Archivo de la etiqueta: matrices

Cálculo Diferencial e Integral III: Divergencia, laplaciano y rotacional

Por Alejandro Antonio Estrada Franco

Introducción

Después de algunas entradas muy técnicas, en las que hemos demostrado dos resultados sumamente importantes (el teorema de la función inversa y el teorema de la función implícita), pasaremos brevemente a una entrada un poco más ligera en términos de teoría, pero también relevante. En esta entrada nos volcaremos a una cara más práctica del cálculo diferencial e integral.

Recordemos que un campo vectorial es una función $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$. El nombre de campo vectorial está justificado con que a cada punto de un espacio base $\mathbb{R}^n$, estamos asignando otro vector, en $\mathbb{R}^m$. Si pegamos a cada vector del dominio el vector que le corresponde en a partir de $F$, podemos tener otra intuición geométrica de lo que hacen estas funciones. En la figura 1 apreciamos un ejemplo de esto, donde tenemos un campo vectorial $F$ de $\mathbb{R}^{3}$ en $\mathbb{R}^{3}$ y entonces a cada vector de $\mathbb{R}^3$ le estamos «pegando una flecha».

Figura 1

Esta manera de pensar a los campos vectoriales se presta mucho para entender propiedades físicas de los objetos: flujo eléctrico, flujo de calor, fuerza, trabajo, etc. Si pensamos en esto, otros conceptos que hemos estudiado también comienzan a tener significado. Por ejemplo, el gradiente de un campo escalar está íntimamente relacionado a otras propiedades físicas descritas por el campo escalar. Un ejemplo que hemos discutido es que el gradiente, por ejemplo, nos da la dirección de cambio máximo.

Un ejemplo más concreto sería el siguiente. Pensemos en $\mathbb{R}^{3}$ en un sólido $S$ y un campo escalar $T:S\rightarrow \mathbb{R}$ que da la temperatura de cada punto del sólido. Si consideramos la expresión $\textbf{J}=-k\triangledown T$, obtenemos lo que se conoce como el flujo de calor. Tiene sentido. Por lo que aprendemos en educación elemental, el calor va de los puntos de mayor temperatura a los de menor temperatura. El gradiente $\triangledown T$ da la dirección de máximo crecimiento. Pero entonces $-\triangledown T$ da la dirección de máximo descenso (así como su magnitud). La $k$ que aparece tiene que ver con qué tan bien el material del que hablamos transmite el calor.

Notación tradicional de los campos vectoriales

En el ámbito de las aplicaciones generalmente se usa la notación con gorros. Veamos un ejemplo de cómo escribir con esta notación. En vez de escribir para $\bar{v}\in \mathbb{R}^{3}$ la expresión $\bar{v}=(x,y,z)$, escribimos $$\bar{v}=x\hat{\imath}+y\hat{\jmath}+z\hat{k},$$ es decir, podemos pensar que $\hat{\imath}=(1,0,0)$, $\hat{\jmath}=(0,1,0)$, $\hat{k}=(0,0,1)$.

Si $F:\mathbb{R}^3\to \mathbb{R}^3$ es un campo vectorial, escribimos $$F=P\hat{\imath}+Q\hat{\jmath}+R\hat{k},$$ donde $P$, $Q$ y $R$ son los campos escalares componente, que cada uno de ellos va de $\mathbb{R}^3$ a $\mathbb{R}$.

Generalmente escribimos también $$F(x,y,z)=P(x,y,z)\hat{\imath}+Q(x,y,z)\hat{\jmath}+R(x,y,z)\hat{k}$$ tras evaluar.

Con esta notación también podemos escribir al gradiente y pensarlo como un «operador» que manda campos escalares a campos vectoriales. A este operador se le llama operador nabla. Lo escribimos de la siguiente manera:

\[ \triangledown =\frac{\partial}{\partial x}\hat{\imath}+\frac{\partial}{\partial y}\hat{\jmath}+\frac{\partial}{\partial z}\hat{k}. \]

Si tenemos un campo escalar $\phi:\mathbb{R}^3\to \mathbb{R}$, entonces el operador hace lo siguiente

\[ \triangledown \phi (x,y,z)=\frac{\partial \phi (x,y,z)}{\partial x}\hat{\imath}+\frac{\partial \phi (x,y,z)}{\partial y}\hat{\jmath}+\frac{\partial \phi (x,y,z)}{\partial z}\hat{k}.\]

Es decir, a partir de $\phi$ obtenemos su gradiente.

Líneas de flujo

Ahora introducimos el concepto de línea de flujo el cual es muy usado para campos vectoriales en el modelado fenómenos físicos.

Definición. Si $F:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es un campo vectorial, una línea de flujo para $F$ es una función $\alpha :U\subseteq \mathbb{R}\rightarrow \mathbb{R}^{n}$ tal que $\alpha^{\prime}(t)=F(\alpha(t))$ para todo $t\in U$.

Es decir una línea de flujo es una trayectoria sobre la cual $F$ asigna en cada punto de ella su correspondiente vector tangente. En la Figura 2 tenemos una ilustración de una línea de flujo en un campo vectorial.

Figura 2

Divergencia

Supongamos que tenemos en el plano (o el espacio) una región $S$. Para cada punto $\bar{x}$ de $S$ sea $\textbf{x}(t)$ una línea de flujo que parte de $\bar{x}$ bajo el campo vectorial $F$. El conjunto de líneas $\textbf{x}(t)$ describe cómo cambia el conjunto $S$ bajo la acción de $F$ a través del tiempo. Formalizando esto un poco, en el caso del plano tomemos $F:S\subseteq \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$. Para cada $\bar{x}\in S$ podemos considerar $\gamma_x:I_{x}\subset \mathbb{R}\rightarrow \mathbb{R}^{2}$, como la trayectoria $\textbf{x}(t)$ y que es línea de flujo bajo $F$. Estas trayectorias van mostrando «cómo se va deformando $S$ a causa del campo vectorial $F$». También, consideremos al conjunto $S’=\{\bar{x}+F(\bar{x})|\bar{x}\in S \}$, al cual pensaremos como el conjunto resultante de aplicar a $S$ el campo vectorial $F$.

Estas nociones se pueden analizar a través de una herramienta llamada divergencia. La definimos a continuación, pero una demostración formal de que el operador divergencia mide la expansión del efecto de un campo vectorial es un tema que se estudia en un cuarto curso de cálculo diferencial e integral.

Figura 3. Aquí se ilustra el efecto de un campo vectorial sobre una sección $S$ del plano.

Damos la definición en $\mathbb{R}^3$, pero podrías dar una versión análoga para $\mathbb{R}^2$.

Definición. Si $F=P\hat{\imath}+Q\hat{\jmath}+R\hat{k}$ es un campo vectorial definimos la divergencia de $F$ como:

\[ \triangledown \cdot F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}.\]

En dimensiones más altas, si $F=(F_{1},\dots ,F_{n})$, entonces $\triangledown \cdot F=\sum_{i=1}^{n}\frac{\partial F_{i}}{\partial x_{i}}$.

Rotacional

Figura 4

Pensemos en un fluido que se mueve de acuerdo con el flujo marcado por el campo vectorial $F$. Tenemos una forma de determinar la rotación que el fluido imprimiría sobre un sólido llevado por él. Imaginemos un remolino y una pequeña esfera solida llevada por el remolino. Lo que llamaremos el rotacional del vector nos proporcionará la información sobre las rotaciones sobre su eje que el fluido imprime a la pequeña esfera (Figura 4).

Definición. Sea $$F(x,y,z)=F_{1}(x,y,z)\hat{\imath}+F_{2}(x,y,z)\hat{\jmath}+F_{3}(x,y,z)\hat{k}.$$ Entonces definimos al rotacional de $F$ como el siguiente campo vectorial:

\[ \triangledown \times F(x,y,z)=\left( \frac{\partial F_{3}}{\partial y} – \frac{\partial F_{2}}{\partial z} \right)\hat{\imath}+\left( \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} \right)\hat{\jmath}+\left( \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} \right)\hat{k}.\]

También suele representarse por el siguiente determinante:

\[ \triangledown \times F=\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ {\large \frac{\partial}{\partial x}} & {\large \frac{\partial}{\partial y}} & {\large \frac{\partial}{\partial z}} \\ F_{1} & F_{2} & F_{3} \end{vmatrix}. \]

Una visión mas clara de por qué esta expresión calcula lo que queremos se puede aprender en un cuarto curso de cálculo diferencial e integral, o bien en algún curso de aplicaciones del cálculo a la física. Por ahora veremos en los ejemplos solamente la parte operativa.

Laplaciano

Hay un operador más que surge naturalmente en las ecuaciones que involucran al gradiente y a la divergencia.

Definición. Sea $f:\mathbb{R}^3\to \mathbb{R}$ un campo escalar. El operador laplaciano se establece de la siguiente manera:

\[ \triangledown ^{2}f=\frac{\partial ^{2}f}{\partial x^{2}}\hat{\imath}+\frac{ \partial^{2}f}{\partial y^{2}}\hat{\jmath}+\frac{\partial ^{2}f}{\partial z^{2}}\hat{k}. \]

Es decir, el laplaciano consiste en aplicar el operador divergencia al gradiente de un campo escalar.

Ejemplos de problemas de los conceptos anteriores

Revisemos algunos problemas que tienen que ver con estos operadores. Esto nos permitirá ampliar nuestra visión en cuanto a la practicidad de esta herramienta matemática.

Consideremos el siguiente campo vectorial en el plano $F(x,y)=x\hat{\imath}$. Pensaremos el signo de la divergencia de $F$ como la razón del cambio de áreas bajo este campo. Interpretaremos a $F$ como aquel que asigna a cada punto del plano un vector velocidad de un fluido en el plano.

Para $x>0$ el campo apunta hacia la derecha con vectores paralelos al eje $x$ con tamaño $|x|$, para $x<0$ los vectores apuntan a la izquierda paralelamente al eje $x$ con tamaño $|x|$ (Figura 5). Por ello las longitudes de las flechas de $F$ son mas cortas en torno al origen; así cuando el fluido se mueve, se expande. Y esto coincide con el hecho de que $\triangledown \cdot F=1$.

Figura 5

En el siguiente ejemplo consideremos el campo vectorial $F(x,y)=-y\hat{\imath}+x\hat{\jmath}$. Las líneas de flujo de $F$ siguen circunferencias concéntricas centradas al origen en dirección contrarias a las manecillas del reloj. Al calcular la divergencia tenemos lo siguiente:

\[ \triangledown \cdot F=\frac{\partial }{\partial x}(-y)+\frac{\partial}{\partial y}(x)=0. \]

En la figura 6 tenemos la ilustración de cómo se ve el campo de este ejemplo. Suena razonable. En este caso el fluido no se está expandiendo, sino que más bien está rotando.

Figura 6

En el laplaciano aplicamos la divergencia a un gradiente. Pero, ¿qué pasa cuando aplicamos el rotacional a un gradiente? Consideremos una función $f$ con derivadas parciales diferenciables continuas es decir, de clase $C^{2}$. Para una función así tenemos

\[ \triangledown f(x,y,z)=(\partial f/\partial x,\partial f/ \partial y,\partial f/\partial z). \]

De acuerdo con la definición de rotacional, tenemos:

\begin{align*} \triangledown \times (\triangledown f)&= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix}\\ &= \left( \frac{\partial ^{2}f}{\partial y\partial z}-\frac{\partial ^{2}f}{\partial z\partial y} \right)\hat{\imath}+\left( \frac{\partial ^{2}f}{\partial z\partial x}-\frac{\partial ^{2}f}{\partial x \partial z} \right)\hat{\jmath}+\left( \frac{\partial ^{2}f}{\partial x\partial y}-\frac{\partial ^{2}f}{\partial y\partial x} \right)\hat{k}\\ &=\bar{0} \end{align*}

por la igualdad de las parciales mixtas. Es decir; si $f$ es un campo escalar cuyas derivadas parciales son diferenciables con derivada continua tenemos $\triangledown \times \triangledown f=0$.

