Archivo de la etiqueta: matrices

Cálculo Diferencial e Integral III: Matrices

Por Alejandro Antonio Estrada Franco

Introducción

Así como en la segunda unidad del curso, en esta unidad cubriremos nuevamente algunos temas de álgebra lineal que son importantes para el cálculo de varias variables. Nuevamente, daremos una exposición un poco superficial, pues se espera que estos temas sean cubiertos a profundidad en un curso de Álgebra Lineal 1 que se lleve en paralelo. Una posibilidad es tomar de manera paralela el curso aquí en el blog, en el siguiente enlace: Álgebra Lineal I, en donde hay una exposición más holgada de los temas que revisaremos en las siguientes entradas.

Comenzaremos esta entrada mencionando la importancia de las matrices como herramienta matemática en el estudio de las funciones de $\mathbb{R}^n$ en $\mathbb{R}^m$. Revisaremos también las distintas operaciones que podemos ejecutar sobre ellas. Hablaremos de operaciones binarias y elementales. Cada una de ellas tiene sus propósitos particulares.

Importancia de las matrices en cálculo diferencial e integral

Recordemos algunos conceptos del curso de Cálculo Diferencial e Integral 1. Comencemos con una función $f:D\subset \mathbb{R} \to \mathbb{R}$ una función derivable en el punto $x_{0} \in D$. La derivada de la función $f$ en el punto $x_{0}$ es un número que representa la pendiente de la recta tangente a la gráfica de la función en el punto $(x_{0},f (x_{0})) $. La recta en cuestión tiene por ecuación $y(x) =f ( x_{0})+f'(x_{0})(x-x_{0}) $. Observa que la función $y$ citada es una función lineal. No necesariamente es una transformación lineal, pues puede desplazar al origen. Sin embargo la llamamos «la mejor aproximación lineal a $f$ en el punto $x_{0}$». A grandes rasgos, recibe este nombre pues la función $f$ cerca de un punto dado $x_{0}$ toma valores muy cercanos a los que tomaría $y(x)$ cerca de ese mismo punto.

En el estudio de las funciones reales, así como en sus aplicaciones, es mucho mas fácil auxiliarnos de aproximaciones lineales para investigar y conocer las propiedades locales o en ciertas vecindades del punto a tratar. Las aproximaciones lineales son ecuaciones de rectas, las cuales poseen propiedades muy nobles y bastante tratables. Esta técnica de trabajar problemas de funciones reales (derivables) con lineas rectas, usando la mejor aproximación lineal en el punto dado también es usada para las funciones de $\mathbb{R}^n$ en $\mathbb{R}^m$, usando transformaciones lineales con las cuales se trabajará en las siguientes secciones.

La técnica será casi igual a la usada para las funciones de una variable real: hallaremos una transformación lineal la cual podremos usar para tener la mejor aproximación lineal a la función en un punto dado de su dominio. De aquí es natural que introduzcamos a las matrices en $M_{m,n}(\mathbb{R})$, pues las transformaciones lineales de $\mathbb{R}^n$ en $\mathbb{R}^m$ pueden ser representadas por matrices una vez que hayamos elegido las bases para los espacios vectoriales $\mathbb{R}^n$ y $\mathbb{R}^m$. Además, hay propiedades de transformaciones lineales que se pueden entender fácilmente en términos de matrices. Por ejemplo, la composición y producto escalar de transformaciones lineales tienen sus correspondientes operaciones en matrices, repectivamente la multiplicación de matrices y producto por escalar.

En rojo la mejor aproximación lineal a la gráfica de una función, representada en azul

Definición de matriz

Recuerda que nuestra exposición está condensada pues los temas pueden consultarse a detalle en otras entradas de este blog. Específicamente, para el tema de matrices puedes considerar esta entrada para un tratamiento más detallado.

Definición. Sean $m$ y $n$ números naturales. Una matriz de $n$ filas y $m$ columnas con entradas en los números reales es un arreglo rectangular de la siguiente forma:

$$A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix}.$$

Al conjunto de todas las matrices de $n$ filas y $m$ columnas con entradas en los números reales lo denotaremos por $M_{m,n}(\mathbb{R})$. Si $m=n$, usaremos la notación simplificada $M_n(\mathbb{R})$.

Es posible formalizar todavía más a las matrices, pensando en los conjuntos $[m]=\{1,2,\ldots,m\}$ y $[n]=\{1,2,\ldots,n\}$, y tomando una matriz como una función $A:[n]\times[m]\to\mathbb{R}$. Sin embargo, usualmente no tomaremos esta definición, y nos apegaremos a las definiciones dadas arriba.

Operaciones binarias relacionadas con matrices

Hablaremos de tres operaciones binarias relacionadas con matrices, las cuales son útiles para nuestros propósitos en cálculo, pues hay algunas operaciones entre funciones que se corresponden con ellas. Las operaciones que discutiremos son el producto por escalar, la suma de matrices y el producto de matrices. Respectivamente, estas corresponderán, en cierto sentido, al producto por escalar, suma de funciones y composición de funciones. Puedes revisar esta entrada para conocer detalle como se dan algunas de estas correspondencias.

Definición. La suma de matrices es una operación binaria que toma dos matrices con la misma cantidad de filas, y con la misma cantidad de columnas. Si la matriz $A$ tiene entradas $a_{ij}$ y la matriz $B$ tiene entradas $b_{ij}$, su suma está definida como la matriz $A+B$ cuyas entradas son $a_{ij}+b_{ij}$, es decir, las matrices se suman entrada a entrada. Pensada de esta manera, la suma es una función $+:M_{m,n}(\mathbb{R})\times M_{m,n}(\mathbb{R}) \to M_{m,n}(\mathbb{R})$.

