Archivo de la etiqueta: producto

Álgebra Lineal I: Determinantes de vectores e independencia lineal

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este cuarto y último bloque del curso comenzamos hablando de transformaciones multilineales y de permutaciones. Luego, nos enfocamos en las transformaciones multilineales antisimétricas y alternantes. Con la teoría que hemos desarrollado hasta ahora, estamos listos para definir determinantes de vectores, de transformaciones lineales y de matrices.

En esta entrada comenzaremos con la definición de determinantes de vectores. En la siguiente entrada hablaremos acerca de determinantes de matrices y de transformaciones lineales. Después de definir determinantes, probaremos varias de las propiedades que satisfacen. Posteriormente, hablaremos de varias técnicas que nos permitirán calcular una amplia variedad de determinantes para tipos especiales de matrices.

Determinantes de vectores

Para empezar, definiremos qué es el determinante de un conjunto de vectores en un espacio de dimensión finita con respecto a una base.

Definición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$ y $x_1,\ldots,x_n$ vectores de $V$. Cada uno de los $x_i$ se puede escribir como $$x_i=\sum_{j=1}^n a_{ji}b_j.$$

El determinante de $x_1,\ldots,x_n$ con respecto a $(b_1,\ldots,b_n)$ es $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ y lo denotamos por $\det_{(b_1,\ldots,b_n)} (x_1,\ldots,x_n)$.

Observa que estamos sumando tantos términos como elementos en $S_n$. Como existen $n!$ permutaciones de un conjunto de $n$ elementos, entonces la suma de la derecha tiene $n!$ sumandos.

Ejemplo. Consideremos la base $b_1=1$, $b_2=1+x$ y $b_3=1+x+x^2$ del espacio vectorial $\mathbb{R}_2[x]$ de polinomios con coeficientes reales y grado a lo más $2$. Tomemos los polinomios $v_1=1$, $v_2=2x$ y $v_3=3x^2$. Vamos a calcular el determinante de $v_1, v_2, v_3$ con respecto a la base $(b_1,b_2,b_3)$.

Para hacer eso, lo primero que tenemos que hacer es expresar a $v_1, v_2, v_3$ en términos de la base. Hacemos esto a continuación:
\begin{align*}
v_1&= 1\cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3\\
v_2&= -2\cdot b_1 + 2 \cdot b_2 + 0 \cdot b_3\\
v_3&= 0 \cdot b_1 – 3 \cdot b_2 +3 b_3.
\end{align*}

De aquí, obtenemos
\begin{align*}
a_{11}&=1, a_{21}=0, a_{31}=0,\\
a_{12}&=-2, a_{22}=2, a_{32}=0,\\
a_{13}&=0, a_{23}=-3, a_{33}=3.
\end{align*}

Si queremos calcular el determinante, tenemos que considerar las $3!=3\cdot 2 \cdot 1 = 6$ permutaciones en $S_3$. Estas permutaciones son

\begin{align*}
\sigma_1 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 2 & 3\end{pmatrix}\\
\sigma_2 &= \begin{pmatrix}1 & 2 & 3 \\ 1 & 3 & 2\end{pmatrix}\\
\sigma_3 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 1 & 3\end{pmatrix}\\
\sigma_4 &= \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 1\end{pmatrix}\\
\sigma_5 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 2 & 1\end{pmatrix}\\
\sigma_6 &= \begin{pmatrix}1 & 2 & 3 \\ 3 & 1 & 2\end{pmatrix}.
\end{align*}

Los signos de $\sigma_1,\ldots,\sigma_6$ son, como puedes verificar, $1$, $-1$, $-1$, $1$, $-1$ y $1$, respectivamente.

El sumando correspondiente a $\sigma_1$ es
\begin{align}
\text{sign}(\sigma_1) &a_{1\sigma_1(1)}a_{2\sigma_1(2)}a_{3\sigma_1(3)}\\
&= 1 \cdot a_{11}a_{22}a_{33}\\
&=1\cdot 1\cdot 2 \cdot 3 = 6.
\end{align}

El sumando correspondiente a $\sigma_2$ es
\begin{align}
\text{sign}(\sigma_2) &a_{1\sigma_2(1)}a_{2\sigma_2(2)}a_{3\sigma_2(3)}\\
&= (-1) \cdot a_{11}a_{23}a_{32}\\
&=(-1) \cdot 1\cdot (-3) \cdot 0 = 0.
\end{align}

Continuando de esta manera, se puede ver que los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son $$+6,-0,-0,+0,-0,+0,$$ respectivamente de modo que el determinante es $6$.

$\triangle$

La expresión de determinante puede parecer algo complicada, pero a través de ella podemos demostrar fácilmente algunos resultados. Consideremos como ejemplo el siguiente resultado.

Proposición. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ de dimensión finita $n$. El determinante de $B$ con respecto a sí mismo es $1$.

Demostración. Cuando escribimos a $b_i$ en términos de la base $b$, tenemos que $$b_i=\sum_{j=1}^n a_{ji} b_j.$$ Como la expresión en una base es única, debemos tener $a_{ii}=1$ y $a_{ji}=0$ si $j\neq i$. Ahora, veamos qué le sucede al determinante $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si $\sigma$ es una permutación tal que $\sigma(i)\neq i$ para alguna $i$, entonces en el producto del sumando correspondiente a $\sigma$ aparece $a_{i\sigma(i)}=0$, de modo que ese sumando es cero. En otras palabras, el único sumando no cero es cuando $\sigma$ es la permutación identidad.

Como el signo de la identidad es $1$ y cada $a_{ii}$ es $1$, tenemos que el determinante es
\begin{align*}
\sum_{\sigma \in S_n} \text{sign}&(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)} \\
&=a_{11}\cdot\ldots\cdot a_{nn}\\
&= 1\cdot\ldots\cdot 1 \\
& = 1.
\end{align*}

$\square$

El determinante es una forma $n$-lineal alternante

La razón por la cual hablamos de transformaciones $n$-lineales antisimétricas y alternantes antes de hablar de determinantes es que, en cierto sentido, los determinantes de vectores son las únicas transformaciones de este tipo. Los siguientes resultados formalizan esta intuición.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$ sobre $F$. Entonces la transformación $\det_{(b_1,\ldots,b_n)}:V^n \to F$ es una forma $n$-lineal y alternante.

Demostración. La observación clave para demostrar este resultado es que $\det_{(b_1,\ldots,b_n)}$ se puede reescribir en términos de la base dual $b_1^\ast, \ldots, b_n^\ast$. En efecto, recuerda que $b_i^\ast$ es la forma lineal que «lee» la coordenada de un vector $v$ escrito en la base $B$. De esta forma,

\begin{align*}
\det_{(b_1,\ldots,b_n)}&(v_1,\ldots,v_n)\\
&=\sum_{\sigma\in S_n}\left(\text{sign}(\sigma) \prod_{j=1}^n b_j^\ast(v_{\sigma(j)})\right)\\
\end{align*}

Para cada permutación $\sigma$, el sumando correspondiente es una forma $n$-lineal, pues es producto de $n$ formas lineales evaluadas en los distintos vectores. Así que $\det_{(b_1,\ldots,b_n)}$ es suma de formas $n$-lineales y por lo tanto es forma $n$-lineal.