Esto nos puede ayudar a saber si una cierta función puede obtenerse como gradiente de otra. Tomemos $G(x,y,z)= y\hat{\imath}-x\hat{\jmath}$. Notemos que las funciones en $\hat{\imath}$ y en $\hat{\jmath}$ son diferenciables con derivada continua. Entonces nos preguntaremos ¿$G$ es gradiente de un campo escalar? Para ello calculemos $\triangledown \times G$ cuyo resultado en caso afirmativo debería ser igual a cero. Sin embargo,

\[ \triangledown \times G=\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & -x & 0 \end{vmatrix}=-2\hat{k}\neq 0,\]

por lo tanto $G$ no es un gradiente.

También tenemos que la divergencia de un rotacional es igual a cero, es decir si $F$ es un campo vectorial $\triangledown \cdot (\triangledown \times F)=0$. Queda como tarea moral demostrar este hecho.

Mas adelante

Con esta entrada terminamos nuestro estudio de conceptos relacionados con campos vectoriales. Sin embargo, aún no los descartaremos por completo. Retomaremos a los campos vectoriales en la última unidad del curso. En ella, retomaremos varias partes de la teoría para establecer resultados de optimización de campos escalares, y de funciones bajo restricciones.

Tarea moral

  1. Para los siguientes campos vectoriales, halla su divergencia
    • $F(x,y)=x^{3}\hat{\imath}+x\hspace{0.1cm}sen\hspace{0.1cm}(xy)\hat{\jmath}$
    • $G(x,y,z)=e^{xy}\hat{\imath}+e^{xy}\hat{\jmath}+e^{yz}\hat{k}$.
  2. Obtén el rotacional de los siguientes campos vectoriales:
    • $F(x,y,z)=(x^{2}+y^{2}+z^{2})(3\hat{\imath}+4\hat{\jmath}+5\hat{k})$
    • $G(x,y,z)=yz\hat{\imath}+xz\hat{\jmath}+xy\hat{k}$.
  3. Dibuja algunas líneas de flujo del campo $F(x,y)=-3x\hat{\imath}-y\hat{\jmath}$. Calcula $\triangledown \cdot F$ y explica el significado del resultado de la divergencia en su relación con las líneas de flujo.
  4. Demuestra que $\triangledown \cdot (\triangledown \times F)=0$
  5. Sean $f$ y $g$ dos campos escalares diferenciables, y $F$, y $G$ dos campos vectoriales diferenciables. Demuestra las siguientes identidades (solo usa la parte operativa, piensa que todos los campos tanto los vectoriales como los escalares tienen el mismo dominio):
    1. $\triangledown \cdot gG =g(\triangledown \cdot G) + G\cdot (\triangledown g)$
    2. $\triangledown (fg)=f(\triangledown g) +g (\triangledown f)$
    3. $\triangledown \cdot (F\times G)= G\cdot (\triangledown \times F)-F\cdot (\triangledown \times G)$

Entradas relacionadas

Cálculo Diferencial e Integral III: Ejemplos e intuición del teorema de la función implícita

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior revisamos el teorema de la función implícita formalmente enunciado y demostrado. En ésta lo que haremos será reflexionar sobre él y observar con más detalle su propósito y usos.

Dicho de forma simplista pero resaltando su objetivo principal el teorema de la función implícita busca establecer las condiciones bajo las cuales podemos despejar unas variables en término de otras. Da una condición en términos de cierta diferenciabilidad. Como esbozamos en la entrada anterior, lo que el teorema nos dice es cuándo es posible despejar las variables de un sistema de ecuaciones (o funciones coordenadas de un campo vectorial) en función de ciertas las variables libres, y alrededor de una vecindad. Para hacer esto, básicamente hay que resolver un sistema de ecuaciones en donde ciertos coeficientes vienen de ciertas derivadas parciales. El teorema de la función implícita también habla de cómo derivar una función definida implícitamente respecto de cualquiera de sus derivables.

¿Por qué teorema de la función implícita?

¿Por qué este nombre? En numerosos problemas matemáticos derivados de aplicaciones diversas se utilizan modelos geométricos. Estos modelos geométricos usualmente se construyen a partir de restringir ciertas variables con ciertas ecuaciones. Pensemos en objetos geométricos en tres dimensiones. Tenemos variables $x,y,z$. Definamos $G(x,y,z):=x^{2}+y^{2}+z^{2}-1$. Podemos preguntarnos por el objeto geométrico descrito por la ecuación $G(x,y,z)=0.$ Sabemos que las ternas $(x,y,z)$ que satisfacen esto justo conforman una esfera de radio 1 centrada en el origen. Decimos que esta ecuación proporciona una representación implícita de la superficie.

Pero quizás nuestra aplicación nos lleva a preguntarnos si alguna coordenada está en términos de las otras para los puntos que están en dicha esfera. En afortunadas ocasiones es posible despejar en la ecuación $G(x,y,z)$ algunas de las variables en términos de las otras. Esto nos lleva a una o varias ecuaciones de la forma $z=g(x,y)$, en nuestro caso particular tenemos:

\begin{align*}z=\sqrt{1-x^{2}-y^{2}} && \textup{y} && z=-\sqrt{1-x^{2}-y^{2}}.\end{align*}

El teorema de la función inversa nos dice que si ciertas derivadas existen y son invertibles como transformaciones lineales, entonces podemos hacer estos despejes. De hecho, nos dice algo mejor: que podemos hacerlos alrededor de toda una vecindad donde no se anule dicha derivada. De aquí sale la idea de «función implícita». Algunas ecuaciones, aunque no permitan despejar variables, sí lo permiten «localmente» y entonces ahí hay una «función oculta».

En la gran mayoría de los casos es difícil lograr estos despejes mediante expresiones algebraicas sencillas por ejemplo en una superficie representada por la ecuación $y^{3}+z^{2}-xz+e^{zx}-4=0$ suena muy difícil que podamos despejar $z$. Sin embargo el teorema de la función implícita nos garantiza que, aunque no sepamos cómo, la variable $z$ sí se puede poner en función de las variables $x$ y $y$.

La derivada de la función implícita

Otra buena notica es que aunque no conozcamos explícitamente el despeje que nos interesa, con el teorema de la función implícita sí podemos encontrar las derivadas parciales de la función implícita que aparece. Si pensaste los problemas de la tarea moral de la entrada anterior, quizás ya hayas llegado al siguiente resultado.

Corolario. Sea $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar diferenciable con $S$ abierto. Supongamos que la ecuación $F(x_{1},\dots ,x_{n})=0$ define implícitamente a $x_{n}$ como función diferenciable de $x_{1},\dots ,x_{n-1}$ como $x_{n}=f(x_{1},\dots ,x_{n-1})$, para todos los puntos $(x_{1},\dots ,x_{n-1})\in S’\subseteq \mathbb{R}^{n-1}$, entonces para cada $k=1,2,\dots ,n-1$ la derivada parcial $\frac{\partial f}{\partial x_{k}}$ está dada por la fórmula:

\[ \begin{equation}\frac{\partial f}{\partial x_{k}}=-\frac{\frac{\partial F}{\partial x_{k}}}{\frac{\partial F}{\partial x_{n}}}\end{equation} \]

en los puntos en los que $\frac{\partial F}{\partial x_{n}}\neq 0$. Las derivadas parciales de $F$ están calculadas en el punto $(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n}))$.

Demostración. Pensemos $F:\mathbb{R}^{n-1}\times \mathbb{R} \to \mathbb{R}$. Si $(x_{1},\dots x_{n})$ es tal que $F(x_{1},\dots ,x_{n})=0$, por el teorema de la función implícita tenemos a una única función $f:\mathbb{R}^{n-1}\rightarrow \mathbb{R}$ tal que $F(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))=0$.

(Nota. En la entrada anterior teníamos entradas de la forma $(y,x)$ y $y$ quedaba en función de $x$. De manera totalmente análoga podemos intercambiar los papeles de $x$ y $y$, pidiendo las hipótesis correctas. De hecho, usualmente se piensa en parejas $(x,y)$ y las variables de $y$ son las que quedan en términos de las variables $x$)

Ahora, pensemos en el campo vectorial $G:S’\subseteq \mathbb{R}^{n-1}\rightarrow \mathbb{R}^{n}$ dado por $G(x_{1},\dots ,x_{n-1})=(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))$. Así $(F\circ G)(x_{1},\dots ,x_{n-1})=0$. Por regla de la cadena, $DFDG=0$. Tenemos así $0=\triangledown F\cdot DG$, lo cual explícitamente es:

\[ 0=\begin{bmatrix} \frac{\partial F}{\partial x_{1}} & \dots & \frac{\partial F}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{n-1}} \end{bmatrix}= \]

\[ \begin{bmatrix} \frac{\partial F}{\partial x_{1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{1}} & \frac{\partial F}{\partial x_{2}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial F}{\partial x_{n-1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{n-1}} \end{bmatrix}.\]

Por ello, para cada $i$ tenemos:

\[ \frac{\partial F}{\partial x_{i}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{i}}=0.\]

De esta ecuación se deduce la $(1)$.

$\square$

Un primer ejemplo del teorema de la función inversa

Pasemos ahora a hacer algunas cuentas concretas para entender mejor lo que uno tiene que hacer para aplicar el teorema de la función implícita en funciones particulares.

Ejemplo. Consideremos la ecuación $y^{2}+xz+z^{2}-e^{z}-c=0$. Expresaremos a $z$ en función de $x$ e $y$, es decir, $z=f(x,y)$. Nos gustaría encontrar un valor de la constante $c$ tal que $f(0,e)=2$. Para dicha $c$, queremos calcular las derivadas parciales con respecto a $x$ y $y$ en el punto $(x,y)=(0,e)$.

Para la primera parte sustituimos $x=0$, $y=e$ y $z=2$. Tenemos $$e^{2}+0\cdot 2+2^{2}-e^{2}-c=0,$$ que es lo mismo que $4-c=0$, y esto implica $c=4$. De esta manera, estudiaremos la función $$F(x,y,z)=y^{2}+xz+z^{2}-e^{z}-4.$$

Notemos que

\begin{align*}\frac{\partial F}{\partial z}=x+2z-e^{z},&&\frac{\partial F}{\partial x}=z,&&\frac{\partial F}{\partial y}=2y,\end{align*}

por lo cual

\begin{align*} \frac{\partial f}{\partial x}=-\frac{z}{x+2z-e^{z}},&&\frac{\partial f}{\partial y}=-\frac{2y}{x+2z-e^{z}}.\end{align*}

Así para $x=0$, $y=e$ y $z=2$ al sustituir resulta

\begin{align*} \frac{\partial f}{\partial x}(0,e)=\frac{2}{e^{2}-4}&&\textup{y}&&\frac{\partial f}{\partial y}(0,e)=\frac{2e}{e^{2}-4}. \end{align*}

$\triangle$

En este ejemplo vemos cómo hemos podido calcular las derivadas parciales de $z=f(x,y)$ usando el valor de $f$ en el punto $(0,e)$, sin conocer quién es la función $f(x,y)$.

