n}\space e^{-\frac{2\pi n}{T}ix}}{2}$$

$$=\frac{1}{2}\left [a_{n} \space e^{\frac{2\pi n}{T}ix}-ib_{n} \space e^{\frac{2\pi n}{T}ix}+a_{n} \space e^{-\frac{2\pi n}{T}ix}+ib_{n}\space e^{-\frac{2\pi n}{T}ix} \right ]$$

$$=\frac{1}{2}\left [ (a_{n}-ib_{n})e^{\frac{2\pi n}{T}ix}+(a_{n}+b_{n})e^{-\frac{2\pi n}{T}ix} \right ]$$

Sea $c_{n}=\frac{1}{2}(a_{n}-ib_{n})$

Su respectivo complejo conjugado $\bar{c}_{n}$ es aquel que intercambia el signo del número complejo, es decir: $\bar{c}_{n}=\frac{1}{2}(a_{n}+ib_{n})$

Entonces la serie de Fourier en la forma exponencial de $f(x)$ está dada como:

$$f(x)=C_{0}+\sum_{n=1}^{\infty}\left (c_{n}e^{\frac{2\pi n}{T}ix}-\bar{c}_{n}e^{-\frac{2\pi n}{T}ix} \right )$$

Cuyo coeficientes complejos están dados como

$$c_{n}=\frac{1}{T}\int_{0}^{T}f(x)e^{-\frac{2\pi n }{T}ix}dx$$

$$y$$

$$ \bar{c}_{n} = \frac{1}{T}\int_{0}^{T}f(x)e^{\frac{2\pi n }{T}ix}dx $$

Con $n \space \epsilon \space \mathbb{Z}$

Veamos un ejemplo.

Ejemplo

Aproxime la siguiente función con una serie de Fourier en su forma exponencial.

  • $f(x)=\sin(x)$ en el intervalo $[-\pi, \pi]$

Vemos que el periodo está dado como $T=2 \pi$, ya que se repite en un intervalo de $-\pi$ a $\pi$ Calculemos los coeficientes complejos como sigue:

$$c_{0}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{0}dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)dx=0$$

$$\therefore \space c_{0}=0$$

$$c_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{-\frac{2\pi n }{2\pi}ix}dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{-nix}dx$$

Resolvemos esta integral con el método de integración por partes el cual ya habíamos visto, tomamos como cambio de variable a $u=-inx$, por lo que:

$$=\frac{1}{2\pi}\left ( \frac{e^{-inx}(\cos(x)+in\sin(x)}{n^{2}-1} \right )\bigg{|}_{-\pi}^{\pi}=\frac{1}{2\pi}\left ( \frac{e^{-in(\pi)}(\cos(\pi)+in\sin(\pi))}{n^{2}-1}-\frac{e^{-in(-\pi)}(\cos(-\pi)+in\sin(-\pi))}{n^{2}-1} \right )$$

$$= \frac{1}{2\pi}\left ( \frac{e^{-in \pi}(-1)}{n^{2}-1}-\frac{e^{in \pi}(-1)}{n^{2}-1} \right )=\frac{1}{2\pi}\frac{1}{n^{2}-1}\left ( -e^{-in \pi}+e^{in \pi} \right ) $$

Podemos usar la relación $(1)$ para reescribir el resultado anterior como:

$$c_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{-nix}dx=\frac{1}{2\pi}\left ( \frac{-e^{-in\pi}+e^{in\pi}}{n^{2}-1} \right )=\frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{n^{2}-1} \right )$$

Ahora para los coeficientes $\bar{c}_{n} $, se tiene que:

$$\bar{c}_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{nix}dx$$

Por lo que solo cambia en el signo de la exponencial, lo cual se obtiene que la integral es:

$$ \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{nix}dx = =\frac{1}{2\pi}\left ( \frac{e^{inx}(\cos(x)-in\sin(x)}{n^{2}-1} \right )\bigg{|}_{-\pi}^{\pi} $$

Como $\sin(\pm\pi)=0$, por lo que el resultado de la integral solo cambia en el signo:

$$\bar{c}_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{nix}dx= \frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{1-n^{2}} \right ) $$