Para mostrar que el determinante es alternante, tenemos que mostrar que es igual a $0$ cuando algún par de sus entradas son iguales. Supongamos que $i\neq j$ y que $v_i=v_j$. Tomemos $\tau$ a la transposición que intercambia a $i$ y a $j$. Cuando se compone una permutación con una transposición, su signo cambia. Así, para cualquier permutación $\sigma$, tenemos que $\sigma\tau$ tiene signo diferente.

Además, para cualquier $\sigma$ tenemos que $$a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}$$ y $$a_{1\sigma\tau(1)}\cdot\ldots\cdot a_{n\sigma\tau(n)}$$ son iguales, pues $v_i=v_j$. Combinando ambas ideas, podemos emparejar a cada sumando del determinante con otro con el cual sume cero. Esto muestra que el determinante es $0$.

$\square$

Usando la teoría que desarrollamos en la entrada anterior, tenemos el siguiente corolario.

Corolario. La forma $n$-lineal $\det_{(b_1,\ldots,b_n)}$ es antisimétrica.

Los determinantes de vectores son las «únicas» formas $n$-lineales alternantes

Ya vimos que el determinante es una forma $n$-lineal alternante. Veamos ahora por qué decimos que es «la única». El siguiente resultado dice que cualquier otra forma $n$-lineal alternante varía de $\det_{(b_1,\ldots,b_n)}$ únicamente por un factor multiplicativo.

Teorema. Sea $B=(b_1,\ldots,b_n)$ una base de un espacio vectorial $V$. Si $f:V^n \to F$ es cualquier forma $n$-lineal y alternante, entonces $$f=f(b_1,\ldots,b_n)\det_{(b_1,\ldots,b_n)}.$$

Demostración. Para mostrar la igualdad del teorema, que es una igualdad de transformaciones, tenemos que ver que es cierta al evaluar en cualesquiera vectores $x_1,\ldots,x_n$. Escribamos a cada $x_i$ en términos de la base $B$: $$x_i=\sum_{j=1}^n a_{ij}b_j.$$

Usando la $n$-linealidad de $f$ en cada una de las entradas, tenemos que
\begin{align*}
f(x_1,\ldots,x_n)&=\sum_{i=1}^n a_{1i} f(b_i,x_2,\ldots,x_n)\\
&=\sum_{i,j=1}^n a_{1i}a_{2i} f(b_i,b_j,x_3,\ldots,x_n)\\
&=\ldots\\
&=\sum_{i_1,\ldots,i_n = 1}^n a_{1i_1}\ldots a_{ni_n} f(b_{i_1},\ldots,b_{i_n}).
\end{align*}

Aquí hay muchos términos, pero la mayoría de ellos son $0$. En efecto, si $b_{i_k}=b_{i_l}$, como $f$ es alternante tendríamos que ese sumando es $0$. Así, los únicos sumandos que pueden ser no cero son cuando la elección de subíndices es una permutación, es decir cuando existe $\sigma$ en $S_n$ tal que para $i_k=\sigma(k)$.

Por lo tanto, podemos simplificar la expresión anterior a
$$f(x_1,\ldots,x_n)=\sum_{\sigma \in S_n}a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_{\sigma(1)},\ldots,b_{\sigma(n)}).$$

Como $f$ es alternante, entonces es antisimétrica. De este modo, podemos continuar la igualdad anterior como
\begin{align*}
&=\sum_{\sigma \in S_n} \text{sign}(\sigma) a_{1 \sigma(1)}\ldots a_{n\sigma(n)} f(b_1,\ldots,b_n)\\
&=f(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots, x_n).
\end{align*}

Esto es justo lo que queríamos probar.

$\square$

Los determinantes de vectores caracterizan bases

Como consecuencia del último teorema de la sección anterior, los determinantes de vectores caracterizan totalmente a los conjuntos de vectores que son bases. A continuación enunciamos esto formalmente.

Corolario. En un espacio vectorial $V$ de dimensión $n$ son equivalentes las siguientes tres afirmaciones para vectores $x_1,\ldots,x_n$ de $V$:

  1. El determinante de $x_1,\ldots,x_n$ con respecto a toda base es distinto de $0$.
  2. El determinante de $x_1,\ldots,x_n$ con respecto a alguna base es distinto de $0$.
  3. $x_1,\ldots,x_n$ es una base de $V$.

Demostración. La afirmación (1) es más fuerte que la (2) y por lo tanto la implica.

Ahora, probemos que la afirmación (2) implica la afirmación (3). Como $x_1,\ldots,x_n$ son $n$ vectores y $n$ es la dimensión de $V$, para mostrar que forman una base basta mostrar que son linealmente independientes. Anteriormente, vimos que cualquier forma alternante manda vectores linealmente dependientes a $0$. Como la hipótesis de (2) es que existe alguna forma alternante que no se anula en $x_1,\ldots, x_n$, entonces deben ser linealmente independientes y por lo tanto formar una base.

Finalmente, probemos que (3) implica (1). Tomemos $B=(b_1,\ldots,b_n)$ otra base de $V$. Como $\det_{(x_1,\ldots,x_n)}$ es una forma $n$-lineal, podemos aplicar el teorema anterior y evaluar en $x_1,\ldots,x_n$ para concluir que
\begin{align*}
\det_{(x_1,\ldots,x_n)}&(x_1,\ldots,x_n)&\\
&=\det_{(x_1,\ldots,x_n)}(b_1,\ldots,b_n) \det_{(b_1,\ldots,b_n)}(x_1,\ldots,x_n).
\end{align*}

El término de la izquierda es igual a $1$, de modo que ambos factores a la derecha deben ser distintos de $0$.

$\square$

Ejemplo. En el ejemplo que dimos de polinomios vimos que el determinante de $1$, $2x$ y $3x^2$ con respecto a la base $1$, $1+x$ y $1+x+x^2$ es igual a $6$. De acuerdo al teorema anterior, esto implica que $1$, $2x$ y $3x^2$ es un conjunto linealmente independiente de polinomios, y de hecho una base.

Además, el teorema anterior también implica que sin importar que otra base $B$ de $\mathbb{R}_2[x]$ tomemos, el determinante de $1$, $2x$ y $3x^2$ con respecto a $B$ también será distinto de $0$.