Un repaso chiquito de la demostación del teorema de la función implícita

Ahora repasaremos la demostración del teorema de la función implícita pero para un caso muy particular: Dos superficies $S_{1}$ y $S_{2}$ en el espacio con las siguientes representaciones implícitas:

$$ \textup{para}\hspace{0.3cm}S_{1}:\Psi (x,y,z)=0\hspace{1cm}\textup{y}\hspace{1cm}\textup{para}\hspace{0.3cm}S_{2}:\Gamma (x,y,z)=0.$$

Supongamos que las superficies se cortan en la curva $\mathfrak{C}$. En otras palabras, $\mathfrak{C}$ es el conjunto solución para el siguiente sistema de ecuaciones:

\[ \left \{\begin{matrix} \Psi (x,y,z)=0 \\ \Gamma (x,y,z)=0. \end{matrix} \right.\]

Supongamos que podemos despejar $x$ y $y$ en estas ecuaciones en términos de $z$ de la siguiente manera:

\[ \begin{equation}x=X(z),\hspace{1cm}y=Y(z)\hspace{0.3cm}\textup{para todo}\hspace{0.1cm}z\in (a,b).\end{equation} \]

Aquí, al reemplazar $x$ y $y$ por $X(z)$ y $Y(z)$ (respectivamente), el sistema $(2)$ se satisface. Por tanto tenemos $\Psi (X(z),Y(z),z)=0$ y $\Gamma (X(z),Y(z),z)=0$ para todo $z\in (a,b)$. Podemos calcular las derivadas $X^{\prime}(z)$, $Y^{\prime}(z)$, sin un conocimiento explícito de $X(z)$ y $Y(z)$.

¿Cómo hacemos esto? Consideramos las siguientes funciones auxiliares:

\begin{align*}
\psi (z)&=\Psi (X(z),Y(z),z),\\
\gamma (z)&=\Gamma (X(z),Y(z),z).
\end{align*}

Tenemos $\psi (z)=\gamma (z)=0$ y en consecuencia $\psi^{\prime}(z)=\gamma^{\prime}(z)=0$.

Derivando con la regla de la cadena tenemos:

\begin{align*}
\psi^{\prime}(z)&=\frac{\partial \Psi}{\partial x}X'(z)+\frac{\partial \Psi}{\partial y}Y'(z)+\frac{\partial \Psi}{\partial z},\\
\gamma^{\prime}(z)&=\frac{\partial \Gamma}{\partial x}X'(z)+\frac{\partial \Gamma}{\partial y}Y'(z)+\frac{\partial \Gamma}{\partial z}
\end{align*}

Dado que $\psi^{\prime} (z)=\gamma^{\prime}(z)=0$ tenemos el siguiente sistema de dos ecuaciones con dos incógnitas $X^{\prime}(z)$, $Y^{\prime}(z)$:

\[ \left \{\begin{matrix}\frac{\partial \Psi}{\partial x}X^{\prime}(z)+\frac{\partial \Psi}{\partial y}Y^{\prime}(z)=-\frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x}X^{\prime}(z)+\frac{\partial \Gamma}{\partial y}Y^{\prime}(z)=-\frac{\partial \Gamma}{\partial z} \end{matrix} \right.\]

En los puntos en los cuales el determinante del sistema no es cero, usamos la regla de Cramer para obtener las soluciones como sigue:

\[ X^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial z} & \frac{\partial \Psi}{\partial y}\\ \frac{\partial \Gamma}{\partial z} & \frac{\partial \Gamma }{\partial y}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} },\hspace{0.5cm}Y^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma }{\partial z}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} }.\]

Otro ejemplo para encontrar derivadas de funciones implícitas

Veamos un último ejemplo en donde pondemos usar las ideas anteriores.

Ejemplo. Consideremos las ecuaciones $y=uv^{2}$, y $x=u+v$. Queremos ver que podemos determinar una función $h$ tal que $v=h(x,y)$ y para la cual:

\[ \frac{\partial h}{\partial x}(x,y)= \frac{h(x,y)}{3h(x,y)-2x}.\]

Además, queremos encontrar una fórmula análoga para $\frac{\partial h}{\partial y}$.

Primero, en la ecuación $x=u+v$ despejamos $u$ y sustituimos en $y=uv^{2}$, tenemos $y=(x-v)v^{2}$. De aquí $$xv^{2}-v^{3}-y=0.$$ Esto nos sugiere pensar en la función $$F(x,y,v):=xv^{2}-v^{3}-y,$$ pues nos permite representar nuestra ecuación como $F(x,y,v)=0$. Por el teorema de la función implícita (¡verifica las hipótesis!), esta ecuación define implícitamente a $v$ como función de $x$ e $y$, digamos, como $v=h(x,y)$. Aplicando las fórmulas que conocemos para las derivadas de la función implicita, tenemos lo siguiente:

\[ \frac{\partial h}{\partial x}= -\frac{\partial F /\partial x}{\partial F /\partial v}\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial h}{\partial y}=-\frac{\partial F /\partial y}{\partial F /\partial v} \]

Donde $\frac{\partial F}{\partial x}=v^{2}$, $\frac{\partial F}{\partial v}=2xv-3v^{2}$ y $\frac{\partial F}{\partial y}=-1$. Luego tenemos:

\begin{align*} \frac{\partial h}{\partial x}(x,y)&=-\frac{v^{2}}{2xv-3v^{2}}\\ &=-\frac{v}{2x-3v}\\ &=\frac{h(x,y)}{3h(x,y)-2x}.\end{align*}

Esto muestra la primera parte. Para encontra la fórmula análoga, volvemos a usar las fórmulas para derivadas de la función implícita:

\begin{align*}\frac{\partial h}{\partial y}(x,y)&=-\frac{-1}{2xv-3v^{2}}\\ &=\frac{1}{2xh(x,y)-3h^{2}(x,y)}.\end{align*}

$\triangle$

Más adelante…

Hemos cubierto el teorema de la función inversa y el teorema de la función implícita. Estos son temas teóricos profundos e importantes que tienen muchas consecuencias. Tienen también otras versiones en contextos más amplios como variedades, geometría diferencial, etc. Por el momento, dejaremos hasta aquí nuestro estudio de estos temas, pero te recomendamos de vez en cuando repasarlos, pues cada vez entenderás más de sus demostraciones y lo que significan.

Nuestra atención se enfocará ahora en otros conceptos que se pueden definir en términos de funciones de varias variables: la divergencia, el laplaciano y el rotacional. Después, hablaremos un poco de cómo la teoría que hemos desarrollado nos ayudará a encontrar puntos críticos para funciones de varias variables.

Tarea moral

  1. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $y$ como funciones implícitas de $u$ y $v$, sean éstas $x=X(u,v)$ y $y=Y(u,v)$. Demuestra que $\partial X/\partial u=(xv-1)/(x-y)$ si $x\neq y$, y halla las fórmulas para $\partial X/\partial v$, $\partial Y/\partial v$, $\partial Y/\partial u$.
  2. Las tres ecuaciones \[ \left\{\begin{matrix} x^{2}-y\hspace{0.1cm}cos\hspace{0.1cm}(uv)+z^{2}=0, \\ x^{2}+y^{2}-\hspace{0.1cm}sen\hspace{0.1cm}(uv)+2z^{2}=2, \\ xy-\hspace{0.1cm}sen\hspace{0.1cm}u\hspace{0.1cm}cos\hspace{0.1cm}v+z=0 \end{matrix}\right.\] definen $x$, $y$, y $z$ como funciones de $u$ y $v$. Calcula las derivadas parciales $\partial x/\partial u$ y $\partial x/\partial v$ en el punto $x=y=1$, $u=\pi /2$, $v=0$, $z=0$.
  3. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $v$ como funciones de $u$ y $y$, sean éstas $x=X(u,v)$ y $v=V(u,y)$. Demuestra que $\partial X/\partial u=(u+v)/(1+yu)$ si $1+yu\neq 0$ y halla las fórmulas de $\partial X/\partial y$, $\partial V /\partial u$, $\partial V /\partial y$.
  4. Sigue las ideas de los resultados de la entrada anterior para escribir una calca de ella pero ahora para $f:S\subseteq \mathbb{R}^{m} \times \mathbb{R}^{l}$, en donde la función que se busca tiene ahora dominio en $\mathbb{R}^{m}$ que pone a las variables del dominio $\mathbb{R}^l$ en términos de las de $\mathbb{R}^m$.
  5. Haz un esfuerzo extra, y medita nuevamente en el teorema de la función implícita tratando de escribir una demostración de como sería el asunto para $f$ con dominio en $\mathbb{R}^{m}\times \mathbb{R}^{l}\times \mathbb{R}^{k}$. ¿Se podrá hallar la función $h$, pero ahora con dominio en $\mathbb{R}^{l}$?

Entradas relacionadas

Cálculo Diferencial e Integral III: Demostración del teorema de la función inversa

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior empezamos a hablar del teorema de la función inversa. Dimos su enunciado y probamos varias herramientas que nos ayudarán ahora con su demostración.

Recordemos que lo que queremos demostrar es lo siguiente.

Teorema (de la función inversa). Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$. Si $Df(\bar{a})$ es invertible, entonces, existe $\delta >0$ tal que:

  1. $B_{\delta}(\bar{a})\subseteq S$ y $f$ es inyectiva en $B_{\delta}(\bar{a})$.
  2. $f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es continua en $f(B_{\delta}(\bar{a}))$.
  3. $f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}$ es un conjunto abierto.
  4. $f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$ y además, si $\bar{x}=f(\bar{v})\in f(B_{\delta}(\bar{a}))$, entonces, $Df^{-1}(\bar{x})=Df^{-1}(f(\bar{v}))=(Df(\bar{v}))^{-1}$.

La herramienta más importante que probamos en la entrada anterior nos dice que si una función $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^n$ es de clase $C^1$, $\bar{a}\in S$ y $DF(\bar{a})$ es invertible, entonces existe una $\delta>0$ tal que $B_\delta(\bar{a})\subseteq S$ y $Df(\bar{b})$ es invertible para todo $\bar{b}\in B_\delta(\bar{a})$. Veremos cómo esta herramienta y otras que desarrollaremos en el transcurso de esta entrada nos permiten demostrar el teorema.

La función $f$ es inyectiva en una vecindad de $\bar{a}$

Vamos a enfocarnos en el punto $(1)$ del teorema. Veremos que existe la $\delta$ que hace que la función restringida a la bola de radio $\delta$ centrada en $\bar{a}$ es inyectiva. En esta parte de la prueba es conveniente que recuerdes que la norma infinito de un vector $(x_1,\ldots,x_n)\in \mathbb{R}^n$ es $$||\bar{x}||_{\infty}:=máx\{ |x_{1}|,\dots ,|x_{n}|\}.$$

Además, cumple para todo $\bar{x}\in \mathbb{R}^{n}$ que $$||\bar{x}||\leq \sqrt{n} ||\bar{x}||_{\infty}.$$

Veamos que bajo las hipótesis del problema se puede acotar $||f(\bar{u})-f(\bar{v})||$ en términos de $||\bar{u}-\bar{v}||$ dentro de cierta bola.

Proposición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el conjunto abierto $S$, y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existe $\delta >0$ y $\varepsilon>0$ tal que $B_{\delta}(\bar{a})\subseteq S$ y $||f(\bar{u})-f(\bar{v})||\geq \varepsilon||\bar{u}-\bar{v}||$ para cualesquiera $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$.

Demostración. Por la diferenciabilidad de $f$ en $\bar{a}$, tenemos

\[ Df(\bar{a})(\bar{x})=\begin{pmatrix} \triangledown f_{1}(\bar{a})\cdot \bar{x} \\ \vdots \\ \triangledown f_{n}(\bar{a})\cdot \bar{x}\end{pmatrix} \]

para cada $\bar{a}\in S$ y cada $\bar{x}\in \mathbb{R}^{n}$.