Podemos ver esta operación también en los arreglos correspondientes:

\begin{align*}
A+B&=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n}\\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn}\end{pmatrix}\\
&:=\begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn}\end{pmatrix}
\end{align*}

Definición. El producto matriz por escalar es una operación binaria que toma un número real $r$ y una matriz $A$. A la pareja $(r,A)$ le asigna otra matriz que denotaremos por $rA$. Si las entradas de $A$ son $a_{ij}$, las de $rA$ son $ra_{ij}$. En otras palabras, cada una de las entradas de $A$ se multiplica por $r$, de modo que en el arreglo se ve de la siguiente manera:

$$rA=\begin{pmatrix} ra_{11} & ra_{12} & \cdots & ra_{1n}\\ ra_{21} & ra_{22} & \cdots & ra_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ra_{m1} & ra_{m2} & \cdots & ra_{mn}\end{pmatrix}.$$

De esta manera, el producto matriz por escalar es una operación binaria

$$\cdot: \mathbb{R} \times M_{m,n}(\mathbb{R})\to M_{m,n}(\mathbb{R}).$$

Definición. Finalmente, tenemos el producto de matrices. Para multiplicar dos matrices $A$ y $B$, necesitamos que la cantidad de columnas de $A$ sea igual a la cantidad de filas de $B$. Así, $A$ es una matriz de, digamos $m\times n$ y $B$ es una matriz de, digamos $n\times p$. Su producto será una matriz de $m\times p$. Si $A$ tiene entradas $a_{ij}$ y $B$ tiene entradas $b_{jk}$, entonces la matriz producto $AB$ tendrá entradas dadas por la siguiente regla del producto:

\begin{align*}
c_{ik}&=\sum_{j=1}^n a_{ij}b_{jk}\\
&=a_{i1}b_{1k}+a_{i2}b_{2k}+\ldots+a_{in}b_{nk}.
\end{align*}

Esto nos dice que el producto de matrices es entonces una operación binaria

$$\cdot: M_{m,n}(\mathbb{R})\times M_{n,p}(\mathbb{R})\to M_{m,p}(\mathbb{R}).$$

Operaciones elementales de matrices

Las operaciones elementales involucran únicamente una matriz. Usualmente son usadas para resolver sistemas de ecuaciones lineales, una vez que estos se han pasado a su forma matricial. Así mismo, las operaciones elementales ayudan a hallar representaciones mas sencillas de ciertas transformaciones lineales.

Definición. Dada una matriz $A$, una transposición de renglones consiste en elegir dos de los renglones de $A$ e intercambiarlos.

Definición. Dada una matriz $A$, un reescalamiento consiste en elegir un renglón y un número real $r\neq 0$, y substituir al renglón por aquel que se obtiene al multiplicar cada entrada del renglón por $r$.

Definición. Dada una matriz $A$, una transvección consiste en elegir dos renglones $u$ y $v$ de la matriz y un escalar $r$, y sustituir al renglón $v$ por el renglón $v+ru$ (aquí pensamos a $u$ y $v$ como vectores para efectuar las operaciones).

Las operaciones elementales son fundamentales en la teoría de matrices pues a partir de ellas siempre podemos llevar cualquier matriz a una forma muy sencilla, que definimos a continuación.

Definición. Una matriz $A$ está en forma escalonada reducida si suceden las siguientes cosas:

  1. Aquellas filas de $A$ que consisten de puros ceros, están hasta abajo.
  2. En aquellas filas que no sean de puros ceros, la primera entrada (de izquierda a derecha) que no sea igual a cero (a la que llamaremos pivote) es igual a $1$.
  3. Si una fila está arriba de otra y ambas tienen pivote, entonces el pivote de la de arriba está más a la izquierda que el pivote de la de abajo.
  4. Si una entrada de la matriz es pivote (de alguna fila), entonces es la única entrada distinta de cero de la columna en la que está.

En este enlace puedes encontrar una exposición más detallada de este tipo de matrices

Ejemplo. Consideremos la siguiente matriz: $$\begin{pmatrix} 0 & 5 & 3 \\ 3 & 7 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

El pivote del primer renglón es 5, del segundo 3, y del tercero 1. Esta matriz no está en forma escalonada reducida pues no todos sus pivotes son iguales a $1$. Tampoco esta en forma escalonada reducida pues el pivote de la tercera fila (la entrada $1$), no es la única entrada distinta de cero en su columna, pues en esa columna también hay un $3$.

$\triangle$

Ejemplo. Las siguientes matrices sí están en forma escalonada reducida:

\[ \begin{pmatrix} 1 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\hspace{2cm} \begin{pmatrix} 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}\hspace{2cm} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

$\triangle$

Quizás el teorema más fundamental de la teoría de matrices es el teorema de reducción gaussiana, que enunciamos a continuación.

Teorema. Cualquier matriz $A\in M_{m,n}(\mathbb{R})$ puede ser llevada a forma escalonada reducida mediante la aplicación de algunas operaciones elementales.

Mas adelante

Como ya lo hemos mencionado las matrices serán usadas para representar transformaciones lineales. Las transformaciones lineales nos ayudarán a introducir la noción de derivabilidad en varias variables. Y ello nos permitirá aproximar fácilmente cualquier función $f:\mathbb{R}^n\to \mathbb{R}^m$.

De esta manera, un conocimiento amplio de las matrices repercute en un conocimiento amplio de las transformaciones lineales, lo cual a su vez nos da más información en cuanto a las funciones de $\mathbb{R} ^n$ en $\mathbb{R} ^m$. Para seguir haciendo hincapié en las nociones de matrices que más nos interesan, en la siguiente entrada revisaremos un importante número asociado a cada matriz cuadrada: el determinante.

Tarea moral

  1. Consideremos las matrices $A,B$ de la siguiente manera: \[ A=\begin{pmatrix} 3 & 2 & 0 \\ 2 & 7 & 0 \\ 1 & 0 & 0 \end{pmatrix}\hspace{1cm} B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Encuentra una matriz $X$ que resuelva la siguiente ecuación: \[ 5X + A = B. \]
  2. Aplica operaciones elementales sucesivas para llevar la siguiente matriz a una matriz escalonada reducida: \[ \begin{pmatrix} 1 & 4 & 0 \\ 3 & 0 & -5 \\ 0 & 0 & -1 \\ 6 & 5 & 0 \end{pmatrix}.\]
  3. Considera a la matriz identidad $I_4\in M_{4}(\mathbb{R})$ donde $I_{ij}=0$ para $i\neq j$, y $I_{ij}=1$ en otro caso. Aplica las siguiente operaciones elementales y toma nota del resultado para el siguiente ejercicio:
    • Una transposición de los renglones $1$ y $3$.
    • Un reescalamiento por $-1$ al renglón $2$
    • Una transvección usando los renglones $2$ y $1$, y el escalar $4$.
  4. Aplica las mismas operaciones del punto anterior a la matriz del Ejercicio 2. Toma nota de los resultados.
  5. Finalmente multiplica cada una de matrices del Ejercicio 3 por la izquierda con la matriz del Ejercicio 2. Compara con los resultados obtenidos en el Ejercicio 4. ¿Qué observas?