Por tanto, la serie de Fourier en términos exponenciales es:

$$f(x)=\sum_{n=1}^{\infty}\left [\frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{n^{2}-1} \right )e^{inx}-\frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{1-n^{2}} \right ) e^{-inx} \right ]$$

$$=\frac{1}{\pi}\sum_{n=1}^{\infty} \frac{2i\sin(\pi n)}{n^{2}-1}\left ( e^{inx}+ e^{-inx}\right )=\frac{1}{\pi}\sum_{n=1}^{\infty} \frac{2isen(\pi n)}{n^{2}-1}2\cos(nx)=
\frac{4}{\pi}\sum_{n=1}^{\infty} \frac{i\sin(\pi n)}{n^{2}-1}\cos(nx)$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

  • Verifique utilizando la relación de Euler las siguientes relaciones:

$$\cos(x)=\frac{e^{ix}+e^{-ix}}{2}$$

$$\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}$$

  • Aproxime las siguientes funciones con serie de Fourier utilizando la forma exponencial.
  1. $f(x)=x$ en el intervalo $[-\pi, \pi]$
  2. $f(x)=\left\lbrace\begin{array}{c} 2 \space \space \space si \space \space \space 0 \leq x < 1 \\ -2 \space \space \space si \space \space \space 1 \leq x \leq 2 \end{array}\right.$
  3. $f(x)=\left\lbrace\begin{array}{c} -1 \space \space \space si \space \space \space -\pi \leq x < 0 \\ 1 \space \space \space si \space \space \space 0 \leq x \leq \pi \end{array}\right.$

Más adelante…

En esta sección vimos la forma exponencial de las series de Fourier y aunque se vio un poco de variable compleja, realmente se vio las propiedades más básicas de los números complejos, por lo que no se tuvo que recurrir a un curso de variable compleja, en la siguiente sección veremos las curvas paramétricas así como ejemplo de estos.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de Fourier de funciones pares e impares

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series y los coeficientes de Fourier para aproximar una función $f(x)$, en esta sección veremos las series de Fourier para las funciones para e impares, para esto veremos la proposición siguiente.

Series de Fourier de funciones pares e impares

Proposición. Si $f:[-a, a]\rightarrow\mathbb{R}$ es integrable, se puede asegurar que:

a) Si $f$ es par entonces:

$$\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx \tag{1}$$

b) Si $f$ es impar entonces:

$$\int_{-a}^{a}f(x)dx=0 \tag{2}$$

Demostración:

a) Recordemos que las funciones pares se tiene la propiedad que: $f(x)=f(-x)$, así tenemos que:

$$\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx$$

Si hacemos el cambio de variable $-t=x \Rightarrow -dt=dx$ en la penúltima integral entonces:

$$\int_{-a}^{0}-f(-t)dt+\int_{0}^{a}f(x)dx=\int_{0}^{a}f(t)dt+\int_{0}^{a}f(x)dx=2\int_{0}^{a}f(x)dx$$

$\square$

b) Recordemos que las funciones impares se tiene la propiedad que $-f(x)=f(-x)$, se tiene que:

$$\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx$$

Análogamente, hacemos el cambio de variable $t=-x \Rightarrow dt=-dx$, tenemos que:

$$\int_{a}^{0}-f(-t)dt+\int_{0}^{a}f(x)dx=-\int_{0}^{a}f(t)dt+\int_{0}^{a}f(x)dx=0$$

$\square$

Recordando que la serie de Fourier de una función $f(x)$ esta dada como:

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left [a_{n}\cos\left ( \frac{2n\pi }{T}x \right )+b_{n}\sin\left ( \frac{2n\pi }{T}x \right ) \right ]$$

Donde:

$a_{0}$, $a_{n}$ y $b_{n}$ se denomina coeficientes de Fourier que se definen como:

$$a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)dx$$

$$a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\cos\left ( \frac{2n\pi }{T}x \right )dx $$

$$b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\sin\left ( \frac{2n\pi }{T}x \right )dx $$