$\triangle$

Más adelante…

A lo largo de esta entrada estudiamos la definición de determinantes para un conjunto de vectores y enunciamos sus principales propiedades. En las siguientes entradas vamos a hablar cómo se define el determinante para matrices y para transformaciones lineales. Después de las definiciones, pasaremos a estudiar cómo se calculan los determinantes y veremos cómo se aplican a diferentes problemas de álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuántos sumandos tendrá el determinante de $5$ vectores en un espacio vectorial de dimensión $5$ con respecto a cualquier base? Da el número de manera explícita.
  • Verifica que en el primer ejemplo de determinantes de esta entrada, en efecto los sumandos correspondientes a $\sigma_1,\ldots,\sigma_6$ son los que se enuncian.
  • Encuentra el determinante de los vectores $(3,1)$ y $(2,4)$ con respecto a la base $((5,1), (2,3))$ de $\mathbb{R}^2$.
  • Muestra que los vectores $(1,4,5,2)$, $(0,3,2,1)$, $(0,0,-1,4)$ y $(0,0,0,1)$ son linealmente independientes calculando por definición su determinante con respecto a la base canónica de $\mathbb{R}^4$.
  • Usa un argumento de determinantes para mostrar que los vectores $(1,4,3)$, $(2,-2,9)$, $(7,8,27)$ de $\mathbb{R}^3$ no son linealmente independientes. Sugerencia. Calcula su determinante con respecto a la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Problemas de operaciones con polinomios

Por Claudia Silva

Introducción

En una entrada anterior ya construimos el anillo de polinomios con coeficientes reales. Para hacer esto, tomamos las sucesiones que consisten casi de puros ceros, después les definimos las operaciones de suma y producto. Ahora practicaremos estos nuevos conceptos, resolviendo algunos problemas de operaciones con polinomios.

Problema de suma de polinomios

Comenzamos con un ejemplo de suma de polinomios del libro de Álgebra Superior de Bravo, Rincón y Rincón.

Ejercicio 399. Haz la suma de los siguientes polinomios:
\begin{align*}
p(x)&=(-85,0,-37,-35, 97, 50, \overline{0})\\
q(x)&=(56,49,0,57,\overline{0}).
\end{align*}

En el video se hace la suma de dos formas distintas. Primero, se hace la suma directamente de la definición, es decir, sumando los polinomios entrada a entrada como sucesiones. Después, se hace la suma en la notación de $x$ y potencias, que tal vez conozcas mejor.

Es importante entender que la notación de sucesiones sirve para establecer los fundamentos de los polinomios, pero no es práctica para hacer operaciones con polinomios concretas. Dependiendo del tipo de problema que se quiere resolver, a veces hay que usar una notación u otra.

Suma de polinomios

Problemas de producto de polinomios

A continuación se resuelven dos ejercicios de producto de polinomios.

Ejercicio. Multiplicar los polinomios $(2,0,3,\overline{0})$ y $(0,1,\overline{0})$.

En el vídeo se hace la multiplicación usando directamente la definición, paso a paso. Sin embargo, los pasos para realizar la multiplicación se pueden realizar en una tabla, como la que usamos en entradas anteriores. Después del vídeo ponemos la tabla correspondiente a la multiplicación.

Para hacer la multiplicación con una tabla, ponemos a las entradas del primer polinomio en la primer fila de una tabla, y a las del segundo polinomio en la primer columna de la tabla. Luego, hacemos las multiplicaciones «en cada casilla» como sigue:

$2$$0$$3$
$0$$0$$0$$0$
$1$$2$$0$$3$

De aquí, se puede leer el producto «por diagonales». La primer diagonal es $0$, la segunda $2+0=2$, la tercera $0+0=0$ y la cuarta $3$. Concluimos que el polinomio es $$(0,2,0,3,\overline{0}).$$

Veamos un ejemplo más, usando la notación de $x$ y sus potencias.

Ejercicio. Encuentra el producto de polinomios $(1+3x)(1-2x+3x^2)$.

Problema de división de polinomios

Finalmente, hacemos un ejemplo de división de polinomios. La técnica que se hace en el vídeo es la de «dividir con casita», que es una forma visual de representar el algoritmo de la división para polinomios. Hablaremos un poco más adelante de este algoritmo, y de por qué siempre nos da un residuo cero o de grado menor.

Cuando se hace la «división con casita», hay que recordar dejar los espacios correspondientes a los términos que tengan coeficiente $0$.

Ejercicio. Divide el polinomio $x^5+x^3+3x$ entre el polinomio $x^2-x+1$.

División de polinomios

Más adelante…

Aunque esta entrada la dedicamos para que pudieras practicar tus habilidades operando polinomios, te recomendamos seguir practicando, ya que estas operaciones serán la base de la teoría. A partir de aquí veremos los teoremas importantes sobre los polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Realiza la suma $(-10,0,3,-4,1,\overline{0})+(14,0,0,0,-5,0,3,\overline{0})$.
  2. Realiza el producto $(-1,1,\overline{0})(1,1,1,1,\overline{0})$.
  3. Realiza el producto $(x^3+4x^2-3)(2x^2+x-3)$.
  4. Realiza la división $(x^5+3x^4+x^3+5x^2-5x+1)/(x^2+3x-1)$.
  5. Realiza la división $(x^4+2x^3+2x^2+11x)/(x^2+3)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: El anillo de polinomios con coeficientes reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Estamos listos para la cuarta y última parte del curso, en donde construiremos el anillo de polinomios con coeficientes reales. Los elementos de este anillo son polinomios, los cuales aparecen en numerosas áreas de las matemáticas. Tras su construcción, aprenderemos varias herramientas para trabajar con ellos.

En las tres primeras partes del curso ya trabajamos con otras estructuras algebraicas. Hasta ahora, hemos hablado de lo siguiente:

  • Naturales: Construimos a partir de teoría de conjuntos al conjunto $\mathbb{N}$ de números naturales, sus operaciones y orden. De lo más relevante es que dentro de los naturales podemos hacer definiciones por recursión y pruebas por inducción.
  • Enteros: Con $\mathbb{N}$ construimos a los enteros $\mathbb{Z}$, sus operaciones y orden. Hablamos de divisibilidad y factorización. Esto dio pie a construir $\mathbb{Z}_n$, los enteros módulo $n$, junto con su aritmética. Aprendimos a resolver ecuaciones en $\mathbb{Z}$ y sistemas de congruencias.
  • Racionales y reales: Mencionamos brevemente cómo se construye $\mathbb{Q}$ a partir de $\mathbb{Z}$ y cómo se construye $\mathbb{R}$ a partir de $\mathbb{Q}$. Tanto $\mathbb{R}$ como $\mathbb{Q}$ son campos, así que ahí se pueden hacer sumas, restas, multiplicaciones y divisiones.
  • Complejos: A partir de $\mathbb{R}$ construimos el campo $\mathbb{C}$ de los números complejos. Definimos suma, multiplicación, inversos, norma y conjugados. Luego, desarrollamos herramientas para resolver varios tipos de ecuaciones en $\mathbb{C}$. Finalmente, construimos las funciones exponenciales, logarítmicas y trigonométricas.

Quizás a estas alturas del curso ya veas un patrón de cómo estamos trabajando. Aunque varias de estas estructuras ya las conocías desde antes, hay una primer parte importante que consiste en formalizar cómo se construyen. Luego, vimos cómo se definen las operaciones en cada estructura y qué propiedades tienen. Haremos algo muy parecido con los polinomios.

Intuición de los polinomios

La idea de esta entrada es llegar a los polinomios que ya conocemos, es decir, a expresiones como la siguiente: $$4+5x+\frac{7}{2}x^2-x^4+3x^5.$$ Lo que tenemos que formalizar es qué significa esa «x», y cómo le hacemos para sumar y multiplicar expresiones de este tipo.