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar una matriz en forma canónica $J$, entonces existe $P$ invertible tal que $A=P^{-1}JP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}J^kP$, mostrando que $A^k$ y $J^k$ son similares. Además, sabemos por teoría anterior que matrices similares tienen el mismo rango. De modo que si $A$ es similar a $J$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $J$. Con esta idea en mente estudiaremos cómo es el rango de matrices de bloques de Jordan de eigenvalor cero.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para valores de $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $k\geq i$}\\ e_{i-k} & \text{para $k\leq i-1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para valores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices de bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz de bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, en donde $k_1,\ldots,k_d$ son enteros positivos de suma $n$ y con $k_1\leq \ldots \leq k_d$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de éstas contribuye con rango $k_i-1$. Así, en términos de las $m_j$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_j$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $({m_1}’,\ldots,{m_n}’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de $n$ ecuaciones en $n$ variables y con matriz asociada de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=({m_1}’,\ldots,{m_n}’)$. Entonces, en $J$ y $J’$ aparecen la misma cantidad de bloques de cada tamaño. Como además los bloques van de tamaño menor a mayor tanto en $J$ como en $J’$, concluimos que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_j$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_j$ bloques de tamaño $j$, que debemos colocar en orden creciente de tamaño.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendentemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $k\geq 3$ obtenemos que $\text{rango}(C^k)=\text{rango}(O_7)=0$. Si queremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_j$ de tamaño $j$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0 &= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, ésta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\triangle$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Geometría Analítica I: Polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Lo primero que queremos determinar en un problema de clasificación es cuáles son los objetos que clasificaremos. En esta entrada los definimos con toda precisión: serán los polinomios cuadráticos en dos variables y las curvas cuadráticas.

Los primeros son expresiones algebraicas que mezclan a dos variables $x$ y $y$ mediante sumas y productos, pero teniendo grado dos. Las segundas son aquellos conjuntos del plano en donde se anula un polinomio cuadrático.

Polinomios cuadráticos en dos variables

Comencemos con una definición algebraica.

Definición. Un polinomio cuadrático en dos variables $P$ es una función $P:\mathbb{R}^2\to \mathbb{R}$ de la forma $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F,$$ para algunos reales $A,B,C,D,E,F$, en donde alguno de $A$, $B$ ó $C$ es distinto de cero.

En ocasiones, para abreviar «polinomio cuadrático en dos variables» simplemente usaremos las siglas «PCDV».

Ejemplo. Todas las expresiones que aparecen en las cónicas canónicas que hemos estudiado son PCDVs. Por ejemplo, la ecuación canónica de la elipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ puede reescribirse como $$b^2x^2+a^2y^2-a^2b^2=0.$$ Del lado izquierdo de esta igualdad tenemos un PCDV. De manera similar, la ecuación canónica de la parábola $y^2=4px$ puede reescribirse como $y^2-4px=0$. Una vez más al lado izquierdo nos aparece un PCDV.

$\triangle$

Ejemplo. Si consideramos las dos rectas $3x+5y+1=0$ y $2x-2y+1=0$ y «multiplicamos» sus ecuaciones, entonces obtenemos de nuevo un PCDV pues el producto es:

\begin{align*}
(3x+5y+1)(2x-2y+1)&=6x^2-6xy+3x+10xy-10y^2+5y+2x-2y+1\\
&=6x^2+4xy-10y^2+5x+3y+1.
\end{align*}

$\triangle$

Curvas cuadráticas

Cuando tenemos una expresión algebraica que depende de dos variables $x$ y $y$, entonces podemos preguntarnos por cómo es la figura geométrica que se obtiene al considerar los puntos $(x,y)$ del plano que hacen que la expresión algebraica sea igual a cero. Un ejemplo de esto es cuando consideramos las expresiones del estilo $Ax+By+C$. Las parejas $(x,y)$ que hacen que esta expresión sea igual a cero forman una recta en el plano. En efecto, forman la recta en forma normal dada por la ecuación $(A,B)\cdot (x,y)=-C$, como puedes verificar.

Esta idea es mucho más general. A partir de los polinomios cuadráticos en dos variables también podemos hacernos la misma pregunta: ¿cómo se ven las parejas $(x,y)$ que anulan un polinomio cuadrático? La respuesta será importante, así que las figuras que se construyen así les damos su propio nombre.

Definición. Una curva cuadrática es el conjunto de puntos $(x,y)$ del plano que anulan a un polinomio cuadrático en dos variables $P$. En otras palabras, es un conjunto de la forma $$\mathcal{C}:=\{(x,y)\in \mathbb{R}^2: Ax^2+Bxy+Cy^2+Dx+Ey+F = 0\}.$$

A $P$ le llamamos el polinomio asociado a $\mathcal{C}$. A $\mathcal{C}$ le llamamos la curva descrita (o dada) por $P$. Quizás usaremos terminología un poco distinta, pero que siga dejando evidente que $P$ y $\mathcal{C}$ están relacionados.

Ejemplo. Ya hemos estudiado anteriormente algunas curvas cuadráticas: las cónicas canónicas. Por ejemplo, si tomamos el PCDV $P((x,y))=4x^2-9y^2-36$ y nos preguntamos para cuáles parejas $(x,y)$ esto es igual a cero, como respuesta tenemos que son aquellas parejas $(x,y)$ tales que $ 4x^2-9y^2-36=0$, lo cual podemos reescribir como $$\frac{x^2}{9}-\frac{y^2}{4}=1.$$ Esta es la hipérbola canónica de semieje mayor $3$ y semieje menor $2$. Podemos verla en la siguiente figura.