Por tanto cuando $f$ es par, al calcular los coeficientes de $a_{n}$, las funciones a integrar son funciones pares, ya que tanto $f$ como las funciones coseno lo son y el producto de dos funciones pares es una función par, sin embargo, al calcular los coeficientes de $b_{n}$ las funciones a integrar es impar, porque $f$ es par y las funciones seno son impares, puesto que el producto de una función par con una función impar da como resultado una función impar por lo que utilizando las relaciones $(1)$ y $(2)$, resulta que:

$$a_{n}=\frac{4}{T}\int_{0}^{\frac{T}{2}}f(x)\cos\left ( \frac{2\pi nx}{T} \right )dx$$

$$y$$

$$b_{n}=0 $$

Por lo tanto, la serie de Fourier de una función $f(x)$ par, es una serie cosenoidal:

$$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{n}\cos\left ( \frac{2\pi nx}{T} \right )$$

Ahora, si $f$ es impar, al calcular los coeficientes $a_{n}$ las funciones a integrar son funciones impares, ya que $f$ es impar y las funciones coseno son pares; sin embargo, al calcular $b_{n}$ las funciones a integrar son pares, ya que el producto de una función impar con otra función impar da como resultado una función par, por lo que:

$$a_{n}=0 \space \space \space \space n=0 ,1, 2, 3, …..$$

$$y$$

$$b_{n}=\frac{4}{T}\int_{0}^{\frac{T}{2}}f(x)\sin\left ( \frac{2\pi nx}{T} \right )dx$$

Y la serie de Fourier de una función $f(x)$ impar es una serie senoidal:

$$f(x)=\sum_{n=1}^{\infty}b_{n}\sin\left ( \frac{2\pi nx}{T} \right )$$

Ejemplo

Encuentre la serie de Fourier de la siguiente función:

$$f(x)=\left\lbrace\begin{array}{c} -3 \space \space \space si \space \space \space -\pi \leq x < 0 \\ 3 \space \space \space si \space \space \space 0 \leq x < \pi \end{array}\right.$$

Figura 1: Gráfica de la función $f(x)$.

De la gráfica (figura $(1)$), vemos que la función es periódica con $T=2\pi$ y que la función es impar, por tanto, por lo visto anteriormente, tenemos que:

$$a_{n}=0$$

$$y$$

$$a_{0}=0$$

Por lo que solo calculamos los coeficientes $b_{n}$ como sigue:

$$b_{n}=\frac{4}{T}\int_{0}^{\frac{T}{2}}f(x)\sin\left ( \frac{2\pi nx}{T} \right )dx=\frac{4}{2\pi}\int_{0}^{\frac{2\pi}{2}}f(x)\sin\left ( \frac{2\pi nx}{2\pi} \right )dx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\sin\left ( nx \right )dx$$

$$=\frac{2}{\pi}\int_{0}^{\pi}3\sin\left ( nx \right )dx=-\frac{6}{\pi}\left ( \frac{\cos(nx)}{n} \right )\bigg|_{0}^{\pi}=-\frac{6}{n\pi}\left ( \cos(n \pi)-1 \right )$$

Vemos que para $n$ par, $\cos(n\pi)=0$, por lo que:

$$b_{n}=0$$

Para $n$ impar, $\cos(n\pi)=-1$, por lo que:

$$b_{n}=\frac{12}{n\pi}$$

$$\therefore \space \space f(x)=\sum_{n=1}^{\infty}\frac{12}{n\pi}\sin\left ( \frac{2\pi nx}{T} \right )$$

Para $n$ impar.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invito a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con serie de Fourier.

  1. $f(x)=x^{2}$ en el intervalo $[-2,2]$.
  2. $f(x)=x^{3}$ en el intervalo $[-1,1]$.
  3. $f(x)=e^{|x|}$ en el intervalo $[-\pi,\pi]$.
  4. $f(x)=x\cos(x)$ en el intervalo $[-2,2]$.
  5. $f(x)=\left\lbrace\begin{array}{c} x+5 \space \space \space si \space \space \space -2\leq x < 0 \\ x-5 \space \space \space si \space \space \space 0 \leq x \leq 2 \end{array}\right.$

Más adelante…

En esta sección vimos las series de Fourier con funciones pares e impares en los cuales se obtienen series cosenoidales y senoidales respectivamente como resultado de las propiedades de las funciones pares e impares, en la siguiente sección veremos la forma exponencial de las series de Fourier.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de Fourier

Por Miguel Ángel Rodríguez García

Introducción

En esta última unidad del curso veremos algunos temas que nos serán útiles en otros cursos, comenzando estudiando las series de Fourier, por lo que empezaremos a ver la definición de las series de Fourier.