Intuitivamente, lo que queremos ese que en la suma «se sumen términos del mismo grado» y que en el producto «se haga la distribución y se agrupen términos del mismo grado». Por ejemplo, queremos que la suma funcione así

\begin{align*}
(1+&x-x^2+3x^3)+(-7+3x+x^2+2x^3+x^4)\\
&=(1-7)+(1+3)x+(-1+1)x^2+(3+2)x^3+(0+1)x^4\\
&=-6+4x+0x^2+5x^3+x^4\\
&=-6+4x+5x^3+x^4,
\end{align*}

y que la multiplicación funcione así

\begin{align*}
(2&+3x)(5+x+x^2)\\
&=2(5+x+x^2)+3x(5+x+x^2)\\
&=(10+2x+2x^2)+(15x+3x^2+3x^3)\\
&=10+(2+15)x+(2+3)x^2+3x^3\\
&=10+17x+5x^2+3x^3.
\end{align*}

El exponente más grande de una $x$ puede ser tan grande como queramos, pero no se vale que los polinomios tengan una infinidad de términos. Así, queremos descartar cosas del estilo $$1+x+x^2+x^3+x^4+\ldots,$$ en donde sumamos indefinidamente.

Construcción de polinomios

Para construir polinomios formalmente, tenemos que elegir de dónde van a venir sus coeficientes. Puede ser $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{Z}$ o incluso $\mathbb{Z}_7$, digamos. Nosotros nos enfocaremos en construir los polinomios con coeficientes en $\mathbb{R}$, que tiene la ventaja de ser un campo. Algunas de las propiedades que probaremos se valen para cualquier elección de coeficientes, pero otras no. No profundizaremos en estas diferencias, pero es bueno que lo tengas en mente para tu formación matemática posterior.

Una buena idea para formalizar el concepto de polinomio, es notar que un polinomio está determinado por la lista de sus coeficientes, con esta idea en mente, podemos relacionar nuestra búsqueda con un concepto conocido de Cálculo.

Definición. Dado un conjunto $X$, una sucesión de elementos de $X$ es una función $a:\mathbb{N}\to X$. Para $n$ en $\mathbb{N}$, a $a(n)$ usualmente lo denotamos simplemente por $a_n$, y a la sucesión $a$ por $\{a_n\}$.

Definición. El soporte de una sucesión es el conjunto de naturales $n$ tales que $a_n\neq 0$.

Podemos «visualizar» los primeros términos de una sucesión así: $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ en donde podemos poner tantos términos como queramos y los puntos suspensivos indican que «sigue y sigue». Por supuesto, usualmente esta visualización no puede guardar toda la información de la sucesión, pero puede ayudarnos a entenderla un poco mejor.

Ejemplo 1. Si tomamos la función identidad $\text{id}:\mathbb{N}\to \mathbb{N}$, obtenemos la sucesión $$(0,1,2,3,4,5,6,7,\ldots).$$

Al tomar la función $a:\mathbb{N}\to \mathbb{Z}$ tal que $a_n=(-1)^n$, obtenemos la sucesión $$(1,-1,1,-1,1,-1,\ldots).$$

$\triangle$

Los polinomios son aquellas sucesiones de reales que «después de un punto tienen puros ceros».

Definición. Un polinomio con coeficientes reales es una sucesión $\{a_n\}$ de reales tal que $a_n\neq 0$ sólo para una cantidad finita de naturales $n$.

En otras palabras, un polinomio es una sucesión con soporte finito. Si visualizamos a un polinomio como una sucesión, entonces es de la forma $$(a_0,a_1,a_2,a_3,a_4,a_5,\ldots),$$ en donde a partir de un punto ya tenemos puros ceros a la derecha. Por conveniencia, marcaremos ese punto con un $\overline{0}$.

Ejemplo 2. La sucesión $$\left(5,7,\frac{7}{2},0,-1,3,0,0,0,\ldots\right),$$ en la que después del $3$ ya todos los términos son ceros, representa a un polinomio. Con la convención de arriba, podemos escribirlo como $$\left(5,7,\frac{7}{2},0,-1,3,\overline{0}\right).$$ Su soporte consiste de aquellas posiciones en las que la sucesión no es cero, que son $0,1,2,4,5$.

La sucesión $$(1,-1,1,-1,1,-1,\ldots)$$ dada por $a_n=(-1)^n$ no es un polinomio, pues podemos encontrar una infinidad de términos no cero.

$\triangle$

Para que las definiciones de la siguiente sección te hagan sentido, puedes pensar de manera informal que la sucesión $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ representa al polinomio $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots.$$ La última condición en la definición de polinomio es la que garantiza que «tenemos un número finito de sumandos».

Definición. Definimos al conjunto de polinomios con coeficientes reales como $$\mathbb{R}[x]:=\{ p: p \text{ es polinomio con coeficientes reales}\}.$$

La igualdad de polinomios de define término a término, es decir.

Definición. Sean $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$. Decimos que $a=b$ si para todo natural se tiene $a_n=b_n$.

En las siguientes secciones definiremos las operaciones de suma y producto en $\mathbb{R}[x]$.

Suma y producto de polinomios

Los polinomios se suman «entrada a entrada».

Definición. Dados dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$, definimos su suma como el polinomio $$a+b:=\{a_n+b_n\},$$ o bien, en términos de sucesiones, como la sucesión $a+b:\mathbb{N}\to \mathbb{R}$ tal que $(a+b)(n)=a(n)+b(n)$.

Observa que nos estamos apoyando en la suma en $\mathbb{R}$ para esta definición.

Ejemplo 1. Los polinomios $$\left(0,2,0,4,-1,\frac{2}{3},\overline{0}\right)$$ y $$\left(1,-2,-1,-4,-2,\overline{0}\right)$$ tienen como suma al polinomio $$\left(0+1,2-2,0-1,4-4,-1-2,\frac{2}{3}+0,0+0,\ldots\right),$$ que es $$\left(1,0,-1,0,-3,\frac{2}{3},\overline{0}\right).$$

$\triangle$

La suma de dos polinomios sí es un polinomio pues claramente es una sucesión, y su soporte se queda contenido en la unión de los soportes de los sumandos.

La siguiente definición guarda la idea de que para multiplicar queremos distribuir sumandos y agrupar términos del mismo grado. Tiene sentido si piensas en la asociación intuitiva informal que discutimos al final de la sección anterior.

Definición. Dados dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$, definimos su producto como el polinomio $$ab:=\{c_n\},$$ en donde $c_n$ está dado por $$c_n:=\sum_{i+j=n} a_ib_j,$$ en otras palabras, $$c_n=a_0b_n+a_1b_{n-1}+\ldots+a_{n-1}b_1+a_nb_0.$$

Aquí nos estamos apoyando en la suma y producto en $\mathbb{R}$ para definir la multiplicación de polinomios.