$\triangle$

Ejemplo. ¿Qué sucede si nos fijamos en la curva descrita por el polinomio cuadrático en dos variables $$ 6x^2+4xy-10y^2+5x+3y+1$$ que construimos en un ejemplo anterior? Si recuerdas, obtuvimos este polinomio cuadrático en dos variables a partir de multiplicar dos expresiones. De esta forma, tenemos que $$ 6x^2+4xy-10y^2+5x+3y+1=0$$ si y sólo si $$ (3x+5y+1)(2x-2y+1) =0.$$ Pero el producto de dos cosas es igual a cero si y sólo si alguna es igual a cero. Así, alguna de las expresiones $3x+5y+1$ y $2x-2y+1$ debe ser igual a cero. Si la primera es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_1$ de ecuación $(3,5)\cdot (x,y) = -1$. Si la segunda es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_2$ de ecuación $(2,-2)\cdot(x,y) = -1$. Así, la curva cuadrática descrita por el PCDV es la unión de $\ell_1$ con $\ell_2$. Podemos verla en la siguiente figura.

$\triangle$

Forma matricial de polinomios cuadráticos en dos variables

Cuando trabajamos con rectas, nos convenía tener varias formas de expresarlas: la forma paramétrica ayudaba a determinar fácilmente el paralelismo, la forma baricéntrica nos daba fórmulas sencillas para los puntos medios, la forma normal nos permitía encontrar distancias, etc. Así mismo, cuando trabajamos con polinomios cuadráticos en dos variables es de ayuda tener más de una expresión.

Podemos reescribir un polinomio cuadrático en dos variables $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F$$ de una manera más compacta usando multiplicación matricial. Para ello, definimos $$M=\begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}, k=\begin{pmatrix} D \\ E \end{pmatrix}, v=\begin{pmatrix} x \\ y \end{pmatrix}.$$ Con esta notación, e interpretando a las matrices de $1\times 1$ como reales, tenemos que $P$ se puede reescribir de la siguiente manera: $$P(v)=v.$$

En efecto, al realizar las operaciones en el lado derecho obtenemos:

\begin{align*}
v^t M v + k^t v + F &=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + F\\
&=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} Ax + \frac{B}{2} y \\ \frac{B}{2} x + C y \end{pmatrix} + Dx + Ey + F\\
&=Ax^2 + Bxy + Cy^2+Dx+Ey+F.
\end{align*}

Observa que cuando pasamos un polinomio cuadrático en dos variables a forma matricial entonces siempre obtenemos una matriz $M$ simétrica.

Ejemplo. La forma matricial del PCDV que encontramos anteriormente $$6x^2+4xy-10y^2+5x+3y+1$$ es

$$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 2 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 1.$$

nota que el coeficiente de $xy$ se tuvo que dividir entre $2$ para llegar a las entradas de la matriz. Es importante recordar esto al pasar de la forma en coordenadas a la forma matricial.

$\triangle$

En caso de ser necesario, también podemos pasar fácilmente de la forma matricial de un polinomio cuadrático en dos variables a su forma en coordenadas.

Ejemplo. Si comenzamos con el polinomio cuadrático en dos variables con forma matricial $$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} – 1, $$

entonces su forma en coordenadas es $$2x^2-2xy+3y^2 – 3y -1.$$

Observa que las entradas $-1$ fuera de la diagonal principal de la matriz al salir se duplican para conformar el coeficiente de $xy$. Es importante recordar esto al pasar de forma matricial a forma en coordenadas.

$\triangle$

Más adelante…

En esta entrada definimos qué son los polinomios cuadráticos en dos variables y qué son las curvas cuadráticas.

Por un lado, mencionamos que todas las ecuaciones de cónicas canónicas que hemos visto tienen polinomios cuadráticos en dos variables. ¿Será que todas las ecuaciones de cónicas también tienen polinomios cuadráticos en dos variables? Por otro lado, vimos que algunas curvas cuadráticas son cónicas. Pero nos pasó algo un poco raro: en un ejemplo salieron dos rectas que se intersectan, que quizás estrictamente no pensamos como una cónica usual (elipse, hipérbola, parábola).

¿Cómo serán todas las curvas cuadráticas? ¿Serán sólo las cónicas usuales y algunas excepciones o podrán tener formas muy extrañas? Eso lo estudiaremos después.

También en esta entrada vimos la forma matricial de un polinomio cuadrático en dos variables. De momento, no hemos hablado de la utilidad que tiene pensar a un PCDV así. Sin embargo, en la siguiente entrada veremos que esta expresión es fundamental para ver qué sucede cuando «combinamos» un polinomio cuadrático con una transformación afín.

Tarea moral

  1. Usa alguna herramienta tecnológica (como GeoGebra) para trazar las curvas cuadráticas descritas por los siguientes polinomios cuadráticos en dos variables:
    • $x^2-2xy+3y^2+x-5y+7$
    • $3y^2+5y+x$
    • $x^2+y^2-5x-5y+3$
    • $xy-x-y+7$
    • $-x^2+2xy-3y^2-x+5y-7$
  2. Sea $P:\mathbb{R}^2\to \mathbb{R}$ dada por $P((x,y))=(Ax+By+C)(Dx+Ey+F)$. Demuestra que $P$ es un polinomio cuadrático en dos variables. Luego, demuestra que:
    1. Si $AE-BD\neq 0$, entonces la curva cuadrática dada por $P$ es la unión de dos rectas que se intersectan.
    2. Si $AE-BD=0$, entones la curva cuadrática dada por $P$ es la unión de dos rectas paralelas (no necesariamente distintas).
  3. Demuestra que la intersección de una recta con una curva cuadrática sólo puede ser:
    1. Vacía,
    2. Un punto,
    3. Dos puntos, o
    4. Una infinidad de puntos.
  4. Demuestra que cualquier curva cuadrática $\mathcal{C}$ puede ser descrita a través de una infinidad de polinomios cuadráticos en dos variables.
  5. Considera la gráfica de la función $f(x)=\sin(x)$. ¿Será que esta gráfica es una curva cuadrática? Intenta demostrar por qué sí o por qué no.