Como $Df(\bar{a})$ es invertible, por los resultados de la entrada anterior existe un $m>0$ tal que

\[ ||Df(\bar{a})(\bar{x})||\geq m||\bar{x}|| \]

para todo $\bar{x}\in \mathbb{R}^{n}$.

También por resultados de la entrada anterior, para $\epsilon:=\frac{m}{2\sqrt{n}}>0$ existe $\delta >0$ tal que si $\bar{b}\in B_{\delta}(\bar{a})\subseteq S$ entonces

\[||(Df(\bar{b})-Df(\bar{a}))(\bar{x})||\leq \frac{m}{2\sqrt{n}}||\bar{x}||\]

para todo $\bar{x}\in \mathbb{R}^{n}$.

Usaremos en un momento estas desigualdades, pero por ahora fijemos nuestra atención en lo siguiente. Dados $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$, tomemos el $k\in \{1,\dots ,n\}$ tal que $$||Df(\bar{a})(\bar{u}-\bar{v})||_{\infty}=|\triangledown f_{k}(\bar{a})\cdot (\bar{u}-\bar{v})|.$$

Para dicho $k$, tenemos

\begin{align*}
|\triangledown f_{k}(\bar{a})\cdot (\bar{u}- \bar{v})|&=||Df(\bar{a})(\bar{u}-\bar{v})||_{\infty}\\
&\geq \frac{1}{\sqrt{n}}||Df(\bar{a})(\bar{u}-\bar{v})||.
\end{align*}

¿Cómo podemos seguir con nuestras desigualdades? Necesitamos usar el teorema del valor medio. Bastará el que demostramos para campos escalares. Aplicándolo a $f_k$ en los puntos $\bar{u},\bar{v}$ cuyo segmento se queda en la bola convexa $B_\delta(\bar{a})$, podemos concluir que existe un vector $\bar{w}$ en el segmento $\bar{\bar{u}\bar{v}}$ que cumple

$$f_k(\bar{u})-f_k(\bar{v})=\triangledown f(\bar{w}) \cdot (\bar{u}-\bar{v}).$$

Sabemos que para cualquier vector el valor absoluto de cualquiera de sus coordenadas es en valor menor o igual que la norma del vector. Además, demostramos inicialmente unas desigualdades anteriores. Juntando esto, obtenemos la siguiente cadena de desigualdades:

\begin{align*}
||f(\bar{u})-f(\bar{v})||&\geq |f_{k}(\bar{u})-f_{k}(\bar{v})|\\
&=|\triangledown f(\bar{w}) \cdot (\bar{u}-\bar{v})|\\
&\geq |\triangledown f_k(\bar{a})\cdot (\bar{u}-\bar{v})|-|\triangledown f_k(\bar{w}) \cdot (\bar{u}-\bar{v})-\triangledown f_k(\bar{a})\cdot (\bar{u}-\bar{v})|\\
&\geq \frac{1}{\sqrt{n}}||Df(\bar{a})(\bar{u}-\bar{v})|| – ||Df(\bar{w})(\bar{u}-\bar{v})-Df(\bar{a})(\bar{u}-\bar{v})||\\
&\geq \frac{1}{\sqrt{n}}(m||\bar{u}-\bar{v}||)-\frac{m}{2\sqrt{n}}||\bar{u}-\bar{v}||\\
&=\frac{m}{2\sqrt{n}}||\bar{u}-\bar{v}||\\
&=\varepsilon||\bar{u}-\bar{v}||.
\end{align*}

La gran conclusión de esta cadena de desigualdades es que $$||f(\bar{u})-f(\bar{v})||\geq \varepsilon||\bar{u}-\bar{v}||,$$ que es lo que buscábamos.

$\square$

¡Esto es justo lo que nos pide el primer punto! Hemos encontrado una bola alrededor de $\bar{a}$ dentro de la cual si $\bar{u}\neq \bar{v}$, entonces $||f(\bar{u})-f(\bar{v})||\geq \varepsilon ||\bar{u}-\bar{v}||>0$, de modo que $f(\bar{u})\neq f(\bar{v})$. ¡La función restringida en esta bola es invertible! En términos geométricos el último teorema nos dice lo siguiente: Si $f$ es diferenciable en un abierto $S$, y $Df(\bar{a})$ es invertible, entonces hay una vecindad alrededor de $\bar{a}$ en donde $f$ «no se pega», es decir $f$ es inyectiva.

Figura 1: Si la función no es inyectiva, lo que tenemos es que proyecta el rectángulo $\mathcal{R}$ en una superficie que pega los puntos $\bar{a}$ y $\bar{b}$. Arriba una función inyectiva y abajo una que no lo es.

Ya vimos cómo encontrar una bola $B_\delta(\bar{a})$ dentro de la cual $f$ es inyectiva. Si pensamos que el contradominio es exactamente $f(B_\delta(\bar{a}))$, entonces la función también es suprayectiva. Esto hace que sea biyectiva y por tanto que tenga inversa $f^{-1}$.

La función inversa es continua

Veamos ahora que la función inversa es continua. De hecho, mostraremos algo un poco más fuerte.

Teorema. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$, y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existe $\delta >0$ tal que $B_{\delta}(\bar{a})\subseteq S$, $f$ es inyectiva en $B_{\delta}(\bar{a})$ y además $f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es uniformemente continua en su dominio.

Demostración. La primera parte y la existencia de $f^{-1}:f(B_\delta(a))\subseteq \mathbb{R}^n \to \mathbb{R}^n$ se debe a la discusión de la sección anterior. De hecho, lo que mostramos es que existe $\delta >0$ y $\varepsilon>0$ tal que $||f(\bar{v})-f(\bar{u})||\geq \varepsilon||\bar{v}-\bar{u}||$ para todo $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$.

Supongamos que nos dan un $\varepsilon^\ast$. Tomemos $\delta^\ast=\varepsilon^\ast \varepsilon$. Tomemos $\bar{x},\bar{y}$ en $f(B_\delta(\bar{a}))$ tales que $||\bar{y}-\bar{x}||<\delta ^{\ast}$. Como $\bar{x}$ y $\bar{y}$ están en dicha bola, podemos escribirlos como $\bar{x}=f(\bar{u})$, $\bar{y}=f(\bar{v})$ con $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$. Notemos entonces que

\begin{align*}
||f^{-1}(\bar{y})-f^{-1}(\bar{x})||&=||\bar{v}-\bar{u}||\\
&\leq \frac{1}{\varepsilon}||f(\bar{v})-f(\bar{u})||\\
&= \frac{1}{\varepsilon}||\bar{y}-\bar{x}||\\
&<\frac{\varepsilon^\ast\varepsilon}{\varepsilon}\\
&=\varepsilon^\ast.
\end{align*}

Tenemos entonces que $f^{-1}$ es uniformemente continua en $f(B_\delta(\bar{a}))$.

$\square$

Esto demuestra el punto $(2)$ de nuestro teorema. La prueba de que el conjunto $f(B_\delta(\bar{a}))$ es abierto no es para nada sencilla como parecería ser. Una demostración muy instructiva, al nivel de este curso, se puede encontrar en el libro Cálculo diferencial de varias variables del Dr. Javier Páez Cárdenas editado por la Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM) en las páginas 474-476.

La función inversa es diferenciable

Resta hacer la demostración de $(4)$. En esta sección veremos que la inversa $f^{-1}$ es derivable y que la derivada es precisamente lo que propone el teorema. En la siguiente sección veremos que la inversa es $C^1$.

Tomemos un punto $\bar{x}_0=f(\bar{v}_0)\in f(B_{\delta}(\bar{a}))$. Mostraremos que, en efecto, $T=(Df(\bar{v}_0))^{-1}$ es la derivada de $f^{-1}$ en $\bar{x}_0$, lo cual haremos por definición verificando que

\[ \lim\limits_{\bar{x}\to \bar{x}_{0}}\frac{f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})-T(\bar{x}-\bar{x}_{0})}{||\bar{x}-\bar{x}_{0}||}=0.\]

Para ello, introducimos la siguiente función auxiliar $g:B_{\delta}(\bar{a})\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ dada por:

\[ g(\bar{v})=\left\{ \begin{matrix} \frac{\bar{v}-\bar{v}_{0}-T(f(\bar{v})-f(\bar{v}_{0}))}{||f(\bar{v})-f(\bar{v}_{0})||} & \bar{v}\neq \bar{v}_{0} \\ \bar{0} & \bar{v}=\bar{v}_{0}. \end{matrix} \right. \]

Esta función está bien definida, pues $f$ es inyectiva en la bola $B_{\delta}(\bar{a})$. La composición $g\circ f^{-1}$ también está bien definida en el abierto $f(B_{\delta}(\bar{a}))$ y

\[ (g\circ f^{-1})(\bar{x})=\left\{ \begin{matrix} \frac{f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})-T(\bar{x}-\bar{x}_{0})}{||\bar{x}-\bar{x}_{0}||} & \bar{x}\neq \bar{x}_{0} \\ \bar{0} & \bar{x}=\bar{x}_{0} \end{matrix} \right.\]

para todo $\bar{x}\in f(B_{\delta}(\bar{a}))$. Esto nos permite poner el límite buscado como el límite de una composición de la siguiente forma:

\[ \lim\limits_{\bar{x}\to \bar{x}_{0}}\frac{f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})-T(\bar{x}-\bar{x}_{0})}{||\bar{x}-\bar{x}_{0}||}=\lim\limits_{\bar{x}\to \bar{x}_{0}}(g\circ f^{-1})(\bar{x}) \]

Como $f^{-1}$ es continua en $\bar{x}_{0}$, basta demostrar que $g$ es continua en $\bar{v}_{0}=f^{-1}(\bar{x}_{0})$. Esto equivale a probar que

\[ \lim\limits_{\bar{v}\to \bar{v}_{0}}g(\bar{v})=\lim\limits_{\bar{v}\to \bar{v}_{0}}\frac{\bar{v}-\bar{v}_{0}-(Df(\bar{v}_{0}))^{-1}(f(\bar{v})-f(\bar{v}_{0})))}{||f(\bar{v})-f(\bar{v}_{0})||}=0.\]

Hay que demostrar este último límite. Reescribimos la expresión

$$\frac{\bar{v}-\bar{v}_{0}-(Df(\bar{v}_{0}))^{-1}(f(\bar{v})-f(\bar{v}_{0}))}{||f(\bar{v})-f(\bar{v}_{0})||}$$ como

$$\frac{(Df(\bar{v}_{0}))^{-1}[Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})-(f(\bar{v})-f(\bar{v}_{0}))]}{||f(\bar{v})-f(\bar{v}_{0})||},$$

y luego multiplicamos y dividimos por $||\bar{v}-\bar{v}_0||$ y reorganizamos para obtener

\[ -\frac{||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}(Df(\bar{v}_{0}))^{-1}\left( \frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right).\]

Como $(Df(\bar{v}_{0}))^{-1}$ es continua (por ser lineal) y $f$ es diferenciable en $\bar{v}_{0}$, se tiene que

\begin{align*}
\lim\limits_{\bar{v}\to \bar{v}_{0}}(Df(\bar{v}_{0}))&^{-1}\left( \frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right)\\
&=(Df(\bar{v}_{0}))^{-1}\left( \lim\limits_{\bar{v}\to \bar{v}_{0}}\frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right)\\
&=(Df(\bar{v}_{0}))^{-1}(\bar{0})\\
&=\bar{0}.
\end{align*}

El factor que nos falta entender es $\frac{||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}$. Pero por la primera proposición de esta entrada, sabemos que existe una $\epsilon>0$ que acota este factor superiormente por $\frac{1}{\epsilon}$. De esta manera,

\[ \lim\limits_{\bar{v}\to \bar{v}_{0}}g(\bar{v})=\cancelto{acotado}{\lim\limits_{\bar{v}\to \bar{v}_{0}}\frac{-||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}}\cancelto{0}{(Df(\bar{v}_{0}))^{-1}\left( \frac{f(\bar{v})-f(\bar{v}_{0})-Df(\bar{v}_{0})(\bar{v}-\bar{v}_{0})}{||\bar{v}-\bar{v}_{0}||}\right)}=0.\]

Esto nos dice entonces que $g$ es continua en $\bar{v}_0$ y por lo tanto:

\begin{align*}
\lim\limits_{\bar{x}\to \bar{x}_{0}}(g\circ f^{-1})(\bar{x}) &= g\left(\lim_{\bar{x}\to \bar{x}_0} f^{-1}(\bar{x})\right)\\
&=g(f^{-1}(\bar{x}_0))\\
&=g(\bar{v}_0)\\
&=\bar{0}.
\end{align*}

Por lo tanto $f^{-1}$ es diferenciable en $\bar{x}_{0}$ mediante la derivada que propusimos, es decir,

\[ Df^{-1}(\bar{x}_{0})=Df^{-1}(f(\bar{v}_{0}))=(Df(\bar{v}_{0}))^{-1}=(Df(f^{-1}(\bar{x}_{0})))^{-1} \]

para todo $\bar{x}_0\in f(B_{\delta}(\bar{a}))$.