Series de Fourier

Habíamos visto que las series de Taylor se pueden utilizar para aproximar a una función $f(x)$ por medio de polinomios, en caso contrario, las series de Fourier utilizan una combinación lineal de funciones $\sin(x)$ y $\cos(x)$ para aproximar una función $f(x)$ como se muestra en la figura $(1)$, por lo que estas series son muy útiles al analizar funciones periódicas como son señales de radio, corrientes alternas, etc., veamos la siguiente definición.

Figura 1: Aproximación a la función $f(x)$ mediante series de Fourier para valores de $n$ distintas (https://es.wikipedia.org/wiki/Serie_de_Fourier).

Definición. Sea una función $f(x)$ integrable en el intervalo $[x_{0}-\frac{T}{2}, x_{0}+\frac{T}{2}]$, donde $T$ es el periodo de la función, entonces se puede aproximar en series de Fourier a $f(x)$ como:

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left [a_{n}\cos\left ( \frac{2n\pi }{T}x \right )+b_{n}\sin\left ( \frac{2n\pi }{T}x \right ) \right ]$$

Donde $n$ toma valores $n=1, 2, 3, …..$.

$a_{0}$, $a_{n}$ y $b_{n}$ se denominan los coeficientes de Fourier que se definen como sigue:

$$a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)dx$$

$$a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\cos\left ( \frac{2n\pi }{T}x \right )dx $$

$$b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\sin\left ( \frac{2n\pi }{T}x \right )dx $$

Como recordatorio, una función periódica es una función $f(x)$ que tiene un patrón que se repite en un dado intervalo $[a, b]$, como por ejemplo, las funciones $\sin(x)$ y $\cos(x)$ que tienen el mismo periodo $T=2\pi$.

Veamos unos ejemplos de como calcular la serie de Fourier de una función.

Ejemplos

Calcule las series de Fourier de las siguientes funciones en el intervalo dado.

  • $f(x)=x$ para $-\pi < x <\pi$ repitiéndose con periodo $T=2\pi$

En este caso, primero calculamos los coeficientes de Fourier, de la definición tenemos que:

$$a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}xdx=0$$

$$a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\cos\left ( \frac{2n\pi }{T}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\cos\left ( \frac{2n\pi }{2\pi}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\cos\left (n x \right )dx$$

Utilizando la integración por partes, el resultado de la integral se tiene que:

$$ \frac{1}{\pi}\int _{-\pi}^{\pi} x\cos\left (n x \right )dx=\frac{1}{\pi} \left( \frac{n \pi \sin(n \pi)+\cos(n \pi)}{n^{2}}-\frac{n (-\pi)\sin(n (-\pi))+\cos(n (-\pi))}{n^{2}} \right )$$

$$=\frac{1}{\pi} \left ( \frac{n \pi \sin(n \pi)+\cos(n \pi)-n \pi \sin(n \pi)-\cos(n \pi)}{n^{2}} \right )=0 $$

$$\therefore a_{n}=0$$

$$b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\sin\left ( \frac{2n\pi }{T}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\sin\left ( \frac{2n\pi }{2\pi}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\sin\left (n x \right )dx$$

Utilizando nuevamente la integración por partes, se tiene que:

$$ \frac{1}{\pi}\int_{-\pi}^{\pi}x\sin\left (n x \right )dx =\frac{1}{\pi} \left( \frac{\sin(n \pi)-n\pi \cos(n \pi)}{n^{2}}-\frac{\sin(n (-\pi))-n (-\pi) \cos(n (-\pi))}{n^{2}} \right )$$

$$=\frac{1}{\pi} \left ( \frac{\sin(n \pi)-n\pi \cos(n \pi)+\sin(n \pi)-n \pi \cos(n \pi)}{n^{2}} \right )=\frac{1}{\pi}\left ( \frac{2\sin(n \pi)-2n\pi \cos(n \pi)}{n^{2}} \right )$$

Como $n \space \epsilon \space \mathbb{Z} \Rightarrow \sin(n \pi)=0$

$$b_{n}= \frac{1}{\pi}\left ( \frac{0-2n\pi \cos(n \pi)}{n^{2}} \right )=\frac{-2}{n}\cos(n \pi)$$

Por lo que la serie de Fourier de $f(x)$ está dado como:

$$f(x)=-2\sum_{n=1}^{\infty}\frac{\cos(n \pi)}{n}\sin(nx)$$

Para $x-\pi \notin 2\pi\mathbb{Z}$.