Entradas relacionadas

Álgebra Lineal II: Aplicaciones del teorema de Cayley-Hamilton

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya enunciamos y demostramos el teorema de Cayley-Hamilton. Veremos ahora algunas aplicaciones de este resultado.

Encontrar inversas de matrices

El teorema de Cayley-Hamilton nos puede ayudar a encontrar la inversa de una matriz haciendo únicamente combinaciones lineales de potencias de la matriz. Procedemos como sigue. Supongamos que una matriz $A$ en $M_n(F)$ tiene polinomio característico $$\chi_A(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0.$$ Como $a_0=\det(A)$, si $a_0=0$ entonces la matriz no es invertible. Supongamos entonces que $a_0\neq 0$. Por el teorema de Cayley-Hamilton tenemos que $$A^n+a_{n-1}A^{n-1}+\ldots+a_1A+a_0I_n=O_n.$$ De aquí podemos despejar la matriz identidad como sigue:

\begin{align*}
I_n&=-\frac{1}{a_0}\left( A^n+a_{n-1}A^{n-1}+\ldots+a_1A \right)\\
&=-\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1 I\right) A.
\end{align*}

Estos cálculos muestran que la inversa de $A$ es la matriz $$ -\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1 I\right).$$

Ejemplo. Supongamos que queremos encontrar la inversa de la siguiente matriz $$A=\begin{pmatrix} 2 & 2 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$ Su polinomio característico es $\lambda^3-2\lambda^2 – \lambda +2$. Usando la fórmula de arriba, tenemos que

$$A^{-1}=-\frac{1}{2}(A^2-2A-I).$$

Necesitamos entonces $A^2$, que es:

$$A^2=\begin{pmatrix} 4 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}.$$

De aquí, tras hacer las cuentas correspondientes, obtenemos que:

$$A^{-1}=\begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & 1\end{pmatrix}.$$

Puedes verificar que en efecto esta es la inversa de $A$ realizando la multiplicación correspondiente.

$\triangle$

El método anterior tiene ciertas ventajas y desventajas. Es práctico cuando es sencillo calcular el polinomio característico, pero puede llevar a varias cuentas. En términos de cálculos, en general reducción gaussiana funciona mejor para matrices grandes. Como ventaja, el resultado anterior tiene corolarios teóricos interesantes. Un ejemplo es el siguiente resultado.

Corolario. Si $A$ es una matriz con entradas en los enteros y determinante $1$ ó $-1$, entonces $A^{-1}$ tiene entradas enteras.

Encontrar el polinomio mínimo de una matriz

Otra de las consecuencias teóricas del teorema de Cayley-Hamilton con aplicaciones prácticas ya la discutimos en la entrada anterior.

Proposición. El polinomio mínimo de una matriz (o transformación lineal) divide a su polinomio característico.

Esto nos ayuda a encontrar el polinomio mínimo de una matriz: calculamos el polinomio característico y de ahí intentamos varios de sus divisores polinomiales para ver cuál de ellos es el de grado menor y que anule a la matriz. Algunas consideraciones prácticas son las siguientes:

  • Si el polinomio característico se factoriza totalmente sobre el campo y conocemos los eigenvalores, entonces conocemos todos los factores lineales. Basta hacer las combinaciones posibles de factores lineales para encontrar el polinomio característico (considerando posibles multiplicidades).
  • Además, para cada eigenvalor $\lambda$ ya vimos que $\lambda$ debe ser raíz no sólo del polinomio característico, sino también del polinomio mínimo. Así, debe aparecer un factor $x-\lambda$ en el polinomio mínimo para cada eigenvalor $\lambda$.

Ejemplo 1. Encontramos el polinomio mínimo de la siguiente matriz:

$$B=\begin{pmatrix} 2 & 0 & 4 \\ 3 & -1 & -1 \\0 & 0 & 2 \end{pmatrix}.$$

Una cuenta estándar muestra que el polinomio característico es $(x-2)^2(x+1)$. El polinomio mínimo debe ser mónico, dividir al polinomio característico y debe contener forzosamente a un factor $(x-2)$ y un factor $(x+1)$. Sólo hay dos polinomios con esas condiciones: $(x-2)(x+1)$ y $(x-2)^2(x+1)$. Si $(x-2)(x+1)$ anula a $B$, entonces es el polinomio mínimo. Si no, es el otro. Haciendo las cuentas:

\begin{align*}
(B-2I_3)(B+I_3)&=\begin{pmatrix}0 & 0 & 4 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 4 \\ 3 & 0 & -1 \\ 0 & 0 & 3 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 12 \\ 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Así, $(x-2)(x+1)$ no anula a la matriz y por lo tanto el polinomio mínimo es justo el polinomio característico $(x-2)^2(x+1)$.

$\triangle$

Ejemplo 2. Consideremos la matriz $C=\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Su polinomio característico es $(x-3)^3$. Así, su polinomio mínimo es $x-3$, $(x-3)^2$ ó $(x-3)^3$. Nos damos cuenta rápidamente que $x-3$ sí anula a la matriz pues $A-3I_3=O_3$. De este modo, el polinomio mínimo es $x-3$.

$\triangle$

Clasificación de matrices con alguna condición algebraica

Si sabemos que una matriz cumple una cierta condición algebraica, entonces el teorema de Cayley-Hamilton puede ayudarnos a entender cómo debe ser esa matriz, es decir, a caracterizar a todas las matrices que cumplan la condición.

Por ejemplo, ¿quienes son todas las matrices en $M_n(\mathbb{R})$ que son su propia inversa? La condición algebraica es $A^2=I_2$. Si el polinomio característico de $A$ es $x^2+bx+c$, entonces por el teorema de Cayley-Hamilton y la hipótesis tenemos que $O_2=A^2+bA+cI_2=bA+(c+1)I_2$. De aquí tenemos un par de casos:

  • Si $b\neq 0$, podemos despejar a $A$ como $A=-\frac{c+1}{b}I_2$, es decir $A$ debe ser un múltiplo de la identidad. Simplificando la notación, $A=xI_2$. Así, la condición $A^2=I_2$ se convierte en $x^2I_2=I_2$, de donde $x^2=1$ y por lo tanto $x=\pm 1$. Esto nos da las soluciones $A=I_2$ y $A=-I_2$.
  • Si $b=0$, entonces $O_2=(c+1)I_2$, de donde $c=-1$. De este modo, el polinomio característico es $x^2-1=(x+1)(x-1)$. Se puede demostrar que aquí las soluciones son las matices semejantes a la matriz $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$, y sólo esas.