La función inversa es de clase $C^1$

Resta verificar que $f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$. Lo haremos con la caracterización de la entrada anterior. Tomemos una $\mu>0$. Nos gustaría ver que si $\bar{x}$ y $\bar{x}_0$ están suficientemente cerca, entonces

$$||Df^{-1}(\bar{x})(\bar{z})-Df^{-1}(\bar{x}_{0})(\bar{z})||<\mu ||\bar{z}||$$

para toda $\bar{z} \in \mathbb{R}^n$.

Recordemos que por la entrada anterior hay una $m>0$ tal que para todo $\bar{z}$ en $\mathbb{R}^n$ se cumple

\begin{equation}
\label{eq:clasec1}
\frac{1}{m}||\bar{z}||=\frac{1}{m}|Df(\bar{v})((Df(\bar{v}))^{-1})(\bar{z})||\geq ||(Df(\bar{v}))^{-1}(\bar{z})||
\end{equation}

También notemos que, si $X,Y$ son matrices invertibles en $M_n(\mathbb{R})$, tenemos:

$$X^{-1}(Y-X)Y^{-1}=X^{-1}YY^{-1}-X^{-1}XY^{-1}=X^{-1}-Y^{-1}.$$

Tomando $X=Df(\bar{v})$ y $Y=Df(\bar{v}_0)$, aplicando la igualdad anterior en un punto $\bar{x}$ en $\mathbb{R}^n$, sacando normas y usando la desigualdad \eqref{eq:clasec1}, obtenemos:

\begin{align*}
||(X^{-1}-Y^{-1})(\bar{z})||&=||(X^{-1}(Y-X)Y^{-1})(\bar{z})||\\
&\leq \frac{1}{m} ||((Y-X)Y^{-1})(\bar{z})||\\
&=\frac{1}{m}||((Df(\bar{v}_0)-Df(\bar{v}))Df^{-1}(f(\bar{v}_0)))(\bar{z})||.
\end{align*}

Como $f$ es de clase $C^1$, por la entrada anterior podemos construir una $\delta^\ast$ tal que $B_{\delta^\ast}(\bar{v}_0)\subseteq B_\delta(\bar{a})$ y para la cual si $\bar{v}$ está en $B_{\delta^\ast}(\bar{v}_0)$, entonces:

\[ \begin{equation}||(Df(\bar{v}_{0})-Df(\bar{v}))(\bar{z})||\leq m^{2}\mu||\bar{z}||\end{equation}.\]

Para todo $\bar{x}\in \mathbb{R}^{n}$.

Finalmente, como $f^{-1}$ es continua en $f(B_{\delta}(\bar{a}))$, si $\bar{x}$ y $\bar{x}_0$ están suficientemente cerca, digamos $||\bar{x}-\bar{x}_0||<\nu$, entonces

\[ \begin{equation}||f^{-1}(\bar{x})-f^{-1}(\bar{x}_{0})||=||\bar{v}-\bar{v}_{0}||<\delta ^\ast.\end{equation}.\]

Usamos todo lo anterior para establecer la siguiente cadena de desigualdades cuando $||\bar{x}-\bar{x}_0||<\nu$:

\begin{align*}
||Df^{-1}(\bar{x})(\bar{z})-Df^{-1}(\bar{x}_{0})(\bar{z})||&=||Df^{-1}(f(\bar{v}))(\bar{z})-Df^{-1}(f(\bar{v}_{0}))(\bar{z})||\\
&\leq \frac{1}{m}||[Df(\bar{v}_{0})-Df(\bar{v})](Df^{-1}(f(\bar{v}_{0})))(\bar{z})||\\
&\leq \frac{1}{m}\left( m^{2}\mu ||Df^{-1}(f(\bar{v}_{0}))(\bar{z})||\right) \\
&=m\mu ||Df^{-1}(f(\bar{v}_{0}))(\bar{z})||\\
&\leq m\mu \left( \frac{1}{m}||\bar{z}||\right)\\
&=\mu||\bar{z}||.
\end{align*}

Esto implica que $f^{-1}$ es de clase $C^1$. Como tarea moral, revisa los detalles y di explícitamente qué resultado de la entrada anterior estamos usando.

$\square$

Ejemplo del teorema de la función inversa

Ejemplo. Consideremos $\xi :\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $\xi (r,\theta, \phi)=(r\hspace{0.15cm}sen \phi \hspace{0.15cm}cos\theta ,r\hspace{0.15cm} sen \phi \hspace{0.15cm}sen\theta ,r\hspace{0.15cm}cos \phi)$. Se tiene que $\xi$ es diferenciable en todo su dominio pues cada una de sus derivadas parciales es continua. Esta es la función de cambio de coordenadas de esféricas a rectangulares o cartesianas. La matriz jacobiana está dada como sigue.

\[ D\xi (r,\theta ,\phi )=\begin{pmatrix} sen\phi \hspace{0.1cm}cos\theta & -r\hspace{0.1cm}sen\phi \hspace{0.1cm}sen\theta & r\hspace{0.1cm}cos\phi \hspace{0.1cm}cos\theta \\ sen\phi \hspace{0.1cm}sen\theta & r\hspace{0.1cm}sen\phi \hspace{0.1cm}cos\theta & r\hspace{0.1cm}cos\phi \hspace{0.1cm}sen\theta \\ cos\phi & 0 & -r\hspace{0.1cm}sen\phi \end{pmatrix}.\]

Luego $\det(D\xi (r,\theta ,\phi ))=-r^{2}\hspace{0.1cm}sen\phi$ entonces $D\xi$ es invertible cuando $r\neq 0$ y $\phi \neq k\pi$, $k\in \mathbb{Z}$. Su inversa es:

\[ (D\xi (r,\theta ,\phi ))^{-1}=\begin{pmatrix} sen\phi \hspace{0.1cm}cos\theta & sen\phi \hspace{0.1cm}sen\theta & cos\phi \\ -\frac{sen\theta}{r\hspace{.01cm}sen\phi} & \frac{cos\theta}{r\hspace{0.1cm}sen\phi} & 0 \\ \frac{1}{r}\hspace{0.1cm}cos\theta \hspace{0.1cm}cos\phi & \frac{1}{r}\hspace{0.1cm}cos\phi \hspace{0.1cm}sen\theta & -\frac{1}{r}\hspace{0.1cm}sen\phi \end{pmatrix}.\]

El teorema de la función inversa nos garantiza la existencia local de una función $\xi ^{-1}$. En este caso, sería la función de cambio de coordenadas rectangulares a esféricas. Si $f:S\subseteq \mathbb{R}^{3}\rightarrow \mathbb{R}$ es una función $C^{1}$ dada en coordenadas esféricas; podemos asumir que $f\circ \xi ^{-1}$ es la misma función pero en términos de coordenadas rectangulares.

$\triangle$

Más adelante…

¡Lo logramos! Hemos demostrado el teorema de la función inversa, uno de los resultados cruciales de nuestro curso. El siguiente tema es el teorema de la función implícita, que será otro de nuestros resultados principales. Uno podría pensar que nuevamente tendremos que hacer una demostración larga y detallada. Pero afortunadamente la demostración del teorema de la función implícita se apoya fuertemente en el teorema de la función inversa que ya demostramos. En la siguiente entrada enunciaremos y demostraremos nuestro nuevo resultado y una entrada más adelante veremos varios ejemplos para profundizar en su entendimiento.

Tarea moral

  1. En el ejemplo que dimos, verifica que el determinante en efecto es $-r^2\sin\phi$. Verifica también que la inversa es la matriz dada.
  2. Repasa cada una de las demostraciones de esta entrada y asegúrate de entender por qué se siguen cada una de las desigualdades. Explica en qué momentos estamos usando resultados de la entrada anterior.
  3. Da la función inversa de la transformación de cambio de coordenadas polares a rectangulares $g(r,\theta)=(r\hspace{0.1cm}cos\theta , r\hspace{0.1cm}sen\theta )$.
  4. Demuestra que para todo $\bar{x}\in \mathbb{R}^{n}$ se tiene $||\bar{x}||\leq \sqrt{n}||\bar{x}||_{\infty}.$
  5. Verifica que en efecto $||\cdot||_{\infty}$ es una norma.

Entradas relacionadas

Cálculo Diferencial e Integral III: Polinomio característico

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior estudiamos las representaciones matriciales de una transformación lineal. Vimos cómo dadas ciertas bases del espacio dominio y codominio, existe un isomorfismo entre matrices y transformaciones lineales. Así mismo, planteamos la pregunta de cómo encontrar bases para que dicha forma matricial sea sencilla. Vimos que unos conceptos cruciales para entender esta pregunta son los de eigenvalor, eigenvector y eigenespacio. Lo que haremos ahora es introducir una nueva herramienta que nos permitirá encontrar los eigenvalores de una transformación: el polinomio característico.

A partir del polinomio característico daremos un método para encontrar también a los eigenvectores y, en algunos casos especiales, encontrar una representación de una transformación lineal como matriz diagonal. Todo lo que hacemos es una versión resumida de lo que se puede encontrar en un curso más completo de álgebra lineal. Dentro del blog, te recomendamos consultar las siguientes entradas:

Polinomio característico

Pensemos en el problema de hallar los eigenvalores de una transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$. Si $\lambda \in \mathbb{R}$ es uno de estos eigenvalores, queremos poder encontrar vectores $\bar{v}\neq \bar{0}$ tales que $T(\bar{v})=\lambda \bar{v}$. Esto sucede si y sólo si $\lambda \bar{v}-T(\bar{v})=\bar{0}$, lo cual sucede si y sólo si $(\lambda \text{Id}-T)(\bar{v})=\bar{0}$, en donde $\text{Id}:\mathbb{R}^n\to \mathbb{R}^n$ es la transformación identidad de $\mathbb{R}^n$ en $\mathbb{R}^n$. Tenemos de esta manera que $\bar{v}$ es un eigenvector si y sólo si $\bar{v}\in \ker(\lambda\text{Id}-T)$.