Una forma práctica de hacer el producto es mediante una tabla. En la primer fila ponemos al primer polinomio y en la primer columna al segundo. Las entradas interiores son el producto de la fila y columna correspondiente. Una vez que hacemos esto, la entrada $c_j$ del producto es la suma de los elementos en la $j$-ésima «diagonal».

Ejemplo 2. Multipliquemos a los polinomios $$a=(3,-2,0,1,\overline{0})$$ y $$b=(0,2,7,\overline{0}).$$

Ponemos a $a$ y $b$ en la primer fila y columna respectivamente de la siguiente tabla:

$3$$-2$$0$$1$
$0$
$2$
$7$

Luego, en cada entrada interior de la tabla ponemos el producto de los coeficientes correspondientes:

$3$$-2$$0$$1$
$0$$3 \cdot 0$$-2 \cdot 0$$0\cdot 0$$1\cdot 0$
$2$$3 \cdot 2$$-2 \cdot 2$$0\cdot 2$$1\cdot 2$
$7$$3 \cdot 7$$-2 \cdot 7$$0\cdot 7$$1\cdot 7$

Después, hacemos las operaciones:

$3$$-2$$0$$1$
$0$$0$$0$$0$$0$
$2$$6$$-4$$0$$2$
$3$$21$$-14$$0$$7$

Finalmente, para encontrar el coeficiente $c_j$ del producto, hacemos la suma de las entradas en la $j$-ésima diagonal dentro de la tabla, es decir:
\begin{align*}
c_0&=0\\
c_1&=6+0=6\\
c_2&=21-4+0=17\\
c_3&=-14+0+0=-14\\
c_4&=0+2=2\\
c_5&=7.
\end{align*}

De esta forma, el polinomio producto es $$(0,6,17,-14,2,7,\overline{0}).$$ Es muy recomendable que notes que esto coincide con el producto (por ahora informal) \begin{align*}(3-&2x+x^3)(2x+7x^2)\\&=6x+17x^2-14x^3+2x^4+7x^5.\end{align*}

$\triangle$

El anillo de polinomios con coeficientes reales

Los polinomios y los enteros se parecen, en el sentido de que como estructura algebraica comparten muchas propiedades. La idea de esta sección es formalizar esta afirmación.

Teorema. El conjunto $\mathbb{R}[x]$ con las operaciones de suma y producto arriba definidos forman un anillo.

Demostración. Por una parte, tenemos que mostrar que la suma es asociativa, conmutativa, que tiene neutro e inversos aditivos. Por otra parte, tenemos que mostrar que el producto es asociativo. Finalmente, tenemos que mostrar que se vale la ley distributiva.

Tomemos dos polinomios $a=\{a_n\}$, $b=\{b_n\}$ y un natural $n$. El término $n$ de $a+b$ es $a_n+b_n$ y el de $b+a$ es $b_n+a_n$, que son iguales por la conmutatividad de la suma en $\mathbb{R}$. De manera similar, se muestra que la suma es asociativa.

El polinomio $(\overline{0})$ es la identidad de la suma. Esto es sencillo de mostrar y se queda como tarea moral. Además, si $a=\{a_n\}$ es un polinomio, entonces $\{-a_n\}$ es una sucesión con el mismo soporte (y por lo tanto finito), que cumple que $$\{a_n\}+\{-a_n\}=(0,0,0,\ldots)=(\overline{0}),$$ así que la suma tiene inversos aditivos.

Ahora probemos la asociatividad del producto. Tomemos tres polinomios $a=\{a_n\}$, $b=\{b_n\}$, $c=\{c_n\}$ y un natural $n$. Hagamos el producto $(ab)c$. Para cada $i$, el $i$-ésimo término de $ab$ es un cierto $d_i$ dado por $$d_i = \sum_{k+l=i} a_k b_l.$$ El $n$-ésimo término de $(ab)c$ es entonces
\begin{align*}
\sum_{i+j=n}d_ic_j &= \sum_{i+j=n}\sum_{k+l=i} a_kb_lc_j\\
&=\sum_{k+l+j=n}a_kb_lc_j.
\end{align*}

Un argumento análogo muestra que el $n$-esimo término de $a(bc)$ es también \begin{align*}
\sum_{k+l+j=n}a_kb_lc_j,
\end{align*}

lo cual muestra que la multiplicación es asociativa.

Lo último que nos queda por probar es la ley distributiva. Tomemos tres polinomios $a=\{a_n\}$, $b=\{b_n\}$, $c=\{c_n\}$ y un natural $n$. Usamos las propiedades de las operaciones en $\mathbb{R}$ para ver que el $n$-ésimo término de $a(b+c)$ es
\begin{align*}
\sum_{i+j=n} a_i(b_j+c_j)&=\sum_{i+j=n} (a_ib_j+ a_i c_j)\\
&=\sum_{i+j=n} a_ib_j + \sum_{i+j=n} a_ic_j.
\end{align*}

A la derecha tenemos el $n$-ésimo término de $ab$ sumado con el $n$-ésimo término de $ac$, así que coincide con el $n$-ésimo término de la suma $ab+ac$. Esto muestra que $a(b+c)$ y $ab+ac$ son iguales término a término y por lo tanto son iguales como polinomios.

$\square$

Como de costumbre, al inverso aditivo de un polinomio $a$ le llamamos $-a$, y definimos $a-b:=a+(-b)$.

Proposición. La multiplicación en $\mathbb{R}[x]$ es conmutativa.

Demostración. Tomemos dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$. Tenemos que ver que $ab$ y $ba$ son iguales término a término. Tomemos entonces un natural $n$. El término $c_n$ de $ab$ es $$c_n=\sum_{i+j=n} a_ib_j,$$ y el término $d_n$ de $ba$ es $$d_n=\sum_{i+j=n} b_ia_j.$$ Por la conmutatividad de la suma y el producto en $\mathbb{R}$, tenemos que $c_n=d_n$.

$\square$

Proposición. La multiplicación en $\mathbb{R}[x]$ tiene identidad.

Demostración. El polinomio $(1,\overline{0})$ es la identidad multiplicativa. Esto es sencillo de mostrar y se queda como tarea moral.

$\square$

Proposición. Si $a$ y $b$ son polinomios en $\mathbb{R}[x]$ distintos del polinomio $(\overline{0})$, entonces su producto también.

Demostración. Para ello, tomemos el mayor natural $m$ tal que $a_m\neq 0$ y el mayor natural $n$ tal que $b_n\neq 0$. Estos existen pues $a$ y $b$ no son el polinomio $(\overline{0})$, y su soporte es finito.

Cualquier pareja de naturales $k$ y $l$ tales que $k+l=m+n$ con $k\leq m-1$ cumple $l\geq n+1.$ Así, si $k+l=m+n$ tenemos que:

  • Si $k\leq m-1$, entonces $b_l=0$ y por lo tanto $a_kb_l=0$.
  • Si $k\geq m+1$, entonces $a_k=0$ y por lo tanto $a_kb_l=0$.
  • Finalmente, si $k=m$, entonces $l=n$ y $$a_kb_l=a_mb_n\neq 0.$$

De esta forma, el $(m+n)$-ésimo término de $ab$ es $$\sum_{k+l=m+n} a_k b_l=a_mb_n\neq 0,$$ de modo que $ab$ no es el polinomio $(\overline{0})$.