Más adelante…

El teorema de Cayley-Hamilton es un resultado fundamental en álgebra lineal. Vimos dos demostraciones, pero existen varias más. Discutimos brevemente algunas de sus aplicaciones, pero tiene otras tantas. De hecho, más adelante en el curso lo retomaremos para aplicarlo nuevamente.

Por ahora cambiaremos ligeramente de tema. De manera muy general, veremos cómo llevar matrices a otras matrices que sean más simples. En las siguientes entradas haremos esto mediante similaridades de matrices. Más adelante haremos esto mediante congruencias de matrices. Hacia la tercer unidad del curso encontraremos un resultado aún más restrictivo, en el que veremos que cualquier matriz simétrica real puede ser llevada a una matriz diagonal mediante una matriz que simultáneamente da una similaridad y una congruencia.

Tarea moral

  1. Encuentra el polinomio mínimo de la matriz $\begin{pmatrix}-3 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{pmatrix}$.
  2. Encuentra la inversa de la siguiente matriz usando las técnica usada en esta entrada: $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 2\\ 2 & 2 & 1 \end{pmatrix}.$$
  3. Demuestra el corolario de matrices con entradas enteras. De hecho, muestra que es un si y sólo si: una matriz invertibles con entradas enteras cumple que su inversa tiene únicamente entradas enteras si y sólo si su determinante es $1$ ó $-1$.
  4. ¿Cómo son todas las matrices en $M_2(\mathbb{R})$ tales que $A^2=A$?
  5. ¿Cómo son todas las matrices en $M_3(\mathbb{R})$ de determinante $0$ tales que $A^3=O_3$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

Por Omar González Franco

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}e^{0t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}e^{2t} + c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}e^{3t}$$

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

$$\mathbf{Y}_{i} = \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix}e^{\lambda_{i}t}, \hspace{1cm} i = 1, 2 ,3$$

donde $k_{i}$ y $\lambda_{i}$, $i = 1, 2, 3$, son constantes. Lo mismo para el segundo caso, con $k_{i}$, $\lambda_{i}$, $i = 1, 2$, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{4} \tag{4}$$

como solución general del sistema lineal (\ref{3}).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea $T: V \rightarrow W$ una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector $v$ en el espacio vectorial $V$ tal que $T\mathbf{v}$ y $\mathbf{v}$ sean paralelos, es decir, se busca un vector $\mathbf{v}$ y un escalar $\lambda$, tal que

$$T\mathbf{v} = \lambda \mathbf{v} \label{5} \tag{5}$$

Recordemos que si $\mathbf{v} \neq \mathbf{0}$ y $\lambda$ satisfacen la ecuación (\ref{5}), entonces $\lambda$ se denomina un valor característico o valor propio de $T$ y $\mathbf{v}$ un vector característico o vector propio de $T$ correspondiente al valor propio $\lambda$.

También recordemos que si $V$ tiene dimensión finita, entonces la transformación $T$ se puede representar por una matriz $\mathbf{A}_{T}$, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Para el caso especial $\mathbf{A} = \mathbf{I}$, con $\mathbf{I}$ la matriz identidad, se tiene que para cualquier vector $\mathbf{v} \in V$

$$\mathbf{Av} = \mathbf{Iv} = \mathbf{v} \label{8} \tag{8}$$

Así, el único valor propio de $\mathbf{A}$ es $1$ y todo $\mathbf{v} \neq \mathbf{0} \in V$ es un vector propio de $\mathbf{I}$.

Otra observación interesante es que cualquier múltiplo de un vector propio de $\mathbf{A}$ es también un vector propio de $\mathbf{A}$, con el mismo valor propio.

$$\mathbf{A}(c \mathbf{v}) = c \mathbf{Av} = c \lambda \mathbf{v} = \lambda (c \mathbf{v}) \label{9} \tag{9}$$

Ecuación característica

Supongamos que $\lambda $ es un valor propio de $A$, entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix}
v_{1} \\ v_{2} \\ \vdots \\ v_{n}
\end{pmatrix} \neq \mathbf{0}$$

tal que

$$\mathbf{Av} = \lambda \mathbf{v} = \lambda \mathbf{Iv} \label{10} \tag{10}$$

Reescribiendo esto, se tiene

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \label{11} \tag{11}$$

Si $A$ es una matriz de $n \times n$, la ecuación anterior corresponde a un sistema homogéneo de $n$ ecuaciones con las incógnitas $v_{1}, v_{2}, \cdots, v_{n}$. Como se ha supuesto que $ \mathbf{v} \neq \mathbf{0}$, entonces el sistema no tiene solución trivial y por tanto el determinante de (\ref{11}) debe ser cero.

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{12} \tag{12}$$

De manera equivalente, si ocurre que $|\mathbf{A} -\lambda \mathbf{I}| \neq 0$, entonces la única solución a (\ref{11}) es la trivial $\mathbf{v} = \mathbf{0}$, lo que significa que $\lambda$ no es un valor propio de $A$.

Estos resultados quedan establecidos en el siguiente teorema.

La relación (\ref{13}) es muy importante, tanto que merece nombres particulares.