Si existe $\bar{v}\neq \bar{0}$ tal que $\bar{v}\in \ker(\lambda \text{Id}-T)$; entonces $\ker(\lambda \text{Id}-T)\neq \{ \bar{0}\}$ por lo cual la transformación $\lambda \text{Id}-T$ no es invertible, pues no es inyectiva. Así, en ninguna base $\text{Mat}_\beta(\lambda \text{Id}-T)$ es invertible, y por tanto su determinante es $0$. Estos pasos son reversibles. Concluimos entonces que $\lambda\in \mathbb{R}$ es un eigenvalor de $T$ si y sólo si en alguna base $\beta$ se cumple que $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0.$ Esto motiva la siguiente definición.

Definición. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Llamamos a $\det(\text{Mat}_\beta(\lambda \text{Id} – T))$ al polinomio característico de $T$ en la base $\beta$.

Por la discusión anterior, los escalares que cumplen $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0$ son los eigenvalores $T$. Para obtener los correspondientes eigenvectores, basta con resolver $\text{Mat}_\beta(T)X=\lambda X$, lo cual es un sistema de ecuaciones en el vector de variables $X$. Las soluciones $X$ nos darán las representaciones matriciales de vectores propios $\bar{v}\in \mathbb{R}^n$ en la base $\beta$.

Por el momento parece ser que tenemos mucha notación, pues debemos considerar la base en la que estamos trabajando. Un poco más adelante veremos que en realidad la base no importa mucho para determinar el polinomio característico. Pero por ahora, veamos un ejemplo concreto de las ideas platicadas hasta ahora.

Ejemplo: Consideremos $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $T(x,y,z)=(2x+z,y+x,-z)$. Calculemos su representación matricial con respecto a la base canónica $\beta$. Para ello, realizamos las siguientes evaluaciones:
\begin{align*}
T(1,0,0)&=(2,1,0)\\
T(0,1,0)&=(0,1,0)\\
T(0,0,1)&=(1,0,-1),
\end{align*}

de donde: $$\text{Mat}_\beta=\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Calculando el polinomio característico obtenemos: \[ det\begin{pmatrix} \lambda-2 & 0 & -1 \\ -1 & \lambda-1 & 0 \\ 0 & 0 & \lambda+1 \end{pmatrix}= (\lambda-2)(\lambda-1)(\lambda+1). \]

Las raíces de $(\lambda-2)(\lambda-1)(\lambda+1)$ son $\lambda_{1}=2$, $\lambda_{2}=1$ y $\lambda_{3}=-1$. Pensemos ahora en quiénes son los eigenvectores asociados a cada eigenvalor. Tomemos como ejemplo el eigenvalor $\lambda=2$. Para que $(x,y,z)$ represente a un eigenvector en la base canónica, debe pasar que:

\[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix},\]

lo cual sucede si y sólo si:

\[\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} – 2\begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};\]

\[\left[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} – 2\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right] \begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};\]

\[\begin{pmatrix} 0 & 0 & 1 \\ 1 & -1& 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

De aquí, podemos llegar a la siguiente forma escalonada reducida del sistema de ecuaciones:

\[\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

En esta forma es sencillo leer las soluciones. Tenemos que $z$ es variable pivote con $z=0$, que $y$ es variable libre, y que $x$ es variable pivote dada por $x=y$. Concluimos entonces que todos los posibles eigenvectores para el eigenvalor $2$ son de la forma $(y,y,0)$, es decir $E_2=\{(y,y,0): y \in \mathbb{R}\}$.

Queda como tarea moral que encuentres los eigenvectores correspondientes a los eigenvalores $1$ y $-1$.

$\triangle$

Matrices similares

En la sección anterior definimos el polinomio de una transformación lineal en términos de la base que elegimos para representarla. En realidad, la base elegida no es muy importante. Demostraremos un poco más abajo que dos representaciones matriciales cualesquiera de una misma transformación lineal tienen el mismo polinomio característico. Para ello, comencemos con la siguiente discusión.

Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal y sean $\beta_1=\{ \bar{e}_{1}, \dots , \bar{e}_{n}\}$, $\beta_2=\{ \bar{u}_{1}, \dots , \bar{u}_{n}\}$ dos bases (ordenadas) de $\mathbb{R}^n$. Supongamos que:

\begin{align*}
A&=\text{Mat}_{\beta_1}(T)=[a_{ij}]\\
B&=\text{Mat}_{\beta_2}(T)=[b_{ij}].
\end{align*}

Por cómo se construyen las matrices $A$ y $B$, tenemos que:

\begin{align*}
T(\bar{e}_j)&=\sum_{i=1}^n a_{ij} \bar{e}_i\quad\text{para $j=1,\ldots,n$}\\
T(\bar{u}_k)&=\sum_{j=1}^n b_{jk} \bar{u}_j\quad\text{para $k=1,\ldots,n$}.
\end{align*}

Como $\beta_{1}$ es base, podemos poner a cada un de los $\bar{u}_k$ de $\beta_{2}$ en términos de la base $\beta_{1}$ mediante combinaciones lineales, digamos:

\begin{equation}
\bar{u}_{k}=\sum_{j=1}^{n}c_{jk}\bar{e}_{j}
\label{eq:valor-u}
\end{equation}

en donde los $c_{jk}$ son escalares para $j=1,\ldots, n$ y $k=1,\ldots,n$. La matriz $C$ de $n\times n$, con entradas $c_{jk}$ representa a una transformación lineal invertible, ya que es una transformación que lleva uno a uno los vectores de una base a otra. Afirmamos que $CB=AC$. Para ello, tomaremos una $k$ en $[n]$ y expresaremos $T(\bar{u}_k)$ de dos formas distintas.

Por un lado, usando \eqref{eq:valor-u} y por como es cada $T(\bar{e}_k)$ en la base $\beta_{1}$ tenemos que:

\begin{align*}
T(\bar{u}_k)&=\sum_{j=1}^n c_{jk} T(\bar{e}_j)\\
&=\sum_{j=1}^n c_{jk} \sum_{i=1}^n a_{ij} \bar{e}_i\\
&=\sum_{j=1}^n \sum_{i=1}^n (c_{jk} a_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (c_{jk} a_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} c_{jk}\right) \bar{e}_i.
\end{align*}

Por otro lado, usando $\eqref{eq:valor-u}$ y por como es cada $T(\bar{u}_k)$ en la base $\beta_{2}$:

\begin{align*}
T(\bar{u}_k)&=\sum_{j=1}^nb_{jk} \bar{u}_j\\
&=\sum_{j=1}^n b_{jk} \sum_{i=1}^{n}c_{ji}\bar{e}_{j} \\
&=\sum_{j=1}^n \sum_{i=1}^n (b_{jk} c_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (b_{jk} c_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n c_{ij} b_{jk} \right) \bar{e}_i.
\end{align*}

Comparemos ambas expresiones para $T(\bar{u}_k)$. La primera es una combinación lineal de los $\bar{e}_i$ y la segunda también. Como $T(\bar{u}_k)$ tiene una única expresión como combinación lineal de los $\bar{e}_i$, entonces los coeficientes de la combinación lineal deben coincidir. Concluimos que para cada $i$ se cumple:

$$\sum_{j=1}^n a_{ij} c_{jk}=\sum_{j=1}^n c_{ij} b_{jk}.$$

Pero esto precisamente nos dice que la entrada $(i,k)$ de la matriz $AC$ es igual a la entrada $(i,k)$ de la matriz $CB$. Con esto concluimos que $AC=CB$, como queríamos.

En resumen, obtuvimos que para dos matrices $A$ y $B$ que representan a la misma transformación lineal, existe una matriz invertible $C$ tal que: $B=C^{-1}AC$. Además $C$ es la matriz con entradas dadas por \eqref{eq:valor-u}.

Introduciremos una definición que nos permitirá condensar en un enunciado corto el resultado que hemos obtenido.

Definición. Dos matrices $A$ y $B$ se llamarán similares (o semejantes), cuando existe otra matriz $C$ invertible tal que $B=C^{-1}AC$.

Sintetizamos nuestro resultado de la siguiente manera.

Proposición. Si dos matrices representan a la misma transformación lineal, entonces estas matrices son similares.

El recíproco de la proposición también se cumple, tal y como lo afirma el siguiente resultado.

Proposición. Sean $A$ y $B$ matrices similares. Entonces $A$ y $B$ representan a una misma transformación lineal $T$, quizás bajo distintas bases.

Demostración: Supongamos que las matrices $A$ y $B$ son similares con $B=C^{-1}AC$, donde las matrices $A$, $B$, $C$ están dadas por entradas $A=[a_{ij}]$ $B=[b_{ij}]$, $C=[c_{jk}]$. Tomemos una base ordenada $\beta=\{\bar{e}_{1}, \dots ,\bar{e}_{n}\}$ de $\mathbb{R}^n$. Consideremos la transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$ dada por $$T(\bar{e}_j)=\sum_{i=1}^n a_{ij} \bar{e}_i.$$

De esta manera $T$ tiene forma matricial $A$ en la base $\beta$.

Construyamos ahora una nueva base ordenada de $\mathbb{R}^n$ dada por vectores $\bar{u}_k$ para $k=1,\ldots,n$ construidos como sigue:

$$\bar{u}_{k}=\sum_{j=1}^{n}c_{jk}\bar{e}_{j}.$$

Como $C$ es invertible, en efecto tenemos que $\beta’:=\{\bar{u}_1,\ldots,\bar{u}_n\}$ también es base de $\mathbb{R}^n$. Además, de acuerdo con las cuentas que hicimos anteriormente, tenemos que precisamente la forma matricial de $T$ en la base $\beta’$ será $B$.

Así, hemos exhibido una transformación $T$ que en una base tiene representación $A$ y en otra tiene representación $B$.

$\square$

Juntando ambos resultados en uno solo, llegamos a lo siguiente.

Teorema. Dos matrices $A$ y $B$ en $M_n(\mathbb{R})$ son similares si y sólo si representan a una misma transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$, quizás bajo distintas bases.

El polinomio característico no depende de la base

Si dos matrices son similares, entonces comparten varias propiedades relevantes para el álgebra lineal. Veamos un ejemplo de esto.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal en un espacio sobre $\mathbb{R}$ de dimensión finita. Sean $\beta$ y $\beta’$ bases de $\mathbb{R}^n$. Entonces se obtiene lo mismo calculando el polinomio característico de $T$ en la base $\beta$, que en la base $\beta’$.

Demostración. Tomemos $A=\text{Mat}_{\beta}(T)$ y $B=\text{Mat}_{\beta’}(T)$. Como $A$ y $B$ representan a la misma transformación lineal $T$, entonces son similares y por lo tanto existe $C$ invertible con $B=C^{-1}AC$.

Para encontrar el polinomio característico de $T$ en la base $\beta$, necesitamos $\Mat_{\beta}(\lambda\text{Id}-T)$, que justo es $\lambda I -A$. Así mismo, en la base $\beta’$ tenemos $\lambda I – B$. Debemos mostrar que el determinante de estas dos matrices es el mismo. Para ello, procedemos como sigue:

\begin{align*}
\det(\lambda I -B) &= \det (\lambda C^{-1}C – C^{-1} A C)\\
&=\det(C^{-1}(\lambda I – A) C)\\
&=\det(C^{-1})\det(\lambda I – A) \det(C)\\
&=\det(C^{-1})\det(C)\det(\lambda I-A)\\
&=\det(I)\det(\lambda I-A)\\
&=\det(\lambda I-A).
\end{align*}

Aquí estamos usando que el determinante es multiplicativo. Cuando reordenamos expresiones con $\det$, lo hicimos pues los determinantes son reales, cuyo producto es conmutativo.