Una aplicación de las series de Fourier en física es el análisis vibratorio de las ondas en el área de la acústica o de la óptica, también es útil en el procesamiento de señales digitales, facilitando las series de Fourier, el manejo de señales expresando una señal como una combinación lineal de varias ondas. Un ejemplo es una onda cuadrada dada por la siguiente función.

  • $$f(x)=\left\lbrace\begin{array}{c} 1 \space \space \space si \space \space \space 0 \leq x \leq \pi \\ 2 \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$

Calculamos los coeficientes de Fourier como sigue:

$$a_{0}=\frac{1}{2\pi}\int_{0}^{2\pi}f(x)dx=\frac{1}{\pi}\left ( \int_{0}^{\pi}1dx+\int_{\pi}^{2\pi}2dx \right )=\frac{3}{2}$$

$$a_{n}=\frac{1}{\pi}\left ( \int_{0}^{\pi}\cos(nx)dx+\int_{\pi}^{2\pi}2\cos(nx)dx \right )=\frac{1}{\pi}\left ( \left [ \frac{\sin(nx)}{n} \right ]\bigg|_{0}^{\pi}+ \left [ \frac{2\sin(nx)}{n} \right ]\bigg|_{\pi}^{2\pi}\right )$$

$$=\frac{1}{\pi} \left ( \frac{\sin(n \pi)}{n}-\frac{\sin(0)}{n}+\frac{2\sin(2n\pi)}{n}-\frac{2\sin(n \pi)}{n} \right )=0$$

$$\therefore a_{n}=0$$

$$b_{n}=\frac{1}{\pi}\left ( \int_{0}^{\pi}\sin(nx)dx+\int_{\pi}^{2\pi}2\sin(nx)dx \right )=\frac{1}{\pi}\left ( \left [ -\frac{\cos(nx)}{n} \right ]\bigg|_{0}^{\pi}+ \left [ \frac{2\cos(nx)}{n} \right ]\bigg|_{\pi}^{2\pi}\right )$$

$$=\frac{1}{\pi} \left ( \frac{-\cos(n \pi)}{n}+\frac{\cos(0)}{n}+\frac{2\cos(2n\pi)}{n}-\frac{2\cos(n \pi)}{n} \right )=\frac{\cos(n\pi-1)}{n\pi}$$

Vemos en este caso que:

$$b_{1}=-\frac{2}{\pi}$$

$$b_{2}=0$$

$$b_{3}=-\frac{2}{3\pi}$$

$$b_{4}=0$$

$$b_{5}=-\frac{2}{5\pi}$$

Por tanto, la serie de Fourier de la función escalonada es:

$$\frac{3}{4}-\frac{2}{\pi}\sum_{n=1}^{\infty} \left ( \sin(x)+\frac{\sin(3x)}{3}-+\frac{\sin(5x)}{5}+…. \right )$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con la definición de serie de Fourier.

  1. $$f(x)=1 \space \space \space si \space \space \space 0\leq x \leq 2\pi$$
  2. $$f(x)=\left\lbrace\begin{array}{c} 1 \space \space \space si \space \space \space 0 \leq x \leq \pi \\ 2 \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$
  3. $$f(x)=\left\lbrace\begin{array}{c} x \space \space \space si \space \space \space 0 \leq x \leq \pi \\ x-2\pi \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$
  4. $$f(x)=\left\lbrace\begin{array}{c} x^{2} \space \space \space si \space \space \space 0 \leq x \leq \pi \\ 0 \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$
  5. $$f(x)=e^{x}\space \space \space si \space \space \space 0\leq x \leq 2\pi$$

Más adelante…

En esta sección vimos las series de Fourier y los coeficientes de Fourier que aproximan a una función $f$ en series de combinación lineal de funciones trigonométricas $\sin(x)$ y $cos(x)$, en la siguiente sección veremos las series de Fourier de funciones pares e impares.

Entradas relacionadas