El polinomio $P(\lambda )$ es del mismo grado que el número de filas y columnas de la matriz $\mathbf{A}$. Si $\mathbf{A} \in M_{n \times n}$, entonces $P(\lambda)$ es un polinomio de grado $n$ en $\lambda$. Por ejemplo, si

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{14} \tag{14}$$

entonces,

$$\mathbf{A} -\lambda \mathbf{I} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} -\begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} = \begin{pmatrix}
a -\lambda & b \\ c & d -\lambda
\end{pmatrix} \label{15} \tag{15}$$

y

\begin{align*}
P(\lambda ) &= |\mathbf{A} -\lambda \mathbf{I}| \\
&= (a -\lambda)(d -\lambda) -bc \\
&= \lambda^{2} -(a + d) \lambda + (ad -bc) \label{16} \tag{16}
\end{align*}

La matriz es de $2 \times 2$ y el polinomio característico es un polinomio de grado $2$.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado $n$ con coeficientes reales o complejos tiene exactamente $n$ raíces contando multiplicidades y dado que cualquier valor propio de $\mathbf{A}$ es una raíz de la ecuación característica de $\mathbf{A}$, se concluye que, contando multiplicidades, toda matriz $\mathbf{A} \in M_{n \times n}$ tiene exactamente $n$ valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad $1$) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
-81 & 16 \\ -420 & 83
\end{pmatrix}$$

Solución: De acuerdo a (\ref{13}), determinemos la ecuación característica.

$$\begin{vmatrix}
-81 -\lambda & 16 \\ -420 & 83 -\lambda
\end{vmatrix} = (-81 -\lambda)(83 -\lambda) -16(-420) = 0$$

Reordenando obtenemos que la ecuación característica es

$$\lambda^{2} -2 \lambda -3 = 0$$

y el polinomio característico es

$$P(\lambda) = \lambda^{2} -2 \lambda -3$$

Resolviendo para $\lambda$ se obtienen las raíces $\lambda_{1} = -1$ y $\lambda_{2} = 3$. Para obtener los vectores propios buscamos un vector $\mathbf{v} \neq 0$, tal que se cumpla (\ref{11}) para cada valor propio $\lambda$. Comencemos con $\lambda_{1}$.

Caso 1: $\lambda_{1} = -1$.

$$\begin{pmatrix}
-81 -(-1) & 16 \\ -420 & 83 -(-1)
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-80 & 16 \\ -420 & 84
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

\begin{align*}
-80 v_{1} + 16 v_{2} &= 0 \\
-420 v_{1} + 84 v_{2} &= 0
\end{align*}

Que en realidad corresponden a una sola.

\begin{align*}
-5v_{1} + v_{2} &= 0 \\
v_{2} &= 5v_{1}
\end{align*}

Si elegimos $v_{1} = 1$, entonces $v_{2} = 5$, así el primer vector propio es

$$\mathbf{v}_{1} = \begin{pmatrix}
1 \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
-81 -3 & 16 \\ -420 & 83-3
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-84 & 16 \\ -420 & 80
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
-21v_{1} + 4v_{2} &= 0 \\
v_{2} &= \dfrac{21}{4}v_{1}
\end{align*}

Por conveniencia elegimos $v_{1} = 4$, entonces $v_{2} = 21$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
4 \\ 21
\end{pmatrix}$$

En conclusión, los valores y vectores propios de la matriz $\mathbf{A}$ son $\lambda_{1} = -1$, $\lambda_{2} = 3$, $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_{2} = \begin{pmatrix} 4 \\ 21 \end{pmatrix}$, respectivamente.

$\square$

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
2 & -1 \\ 5 & -2
\end{pmatrix}$$

Solución: Determinemos la ecuación característica.

$$\begin{vmatrix}
2 -\lambda & -1 \\ 5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = 0$$

La ecuación característica es

$$\lambda^{2} + 1 = 0$$

De donde $\lambda_{1} = i$ y $\lambda_{2} = -i$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = i$.

$$\begin{pmatrix}
2 -i & -1 \\ 5 & -2 -i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)v_{1} -v_{2} &= 0 \\
5v_{1} -(2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 + i$ y $v_{2} = 5$, así

$$\mathbf{v}_{1} = \begin{pmatrix}
2 + i \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -i$

$$\begin{pmatrix}
2 + i & -1 \\ 5 & -2 + i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 + i) v_{1} -v_{2} &= 0 \\
5v_{1} + (-2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 -i$ y $v_{2} = 5$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
2 -i \\ 5
\end{pmatrix}$$

$\square$

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Demostración: Como el caso $m = 1$ se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso $m = 2$, para ello consideremos la combinación lineal

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} = \mathbf{0} \label{17} \tag{17}$$

Multipliquemos ambos lados de la ecuación por la matriz $\mathbf{A}$.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} = \mathbf{0} \label{18} \tag{18}$$

Como $\mathbf{Av}_{i} = \lambda_{i}\mathbf{v}_{i}$, para $i = 1, 2$, entonces

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} = \mathbf{0} \label{19} \tag{19}$$

A la ecuación (\ref{17}) la multiplicamos por $\lambda_{1}$ y la restamos de la ecuación (\ref{19}).

$$(c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2}) -(c_{1} \lambda_{1} \mathbf{v}_{1} -c_{2} \lambda_{1} \mathbf{v}_{2}) = \mathbf{0}$$

que se reduce a

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} = \mathbf{0} \label{20} \tag{20}$$

Como $\mathbf{v}_{2} \neq \mathbf{0}$ por definición de vector característico y por hipótesis $\lambda_{1} \neq \lambda_{2}$, entonces se concluye que $c_{2} = 0$, sustituyendo en (\ref{17}) se ve que $c_{1} = 0$, por tanto se cumple el teorema para $m = 2$, es decir, $\mathbf{v}_{1}$ y $\mathbf{v}_{2}$ son linealmente independientes.

Ahora supongamos que el teorema es cierto para $m = n$, es decir, cualquier conjunto de $n$ vectores propios de $\mathbf{A}$ con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de $n + 1$ vectores propios de $\mathbf{A}$ con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para $m = 2$, consideremos la siguiente combinación lineal.

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{21} \tag{21}$$

Multipliquemos por $\mathbf{A}$ en ambos lados.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} + \cdots + c_{n + 1} \mathbf{Av}_{n + 1} = \mathbf{0} \label{22} \tag{22}$$

Aplicando $\mathbf{Av}_{i} = \lambda_{i} \mathbf{v}_{1}$ para $i = 1, 2, 3, \cdots, n + 1$, se tiene

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \lambda_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{23} \tag{23}$$

Si se multiplica ambos lados de la ecuación (\ref{21}) por $\lambda_{1}$ y se resta de (\ref{23}), se obtiene

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} + c_{3}(\lambda_{3} -\lambda_{1}) \mathbf{v}_{3} + \cdots + c_{n + 1}(\lambda_{n + 1} -\lambda_{1})\mathbf{v}_{n + 1} = \mathbf{0} \label{24} \tag{24}$$

Pero $\mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son vectores propios de $\mathbf{A}$ con valores propios distintos $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{n + 1}$, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

$$c_{2}(\lambda_{2} -\lambda_{1}) = 0, \hspace{1cm} c_{3}(\lambda_{3} -\lambda_{1}) = 0, \hspace{1cm} \cdots, \hspace{1cm} c_{n + 1}(\lambda_{n + 1} -\lambda_{1}) = 0$$

Como los valores propios son distintos entre sí, entonces necesariamente

$$c_{2} = c_{3} = \cdots = c_{n + 1} = 0$$

Con este resultado la ecuación (\ref{21}) obliga a que $c_{1}$ sea cero. Por lo tanto, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son linealmente independientes. De esta manera queda demostrado el teorema.