$\square$

Este teorema nos permite hablar del polinomio característico de una transformación lineal.

Concluimos esta entrada con un resultado que relaciona al polinomio característico de una transformación lineal, con la posibilidad de que exista una base cuya representación matricial sea diagonal.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Supongamos que el polinomio característico de $T$ tiene raíces distintas $\lambda_{1}, \dots ,\lambda_{n}$. Entonces se cumple lo siguiente:

  1. Si tomamos un eigenvector $\bar{u}_i$ para cada eigenvalor $\lambda_i$, entonces $\bar{u}_{1},\dots ,\bar{u}_{n}$ forman una base $\beta$ para $\mathbb{R}^n$.
  2. Con dicha base $\beta$, se cumple que $\text{Mat}_\beta(T)$ es una matriz diagonal con entradas $\lambda_{1},\dots ,\lambda_{n}$ en su diagonal.
  3. Si $\beta’$ es otra base de $\mathbb{R}^n$ y $A=\text{Mat}_{\beta’}(T)$, entonces $\text{Mat}_\beta(T) = C^{-1}AC$ para una matriz invertible $C$ con entradas dadas por \eqref{eq:valor-u}.

La demostración de este resultado queda como tarea moral.

Más adelante…

En la entrada planteamos entonces un método para encontrar los eigenvectores de una transformación $T$: 1) la transformamos en una matriz $A$, 2) encontramos el polinomio característico mediante $\det(\lambda I – A)$, 3) encontramos las raíces de este polinomio, 4) cada raíz es un eigenvalor y las soluciones al sistema lineal de ecuaciones $(\lambda I – A) X=0$ dan los vectores coordenada de los eigenvectores.

Como platicamos en la entrada, una condición suficiente para que una transformación de $\mathbb{R}^n$ a sí mismo sea diagonalizable es que tenga $n$ eigenvalores distintos. Otro resultado muy bonito de álgebra lineal es que si la transformación tiene alguna forma matricial simétrica, entonces también es diagonalizable. A esto se le conoce como el teorema espectral para matrices simétricas reales. En otros cursos de álgebra lineal se estudia la diagonalizabilidad con mucho detalle. Aquí en el blog puedes consultar el curso de Álgebra Lineal II.

Otra herramienta de álgebra lineal que usaremos en el estudio de la diferenciabilidad y continuidad de las funciones de $\mathbb{R}^{n}$ a $\mathbb{R}^{m}$ son las formas bilineales y las formas cuadráticas. En la siguiente entrada comenzaremos con estos temas.

Tarea moral

  1. Encuentra los eigenvectores faltantes del ejemplo de la sección de polinomio característico.
  2. Considera la transformación lineal $T(x,y,z)=(2x+z,y+x,-z)$ de $\mathbb{R}^3$ en $\mathbb{R}^3$. Nota que es la misma que la del ejemplo de la entrada. Encuentra su representación matricial con respecto a la base $\{(1,1,1),(1,2,3),(0,1,1)\}$ de $\mathbb{R}^3$. Verifica explícitamente que, en efecto, al calcular el polinomio característico con esta base se obtiene lo mismo que con la dada en el ejemplo.
  3. Demuestra que si $A$ y $B$ son dos representaciones matriciales de una misma transformación lineal $T$, entonces $\det(A)=\det(B)$.
  4. Sea $T:\mathbb{R}^{3}\to \mathbb{R}^{3}$ dada por $T(x,y,z)=(x+y+z,x,y)$. Encuentra los eigenvalores correspondientes a la transformación, y responde si es posible representarla con una matriz diagonal. En caso de que sí, encuentra explícitamente la base $\beta$ en la cual $\text{Mat}_{\beta}(T)$ es diagonal.
  5. Demuestra el último teorema de la entrada. Necesitarás usar resultados de la entrada anterior.

Entradas relacionadas

Cálculo Diferencial e Integral III: Representaciones matriciales, eigenvalores y eigenvectores

Por Alejandro Antonio Estrada Franco

Introducción

Como se ha mencionado anteriormente el objetivo de introducir ideas de álgebra lineal en cálculo diferencial es poder establecer una transformación lineal que sea la mejor aproximación lineal en un punto a una función dada. Esto nos ayudará a entender a la función dada en el punto en términos de otra función «más simple». Pero así mismo, las transformaciones lineales pueden ellas mismas pensarse en términos de transformaciones más sencillas. En esta entrada revisaremos esta idea y la conectaremos con la noción de eigenvectores.

Por un lado, recordaremos cómo es que una transformación lineal puede ser representada mediante una matriz una vez que se ha elegido una base del espacio vectorial. Luego, hablaremos de cómo elegir, de entre todas las bases, aquella que nos de una representación matricial lo más sencilla posible.

Representación matricial de las transformaciones lineales

Comencemos esta entrada repasando la importante relación entre transformaciones lineales y matrices. Denotaremos como $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ al espacio vectorial de transformaciones lineales de $\mathbb{R}^n$ a $\mathbb{R}^m$.

Si tomamos cualquier transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, entonces los valores de $T$ en cualquier vector de $\mathbb{R}^n$ quedan totalmente determinados por los valores de $T$ en los elementos de alguna base $\beta$ para $\mathbb{R}^n$. Tomemos $\gamma=\{\bar{w}_{1},\dots ,\bar{w}_{m}\}$ una base ordenada para $\mathbb{R}^m$, y $\beta=\{\bar{e}_{1},\dots ,\bar{e}_{n}\}$ una base ordenada para $\mathbb{R}^n$. Para cada $\bar{e}_{k}$ tenemos:

$$\begin{equation} T(\bar{e}_{k})=\sum_{i=1}^{m}t_{ik}\bar{w}_{i} \end{equation},$$

para algunos escalares $t_{1k},\dots ,t_{mk}$ que justo son las componentes de $T(\bar{e}_{k})$ en la base $\gamma$. Con estos escalares, podemos considerar la matriz: \[ \text{Mat}_{\gamma,\beta}(T)= \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \]

Esta es llamada la representación matricial de la transformación $T$ con respecto a las bases $\beta$ y $\gamma$. Esta matriz ayuda a calcular $T$ en cualquier vector de $\mathbb{R}^n$ como explicamos a continuación.

Para cada $\bar{v}\in \mathbb{R}^n$, podemos expresarlo como combinación lineal de elementos de la base $\beta$ digamos que $\bar{v}=\sum_{i=1}^{n} v_{i}\bar{e}_{i}$. Mediante estos coeficientes, podemos entonces asociar a $\bar{v}$ al siguiente vector columna de $\mathbb{R}^n$ \[ [\bar{v}]_{\beta}=\begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}, \]

al que llamamos el vector de coordenadas de $\bar{v}$ con respecto a la base $\beta$.

Realicemos por un lado el siguiente cálculo:

\[ \text{Mat}_{\gamma,\beta}(T)[\bar{v}]_{\beta}=\begin{pmatrix} t_{11} & \dots & t_{1n}\\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}=\begin{pmatrix} \displaystyle\sum_{k=1}^{n}t_{1k}v_{k} \\ \vdots \\ \displaystyle\sum_{k=1}^{n}t_{mk}v_{k}.\end{pmatrix} \]

Por otro lado tenemos lo siguiente:

\begin{align*}
T(\bar{v})&=T \left( \sum_{k=1}^{n}v_{k}\bar{e}_{k} \right)\\&=\sum_{k=1}^{n}v_{k}T(\bar{e}_{k})\\&=\sum_{k=1}^{n}v_{k}T\left( \sum_{i=1}^{m}t_{ik}\bar{w}_{i} \right)\\&=\sum_{i=1}^{m}\left( \sum_{k=1}^{n}v_{k}t_{ik} \right)\bar{w}_{i}.
\end{align*}

Juntando ambos cálculos: \[ [T(\bar{v})]_{\gamma}=\begin{pmatrix} \sum_{k=1}^{n}v_{k}t_{1k} \\ \vdots \\ \sum_{k=1}^{n}v_{k}t_{mk} \end{pmatrix} = \text{Mat}_{\gamma,\beta}(T)[\bar{v}]_{\beta}.\]

En otras palabras, aplicar $T$ a un vector $\bar{v}$ equivale a multiplicar $\text{Mat}_{\gamma,\beta}$ por el vector columna asociado a $\bar{v}$ en la base $\beta$, en el sentido de que tras hacer este producto recuperamos el vector de coordenadas para $T(\bar{v})$ en la base $\gamma$.

Isomorfismo entre transformaciones lineales y matrices

Con las operaciones de suma y multiplicación por escalar que vimos en la entrada de Matrices, se tiene que $M_{m,n}\left( \mathbb{R} \right)$ es un espacio vectorial sobre $\mathbb{R}$. De igual manera $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ es un espacio vectorial sobre $\mathbb{R}$ con las siguientes operaciones:

  • Si $T$ y $U$ son dos transformaciones, la transformación $T+U$ es aquella que envía a todo vector $\bar{v}\in \mathbb{R}^n$ al vector $T(\bar{v})+U(\bar{v})$.
  • Si $r\in \mathbb{R}$ la transformación $rT$ es la que a todo $\bar{v}\in \mathbb{R}^n$ lo envía al vector $rT(\bar{v})$.

Queda como ejercicio que verifiques que esto dota efectivamente a $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ de la estructura de espacio vectorial.

A continuación veremos que estos dos espacios vectoriales son, prácticamente, el mismo. Lo que haremos es construir una función $$\Phi :M_{m,n}\left( \mathbb{R} \right) \to\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$$ que sea biyectiva y que preserve las operaciones de suma y de producto escalar.

Para ello, tomemos una base $\beta=\{\bar{e}_1,\ldots,\bar{e}_n\}$ de $\mathbb{R}^{n}$ y una base $\gamma=\{\bar{u}_1,\ldots,\bar{u}_m\}$ de $\mathbb{R}^m$. Tomemos una matriz $A\in M_{m,n}(\mathbb{R})$. Explicaremos a continuación cómo construir la transformación $\Phi(A)$, para lo cual diremos qué hace con cada elemento de la base $\beta$. Tomaremos aquella transformación lineal $T_A\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ tal que

$$T_A(\bar{e}_j)=\sum_{i=1}^n a_{ij} \bar{u}_i.$$

Tomamos entonces $\Phi(A)=T_A$. Veamos que $\Phi$ tiene todas las propiedades que queremos.

  • $\Phi$ es suprayectiva. Si tenemos una transformación $T:\mathbb{R}^n\to \mathbb{R}^m$, entonces por la construcción anterior se tiene que su forma matricial $A:=\text{Mat}_{\gamma,\beta}(T)$ justo cumple $T_A=T$, de modo que $\Phi(A)=T$.
  • $\Phi$ es inyectiva. Si $A$ y $B$ son matrices distintas, entonces difieren en alguna entrada, digamos $(i,j)$. Pero entonces $T_A$ y $T_B$ difieren ya que $T_A(\bar{e}_j)\neq T_B(\bar{e}_j)$ ya que en las combinaciones lineales creadas hay un coeficiente distinto. Así, $\Phi(A)\neq \Phi(B)$.
  • $\Phi $ es lineal. Para $r\in \mathbb{R}$, $A$ y $B$ matrices con entradas $a_{ij}$ y $b_{ij}$, respectivamente, se cumple que $\Phi \left( rA+B \right)=T_{(rA+B)}$ y entonces se satisface para cada $j=1,\dots ,n$ lo siguiente:
    \begin{align*}
    (rA+B)[\bar{e}_{j}]_{\beta}&=rA[\bar{e}_{j}]_{\beta}+B[\bar{e}_{j}]_{\beta}\\&=r[T_A(\bar{e}_{i})]_{\gamma}+[T_{B}(\bar{e}_{i})]_{\gamma}.
    \end{align*}
    Por tanto para cada $\bar{e}_{i}$ tenemos que $$T_{(rA+B)}(\bar{e}_{i})=rT_{A}(\bar{e}_{i})+T_{B}(\bar{e}_{i})$$ y en consecuencia $$T_{(rA+B)}=rT_{A}+T_{B}.$$ Así $$\Phi (rA+B)=r\Phi (A)+\Phi(B).$$

Todo lo anterior implica que $M_{m,n}\left( \mathbb{R} \right)\simeq \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, es decir, que ambos espacios vectoriales son isomorfos.