$\square$

Corolario. En $\mathbb{R}[x]$ se vale la regla de cancelación, es decir, si $a,b,c$ son polinomios, $a\neq 0$ y $ab=ac$, entonces $b=c$.

Demostración. De la igualdad $ab=ac$ obtenemos la igualdad $a(b-c)=0$. Como $a\neq 0$, por la proposición anterior debemos tener $b-c=0$, es decir, $b=c$.

$\square$

A un anillo conmutativo cuya multiplicación tiene identidad y en donde se vale la regla de cancelación se le conoce como un dominio entero.

Teorema. El anillo $\mathbb{R}[x]$ es un dominio entero.

Con esto terminamos la construcción de $\mathbb{R}[x]$ y de sus operaciones. Cuando trabajamos con los polinomios de manera práctica resulta engorroso mantener esta notación de sucesiones. En la siguiente entrada justificaremos el uso de la notación «usual» de los polinomios, en la que usamos la letra «x» y exponentes.

Más adelante…

Ya que definimos el anillo de polinomios con coeficientes en los reales, y sus operaciones, el siguiente paso que haremos será practicar como operar polinomios.

Después de esto empezaremos a desarrollar la teoría sobre los polinomios. Como ya hemos mencionado, y como te podrás dar cuenta en las siguientes entradas, esta teoría será muy similar a la que desarrollamos para los números enteros cuando vimos los temas de teoría de números.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Justifica por qué el soporte del producto de dos polinomios es finito.
  2. Muestra que la suma en $\mathbb{R}[x]$ es asociativa.
  3. Verifica que el polinomio $(\overline{0})$ es la identidad aditiva en $\mathbb{R}[x]$.
  4. Verifica que el polinomio $(1,\overline{0})$ es la identidad multiplicativa en $\mathbb{R}[x]$.
  5. Considera los polinomios $a=\left(\frac{1}{3},4,\frac{5}{7},8,\overline{0}\right)$ y $b=\left(0,0,\frac{2}{5},\frac{3}{4},\overline{0}\right)$. Determina $a+b$ y $a\cdot b$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Norma y distancia en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya definimos a $\mathbb{C}$ y sus operaciones. También definimos y dimos las propiedades de la conjugación compleja. Ahora hablaremos de la norma en los números complejos.

Definición. Dado el número complejo $w=a+bi$, su norma es $\sqrt{a^2+b^2}$. Denotamos a la norma de $w$ por $\Vert w \Vert$.

Ejemplo. La norma del complejo $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ es $$\sqrt{\left(\frac{1}{\sqrt 2}\right)^2+ \left(\frac{1}{\sqrt 2}\right)^2}=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)}=\sqrt{1}=1.$$ La norma del complejo $-3i$ es $$\sqrt{0^2+(-3)^2}=\sqrt{9}=3.$$

$\triangle$

Cuando pensamos a los números complejos como elementos del plano, identificando al complejo $a+bi$ con el punto $(a,b)$, la norma es una forma de medir qué tan alejado está del origen.

A partir de la noción de norma podemos definir la noción de distancia, que dice qué tan lejos están dos complejos entre sí.

Definición. Para dos números complejos $w$ y $z$ definimos la distancia entre $w$ y $z$ como la norma de $w-z$, es decir, $\Vert w-z\Vert$. La denotamos por $d(w, z)$

Propiedades básicas de la norma en los complejos

La norma en los complejos está relacionada con otras operaciones definidas como sigue:

Teorema 1. Sean $w$ y $z$ números complejos. Entonces:

  1. La norma es la raíz del producto de un complejo por su conjugado, es decir, $\Vert z \Vert = \sqrt{z\overline{z}}.$
  2. $\Vert z \Vert$ es un número real no negativo.
  3. $\Vert z \Vert = 0$ si y sólo si $z=0$.
  4. La norma es multiplicativa, es decir, $\Vert zw \Vert = \Vert z \Vert \Vert w \Vert$.

Demostración. Si $z=a+ib$, entonces $\overline{z}=a-ib$, y por lo tanto

\begin{align*}
\sqrt{z\overline{z}}&=\sqrt{a^2-(ib)^2}\\
&=\sqrt{a^2+b^2}\\
&=\Vert z \Vert.
\end{align*}

La norma de $z=a+ib$ es la suma del cuadrado de dos reales. Cada uno de ellos es no negativo, así que esa suma es no negativa. De este modo, al sacar raíz cuadrada obtenemos un número real y no negativo. Para que este número sea cero, necesitamos que $a^2=b^2=0$, es decir, que $a=b=0$, lo cual sucede justo cuando $z=0$.

Para mostrar la última propiedad, se pueden tomar dos números complejos explícitos y hacer las cuentas. Sin embargo, también podemos probarla usando la primer propiedad y la conmutatividad del producto, de números complejos, como sigue:

$$\Vert zw \Vert ^2= zw\overline{zw} = z\overline{z} w\overline{w}= \Vert z \Vert^2 \Vert w \Vert ^2.$$

Sacando raíz cuadrada de ambos lados obtenemos el resultado deseado.

$\square$

Ejercicios que usan las propiedades básicas

Veamos algunas formas en las que podemos usar las propiedades anteriores, de la norma, en los complejos.

Ejercicio 1. Muestra que $z$ y $\overline{z}$ tienen la misma norma.

Solución. Usando que $\overline{\overline{z}}=z$, la propiedad 1 del Teorema 1 y la conmutatividad del producto en $\mathbb{C}$ tenemos que $$\Vert \overline{z}\Vert = \sqrt{\overline{z}z}=\sqrt{z\overline{z}} = \Vert z \Vert.$$

$\triangle$

El siguiente es un corolario de la propiedad 4 del Teorema 1, que se puede mostrar usando inducción. La prueba de este corolario se deja como tarea moral.

Corolario. Para $z$ un complejo y $n$ un natural, se tiene que $$\Vert z^n \Vert = \Vert z \Vert ^n.$$

Ejercicio 2. Determina la norma del complejo $$\left(3+4i\right)^{20}.$$

Solución. Tomemos $u=3+4i$. El problema nos pide determinar $\Vert u^{20} \Vert$. Una forma de hacerlo es realizar primero la operación $u^{20}$, pero esto parece ser complicado. En vez de eso, usamos el Corolario anterior. Para ello, notamos que $$\Vert u \Vert = \sqrt{3^2+4^2}= \sqrt{25}=5.$$

De este forma, por el corolario, la norma que buscamos es $$\Vert u^{20} \Vert = \Vert u \Vert ^{20}= 5^{20}.$$

$\triangle$

Ejercicio 3. Sea $z$ un número complejo. Muestra que los siguientes números complejos tienen la misma norma: $$z, -z, iz, -iz.$$

Solución. Se sigue de la propiedad $4$ del Teorema 1 y de que $$\Vert -1 \Vert = \Vert i \Vert = \Vert -i \Vert = 1.$$

$\square$

Ejercicio 4. Muestra que para un número real, $r$, su norma compleja coincide con su valor absoluto.