$\square$

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (\ref{4}).

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t}$$

Si derivamos este vector, se obtiene

$$\mathbf{Y}^{\prime} = \mathbf{K} \lambda e^{\lambda t} \label{25} \tag{25}$$

Sustituyamos en el sistema homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$.

$$\mathbf{K} \lambda e^{\lambda t} = \mathbf{AK}e^{\lambda t} \label{26} \tag{26}$$

Si dividimos entre $e^{\lambda t}$ y reordenamos, se tiene

$$\mathbf{AK} = \lambda \mathbf{K}$$

o bien,

$$\mathbf{AK} -\lambda \mathbf{K} = \mathbf{0}$$

Debido a que $\mathbf{K} = \mathbf{IK}$, con $\mathbf{I}$ la matriz identidad, la última expresión se puede escribir como

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0}\label{27} \tag{27}$$

Si $\mathbf{A}$ es la matriz dada en (\ref{2}), entonces la ecuación matricial (\ref{27}) es equivalente a las $n$ ecuaciones algebraicas simultáneas

\begin{align*}
(a_{11} -\lambda)k_{1} + \hspace{1.2cm} a_{12}k_{2} + \cdots + \hspace{1.2cm} a_{1n}k_{n} &= 0 \\
a_{21}k_{1} + (a_{22} -\lambda)k_{2} + \cdots + \hspace{1.2cm} a_{2n}k_{n} &= 0 \\
\vdots \\
a_{n1}k_{1} + \hspace{1.2cm} a_{n2}k_{2} + \cdots + (a_{nn} -\lambda)k_{n} &= 0 \label{28} \tag{28}
\end{align*}

Si queremos encontrar soluciones $\mathbf{Y}(t)$ como (\ref{4}), necesitamos primero encontrar una solución no trivial del sistema (\ref{28}), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{29} \tag{29}$$

Esta ecuación polinomial corresponde a la ecuación característica de la matriz $\mathbf{A}$. Sus soluciones son los valores propios de $\mathbf{A}$. Una solución $\mathbf{K} \neq 0$ de (\ref{27}) correspondiente a un valor propio $\lambda$ es el vector propio de $\mathbf{A}$.

La ecuación (\ref{29}) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (\ref{3}).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (\ref{3}).

Demostración: Definamos las funciones

$$\mathbf{Y}_{1}(t) = e^{\lambda_{1}t}\mathbf{K}_{1}, \hspace{1cm} \mathbf{Y}_{2}(t) = e^{\lambda_{2}t}\mathbf{K}_{2}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n}(t) = e^{\lambda_{n}t} \mathbf{K}_{n}$$

Notemos que para la $i$-ésima función $\mathbf{Y}_{i}(t) = e^{\lambda_{i}t} \mathbf{K}_{i}$ se cumple lo siguiente.

$$\mathbf{Y}^{\prime}_{i} = e^{\lambda_{i}t} (\lambda_{i} \mathbf{K}_{i}) = e^{\lambda_{i}t} (\mathbf{AK}_{i}) = \mathbf{AY}_{i} \label{32} \tag{32}$$

En donde se hecho uso de la relación (\ref{6}). Esto nos muestra que $\mathbf{Y}_{i}(t)$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ para cada $i = 1, 2, \cdots, n$. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

\begin{align*}
W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots,\mathbf{Y}_{n}) &= \begin{vmatrix} e^{\lambda_{1}t} \mathbf{K}_{1} & e^{\lambda_{2}t} \mathbf{K}_{2} & \cdots & e^{\lambda_{n}t} \mathbf{K}_{n} \end{vmatrix} \\
&= e^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})t} \begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \label{33} \tag{33}
\end{align*}

Como la exponencial nunca se hace cero y por hipótesis los vectores $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son linealmente independientes, es decir, el determinante nunca es cero

$$\begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \neq 0 \label{34} \tag{34}$$

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\}$$

es un conjunto fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ y la solución general es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n}$$

con $c_{1}, c_{2}, \cdots, c_{n}$ constantes arbitrarias.

$\square$

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • $\mathbf{A} = \begin{pmatrix}
    -62 & -20 \\ 192 & 62
    \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix}
    -2 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1
    \end{pmatrix}$
  1. Demostrar que para cualesquiera números reales $\alpha$ y $\beta$, la matriz $$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$ tiene valores propios $\alpha \pm i\beta$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar lo siguiente:
  • Demostrar que $\mathbf{A}^{-1}$ (la matriz inversa de $\mathbf{A}$) existe si y sólo si $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son todos distintos de cero.
  • Si $\mathbf{A}^{-1}$ existe, demostrar que los valores propios de $\mathbf{A}^{-1}$ son $\dfrac{1}{\lambda_{1}}, \dfrac{1}{\lambda_{2}}, \cdots, \dfrac{1}{\lambda_{n}}$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que la matriz $\mathbf{A} -\alpha \mathbf{I}$ tiene valores propios $\lambda_{1} -\alpha, \lambda_{2} -\alpha, \cdots, \lambda_{n} -\alpha$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que los valores propios de $\mathbf{A}^{m}$ son $\lambda^{m}_{1}, \lambda^{m}_{2}, \cdots, \lambda^{m}_{n}$ para $m = 1, 2, 3, \cdots$.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    $$\mathbf{A}^{5} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos $\mathbf{Y}^{\prime} = \mathbf{AY}$.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»