Solución. Usando la propiedad 1 del Teorema 1 y que $\overline{r}=r$, tenemos que $$\Vert r \Vert = \sqrt{\overline{r}r}=\sqrt{r^2}=|r|.$$

$\square$

La desigualdad del triángulo

¿Cómo se comporta la norma con la suma de los complejos? Lo responderemos en esta sección. Pero antes, de pasar al teorema 2 que contiene la respuesta, veamos un pequeño resultado auxiliar.

Lema. Si $z$ es un número complejo, entonces $|\text{Re}(z)| \leq \Vert z \Vert$ y $|\text{Im}(z)|\leq \Vert z \Vert$. La primer igualdad se da si y sólo si $z$ es un número real y la segunda si y sólo si $z$ es un número imaginario puro, es decir, si su parte real es $0$.

Demostración. Tomemos $z=a+ib$. Tenemos que $a^2\leq a^2+b^2$, de modo que sacando raíces cuadradas tenemos que $$|\text{Re}(z)| = |a| = \sqrt{a^2}\leq \sqrt{a^2+b^2}=\Vert z \Vert.$$ La igualdad se da si y sólo si $b=0$, lo cual sucede si y sólo si $z$ es real.

$\square$

La demostración de la segunda parte es análoga, y queda como tarea moral.

Teorema 2 (desigualdad del triángulo). Para dos números complejos $w$ y $z$ se tiene que $$\Vert w+z \Vert \leq \Vert w \Vert + \Vert z \Vert.$$ La igualdad se da si y sólo si $w$ es un múltiplo real de $z$, es decir, si y sólo si existe un real $r$ tal que $w=rz$.

Demostración. Tenemos que:
\begin{align*}
\Vert w+z \Vert^2 &= (w+z)\overline{(w+z)}\\
&=(w\overline{w}+w\overline{z}+\overline{w}z+z\overline{z})\\
&=\Vert w \Vert^2 + 2\text{Re}(w\overline{z}) + \Vert z \Vert^2.
\end{align*}

Podemos continuar usando la desigualdad del Lema anterior (notemos que se obtiene la igualdad si y sólo si $w\overline{z}$ es real)

\begin{align*}
&\leq \Vert w \Vert^2 + 2\Vert w\overline{z}\Vert + \Vert z \Vert^2\\
&=\Vert w \Vert ^2 + 2 \Vert w \Vert \Vert z \Vert + \vert z \Vert^2\\
&=\left(\Vert w \Vert + \Vert z \Vert \right)^2.
\end{align*}

Esta cadena de desigualdades se resume a $$ \Vert w+z \Vert^2 \leq \left(\Vert w \Vert + \Vert z \Vert \right)^2, $$ de donde sacando raíz cuadrada en ambos lados, obtenemos lo deseado.

Como observamos durante la demostración, la igualdad se da si y sólo si $w\overline{z}$ es un número real, es decir, si y sólo si existe un real $s$ tal que $w\overline{z}=s$. Multiplicando por $z$ de ambos lados, obtenemos que $$w\Vert z \Vert^2 = sz.$$ Si $z=0$, entonces $w=0$ y por lo tanto $w$ es trivialmente un múltiplo real de $z$. Si $z\neq 0$, entonces $w=\frac{s}{\Vert z \Vert ^2}\cdot z$ también es un múltiplo real de $z$, con $r=\frac{s}{\Vert z \Vert ^2}$. Esto termina el análisis, de los casos, de la igualdad.

$\square$

Propiedades de la distancia

En la introducción definimos la distancia entre dos números complejos $w$ y $z$ como la norma de $w-z$, en símbolos, $d(w,z)=\Vert w-z \Vert$. Para formalizar ideas veamos la siguiente definición.

Definición. Sea $X$ un conjunto y $e: X\times X\rightarrow \mathbb{R}^{+}\cup \lbrace 0\rbrace$ una función, $e$ es una métrica en $X$ si, para todo $x$, $y$ y $z\in X$, satisface que:

  1. $e(x, y)\geq 0$.
  2. $e(x, y)=0$ si, y sólo si, $x=y$.
  3. $e(x, y)=e(y, x)$.
  4. $e(x, y)\leq e(x, z) + e(y, z)$.

Observa que a partir de los teoremas 1 y 2, la distancia $d$ cumple las propiedades de esta definición, por lo que decimos que $d$ es una métrica en $\mathbb{C}$. Así tenemos el siguiente teorema.

Teorema 3. Sean $w$ y $z$ dos números complejos cualesquiera y $d(w, z)=\vert\vert w- z\vert\vert$. Entonces $d$ es una métrica en $\mathbb{C}$.

Demostrar este teorema es sencillo a partir de lo que ya vimos, así que su demostración queda como tarea moral.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra la propiedad 4 del Teorema 1 usando de manera explícita las partes reales e imaginarias de los complejos $z$ y $w$.
  2. Demuestra el corolario de normas de potencias de complejos.
  3. Determina la norma del complejo $(12-5i)^{10}$.
  4. Determina la norma del complejo $(1+2i)(-3+4i)(5-6i)(-7-8i)$.
  5. Demuestra la segunda parte del Lema.
  6. Demuestra el Teorema 3.
  7. Sean $w=(3+4i)(5-i)$ y $z=(5-i)(4+2i)$. Determina $d(w,z)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: La conjugación compleja

Por Leonardo Ignacio Martínez Sandoval

Introducción

En una entrada anterior definimos el conjunto $\mathbb{C}$ de los números complejos. Vimos que sus elementos tienen la forma $a+bi$, donde $a$ y $b$ son números reales. Definimos las operaciones de suma y producto, y vimos que, con estas operaciones, $\mathbb{C}$ es un campo. En esta entrada hablaremos acerca de la conjugación compleja.

Definición. Sea $z=a+bi$ un número complejo. El conjugado de $z$ es el número complejo $a-bi$ que denotaremos como $\overline{z}$.

Ejemplo. Sea $z=5+8i$, entonces $\overline{z}=5-8i$. Si $z=\sqrt{3}-8\pi i $, entonces $\overline{z}=\sqrt{3}+8\pi i$.

En la entrada anterior justificamos que podíamos abandonar la notación de parejas, sin embargo en ocasiones seguirá siendo útil pensar al complejo $a+bi$ como el punto $(a,b)$ del plano. Si lo pensamos así, la conjugación compleja manda al punto $(a,b)$ en el punto $(a,-b)$, es decir, se comporta como una reflexión en el eje $x$.

La conjugación compleja se comporta como una reflexión en el eje x
La conjugación compleja se comporta como una reflexión en el eje $x$

Conjugación y operaciones complejas

La conjugación compleja «se comporta bien» con las operaciones definidas en $\mathbb{C}$. Este es el contenido de la siguiente proposición.

Proposición 1. Si $w$ y $z$ son números complejos, entonces:

  • El conjugado de la suma es la suma de los conjugados, es decir, $\overline{w+z}=\overline{w}+\overline{z}$.
  • El conjugado del producto es el producto de los conjugados, es decir, $\overline{wz}=\overline{w}\overline{z}$.

Demostración. Si escribimos a $w=a+bi$ y $z=c+di$ con $a,b,c,d$ números reales. Tenemos que
\begin{align*}
\overline{w+z}&=\overline{(a+c)+(b+d)i}\\
&=(a+c)-(b+d)i\\
&=(a-bi)+(c-di)\\
&=\overline{w}+\overline{z},
\end{align*} lo cual prueba la primera parte de la proposición. Por otro lado
\begin{align*}
\overline{wz}&=\overline{(ac-bd)+(ad+bc)i}\\
&=(ac-bd)-(ad+bc)i\\
&=(ac-(-b)(-d))+(a(-d)+b(-c))i\\
&=(a-bi)(c-di)\\
&=\overline{w}\overline{z},
\end{align*} lo cual prueba la segunda parte.

$\square$

Se pueden mostrar resultados análogos para la conjugación compleja de la resta y cociente. Esto se deja en la tarea moral.

Ejemplo. Considera los números complejos $5+4i$, $3+2i$ y $1-i$. Vamos a determinar el conjugado de su suma de dos formas distintas. Por un lado, si los sumamos obtenemos el complejo $$(5+3+1)+(4+2-1)i=9+5i,$$ cuyo conjugado es $9-5i$.

Por otro lado, podemos conjugar a cada uno de los números de manera independiente para obtener $5-4i$, $3-2i$ y $1+i$. Al hacer la suma de estos complejos, obtenemos $$(5+3+1)+(-4-2+1)i=9-5i.$$ En ambos casos obtenemos lo mismo.

$\triangle$

La conjugación compleja es autoinversa

Proposición 2. La operación «conjugar» es autoinversa, y por lo tanto es biyectiva.

Demostración. En efecto, si $z=a+bi$, entonces $$\overline{\overline{z}}=\overline{a-bi}=a+bi=z.$$

Para ver que conjugar es suprayectivo, tomemos $z$ en $\mathbb{C}$. Tenemos que $\overline{\overline{z}}=z$, de modo que $z$ está en la imagen de la operación conjugación.

Para ver que conjugar es inyectivo, tomemos $w$ y $z$ en $\mathbb{C}$ tales que $\overline{w}=\overline{z}$. Aplicando conjugación a esta igualdad, y usando la primer parte de la proposición, tenemos que $w=z$.

$\square$

Operaciones de un complejo con su conjugado

Sea $z=a+bi$ un número complejo, a $a$ le llamamos la parte real de $z$ y a $b$ le llamamos la parte imaginaria. Usamos la notación $a=\text{Re}(z)$ y $b=\text{Im}(z)$, respectivamente. Cuidado: la parte imaginaria es un número real. Se llama parte imaginaria porque es la que acompaña a $i$.

Si hacemos operaciones de un complejo con su conjugado, obtenemos valores especiales.

Proposición 3. Sea $z$ un número complejo. Entonces:

  • $z+\overline{z}=2\text{Re}(z)$
  • $z-\overline{z}=2\text{Im}(z) i$
  • $z\overline{z}=\text{Re}(z)^2+\text{Im}(z)^2$

La demostración de la Proposición 3 es sencilla y se deja como tarea moral.

Ejemplo. Si tomamos el número complejo $3+4i$ y le sumamos su conjugado $3-4i$, obtenemos el número real $6$, que es dos veces la parte real de $3+4i$.

Si hacemos la multiplicación $(3+4i)(3-4i)$, obtenemos también un número real: $$3^2-(4i)^2=9-(-16)=25.$$

$\square$

Como corolario de la Proposición 3, obtenemos lo siguiente.

Corolario. Si $z=\overline{z}$, entonces $z$ es un número real.

Demostración. Por la primera parte de la Proposición 3, tenemos que $2z=z+\overline{z}=2\text{Re}(z)$, de modo que $z=\text{Re}(z)$ y por lo tanto $z$ es un número real.

$\square$

Ejercicio. Muestra que el complejo $$\left(\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} i \right) \left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2} i \right)$$ es un número real.

Solución. Podríamos hacer las cuentas y verificar que la parte imaginaria es $0$. Sin embargo, basta con notar que la expresión es el producto de un complejo con su conjugado, es decir, es de la forma $z\overline{z}$. De manera directa, por la última parte de la Proposición 3 obtenemos que es un número real.

$\square$

La conjugación compleja es (casi) el único automorfismo que fija a los reales

En las secciones anteriores vimos que la conjugación compleja deja fijos a los reales y que respeta las operaciones. En esta sección veremos que es la única operación, en $\mathbb{C}$, que hace esto sin ser la identidad.

Teorema. Si $\eta:\mathbb{C}\to \mathbb{C}$ es una función biyectiva. tal que:

  • $\eta$ no es la identidad.
  • $\eta(a)=a$ para todo $a$ real.
  • $\eta(w+z)=\eta(w)+\eta(z)$ para todo par de complejos $w$ y $z$.
  • $\eta(wz)=\eta(w)\eta(z)$ para todo par de complejos $w$ y $z$.

Entonces $\eta$ es la conjugación compleja.

Demostración. Sea $z=a+bi$, tenemos que

\begin{align*}
\eta(a+bi)&=\eta(a)+\eta(bi)\\
&=\eta(a)+\eta(b)\eta(i)\\
&=a+b\eta(i),
\end{align*}

así que basta determinar quién es $\eta(i)$. Por otro lado, como $-1$ es real, tenemos también que
\begin{align*}
-1&=\eta(-1)\\
&=\eta(i\cdot i)\\
&=\eta(i)\eta(i)\\
&=\eta(i)^2,
\end{align*}

de modo que $\eta(i)$ es una raíz de $-1$ y por lo tanto es $i$ o $-i$. Si $\eta(i)=i$, tendríamos que $\eta$ es la identidad, lo cual contradice nuestras hipótesis. Así, $\eta(i)=-i$ y por lo tanto $\eta$ es la conjugación compleja.

$\square$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera los números complejos $w_j=5+(2-j)i$, en donde $j$ es un entero en $\lbrace 0,1,2,3,4\rbrace$. Encuentra el valor de la suma $w_0+w_1+w_2+w_3+w_4$ y del producto $w_0w_1w_2w_3w_4$.
  2. Toma los números complejos $w$ y $z$. Muestra que $\overline{w-z}=\overline{w}-\overline{z}$ y que si $z\neq 0$, entonces $\overline{w/z}=\overline{w}/ \overline{z}$.
  3. Haz la demostración de la Proposición 3.
  4. ¿Cuáles números complejos satisfacen que $z^2=\overline{z}$?
  5. Sea $z$ un número complejo distinto de $0$. ¿Qué obtienes cuando realizas la división $z/\overline{z}$?

En el blog hay una entrada acerca de aplicaciones de la aritmética de números complejos a la resolución de problemas en matemáticas. No formará parte de la evaluación del curso, pero puede ayudarte a entender más profundamente lo que estamos haciendo y a motivar la teoría que desarrollamos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»