En búsqueda de una matriz sencilla

Por lo que hemos platicado hasta ahora, a cada transformación lineal le corresponde una matriz, y viceversa. De hecho, esta asociación respeta operaciones como la suma y el producto por escalar. Esta equivalencia está dada a partir de la función $\Phi$ encontrada en la sección anterior.

Si $\Phi $ es biyectiva, ¿por qué hablamos entonces de encontrar una representación matricial simple para una transformación lineal $T$? Esto parecería no tener sentido, pues a cada transformación le corresponde una y sólo una matriz. Sin embargo, esto es cierto únicamente tras haber fijado las bases $\beta$ y $\gamma$ para $\mathbb{R}^n$ y $\mathbb{R}^m$, respectivamente. Así, dependiendo de la elección de las bases las representaciones matriciales cambian y si tenemos una transformación lineal $T$, es posible que querramos encontrar bases $\beta$ y $\gamma$ en donde la representación matricial sea sencilla.

Nos enfocaremos únicamente en transformaciones lineales que van de un espacio vectorial a sí mismo. Tomemos entonces $T:\mathbb{R}^n\to \mathbb{R}^n$ y una base $\beta$ de $\mathbb{R}^n$. Por simplicidad, escribiremos $\text{Mat}_{\beta, \beta}(T)$ simplemente como $\text{Mat}_{\beta}(T)$. Hay propiedades de $T$ que podemos leer en su matriz $\text{Mat}_{\beta}(T)$ y que no dependen de la base $\beta$ que hayamos elegido. Si con una base $\beta$ especial resulta que $\text{Mat}_{\beta}(T)$ es muy sencilla, entonces podremos leer estas propiedades de $T$ muy fácilmente. Un ejemplo es la siguiente proposición, la cual queda como tarea moral.

Proposición. La transformación lineal $T:\mathbb{R}^n\to\mathbb{R}^n$ es invertible si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.

Si $A=\text{Mat}_{\beta}(T)$ fuera muy muy sencilla, por ejemplo, si fuera una matriz diagonal, entonces podríamos saber la invertibilidad de $T$ sabiendo la invertibilidad de $A$, y la de $A$ sería muy fácil de ver pues por ser matriz diagonal bastaría hacer el producto de las entradas de su diagonal para obtener su determinante y estudiar si es distinto de cero.

Motivados por el ejemplo anterior, estudiemos la siguiente pregunta: ¿toda transformación lineal se puede representar con una matriz diagonal? Si una transformación lineal se puede representar de esta manera, diremos que es diagonalizable.

Eigenvalores, eigenvectores y eigenespacios

En lo que sigue repasaremos el aparato conceptual que nos permitirá dar una respuesta parcial de cuándo una matriz es diagonalizable. Un tratamiento mucho más detallado se puede encontrar aquí en el blog, en el curso de Álgebra Lineal II, comenzando con la entrada Eigenvectores y eigenvalores.

Para nuestro repaso, debemos introducir algunos conceptos y estudiarlos.

Definición. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal. Diremos que un escalar $r \in \mathbb{R}$ es un eigenvalor de $T$ si existe $\bar{v}\in \mathbb{R}^n\setminus\{ \bar{0} \}$ tal que $T(\bar{v})=r\bar{v}$. A dicho vector $\bar{v}$ le llamaremos un eigenvector de $T$ con eigenvalor asociado $r$.

Dado un eigenvector $\bar{v}\in \mathbb{R}^n$, sólo hay un eigenvalor correspondiente a éste. Si $T(\bar{v})=r\bar{v}$ y $T(\bar{v})=t\bar{v}$, entonces $r\bar{v}=t\bar{v}$ de donde $(r-t)\bar{v}=\bar{0}$. Como $\bar{v}\neq \bar{0}$, se sigue que $r=t$.

Por otro lado, para un eigenvalor $r$ puede haber más de un eigenvector con eigenvalor asociado $r$. Consideremos para un eigenvalor $r$ el conjunto $E(r)=\{ \bar{v}\in V |T(\bar{v})=r\bar{v}\}$. Notemos que $\bar{0}\in E(r)$ y también todos los eigenvectores de $r$ están en $E(r)$. Además, $E(r)$ es un subespacio de $\mathbb{R}^n$, pues si $\bar{u},\bar{v} \in E(r)$, y $a\in \mathbb{R}$, tenemos

\begin{align*}
T(a\bar{u}+\bar{v})&=aT(\bar{u})+T(\bar{v})\\
&=a(r\bar{u})+(r\bar{v})\\
&=r(a\bar{u}+\bar{v}),
\end{align*}

lo cual implica que $a\bar{u}+\bar{v} \in E(r)$.

Definición. Para una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ y un eigenvalor $r$ de $T$ llamaremos a

$$E(r)=\{ \bar{v}\in V |T(\bar{v})=r\bar{v}\}$$

el eigenespacio de $T$ correspondiente a $r$.

Cuando tenemos eigenvectores correspondientes a eigenvalores distintos, cumplen algo especial.

Proposición. Si $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son eigenvectores de una transformación lineal $T:\mathbb{R}^n \rightarrow \mathbb{R}^n$ con eigenvalores correspondientes $r_{1}, \dots ,r_{l}$ distintos entonces $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son linealmente independientes.

Demostración. La ruta para establecer la demostración de este teorema será por inducción sobre $l$. Para un conjunto con sólo un eigenvector el resultado es evidente (¿por qué?). Supongamos cierto para cualquier subconjunto de $l-1$ eigenvectores que pertenecen a eigenespacios distintos. Sean $\bar{v}_{1}, \dots ,\bar{v}_{l}$ eigenvectores en distintos eigenespacios y consideremos $\alpha _{1}, \dots ,\alpha_{l}$ escalares tales que:

\begin{equation}
\label{eq:comb-cero}
\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k}=\bar{0}.
\end{equation}

Aplicamos $T$ a la igualdad anterior. Usando que cada $\bar{v}_{k}$ es eigenvector correspondiente al eigenvalor $r_{k}$ obtenemos:

\begin{align*}
\bar{0}=T(\bar{0})&=T\left(\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k} \right)\\&=\sum_{k=1}^{l}\alpha _{k}T(\bar{v}_{k})\\&=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}.
\end{align*}

Es decir,

\begin{equation}
\label{eq:aplicarT}
\textbf{0}=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}
\end{equation}

Multipliquemos \eqref{eq:comb-cero} por $r_{l}$ y restemos el resultado de \eqref{eq:aplicarT} para obtener que

\begin{align*}
\bar{0}=\bar{0}-\bar{0}&=\sum_{k=1}^{l}\alpha _{k}r_{k}\bar{v}_{k}-r_{l}\sum_{k=1}^{l}\alpha _{k}\bar{v}_{k}\\&=\sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})\bar{v}_{k}.
\end{align*}

Tenemos entonces:

\[ \sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})\bar{v}_{k}=\bar{0}.\]

Ya que por hipótesis de inducción $\bar{v}_{1}, \dots ,\bar{v}_{l-1}$ son linealmente independientes entonces $\alpha _{k}(r_{k}-r_{l})=0$ para todo $k$, pero los eigenvalores son todos distintos entre sí por lo tanto para todo $k$ de $1$ a $l-1$ se tiene $r_{k}-r_{l}\neq 0$ y así $\alpha _{k}=0$. Finalmente, usando \eqref{eq:comb-cero} obtenemos $\alpha_l=0$. Por lo tanto $\bar{v}_{1}, \dots ,\bar{v}_{l}$ son linealmente independientes.

$\square$

Eigenvectores y transformaciones diagonalizables

Recuerda que dijimos que una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ es diagonalizable si existe una base $\beta$ de $\mathbb{R}^n$ tal que $\text{Mat}_{\beta}(T)$ es una matriz diagonal. El siguiente resultado conecta las dos ideas que hemos estado explorando: los eigenvectores y la representabilidad sencilla de $T$.

Teorema. Sea $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ transformación lineal. Una matriz $T$ es diagonalizable si y sólo si existe una base de $\mathbb{R}^n$ conformada por eigenvectores de $T$.

En realidad la demostración consiste únicamente en entender correctamente cómo se construyen las matrices para una base dada.

Demostración. $\Rightarrow )$ Supongamos que $T$ tiene una representación matricial que es una matriz diagonal $A:=\text{Mat}_{\beta}(T)=\text{diag}(r_{1}, \dots ,r_{n})$ con respecto a la base $\beta=\{\bar{v}_{1}, \dots ,\bar{v}_{n}\}$. Afirmamos que para cada $j=1,\ldots,n$ se tiene $\bar{v}_j$ es eigevector de eigenvalor $r_j$. En efecto, la forma en la que se construyó la matriz $A$ nos dice que

\begin{align*}
T(\bar{e}_j)&=\sum_{i=1}^n a_{ij} \bar{e}_i \\&= a_{jj} \bar{e}_j \\&= r_j \bar{e}_j,
\end{align*}

en donde estamos usando que las entradas $a_{ij}$ de la matriz son cero si $i\neq j$ (por ser diagonal), y son $r_j$ si $i=j$. Por supuesto, como $\bar{e}_j$ forma parte de una base, tampoco es el vector cero. Así, $\bar{e}_j$ es eigenvector de eigenvalor $\bar{e}_j$.

$\Leftarrow )$ Supongamos ahora que $\bar{v}_{1},\dots ,\bar{v}_{n}$ son una base $\beta$ de $\mathbb{R}^n$ conformada por eigenvectores de $T$ con eigenvalores asociados, digamos, $r_{1},\dots ,r_{n}$. Aquí se puede mostrar que $\text{Mat}_\beta(T)$ es diagonal. Queda como tarea moral hacer las cuentas.

$\square$

Hay una situación particular en la que podemos aprovechar el teorema anterior de manera inmediata: cuando la transformación tiene $n$ eigenvalores distintos. Esta consecuencia queda establecida en el siguiente resultado.

Corolario. Toda transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ tiene a lo más $n$ eigenvalores distintos. Si $T$ tiene exactamente $n$ eigenvalores distintos, entonces los eigenvectores correspondientes forman una base para $\mathbb{R}^n$ y la matriz de $T$ relativa a esa base es una matriz diagonal con los eigenvalores como elementos diagonales.

Demostración. Queda como tarea moral. Como sugerencia, recuerda que mostramos arriba que los eigenvectores de eigenvalores distintos son linealmente independientes.

$\square$

Al parecer los eigenvalores, eigenvectores y eigenespacios de una transformación lineal son cruciales para poder expresarla de manera sencilla. ¿Cómo los encontramos? Esto lo veremos en la siguiente entrada.

Antes de concluir, mencionamos que hay otro teorema crucial sobre diagonalización de matrices. Diremos que una matriz $P\in M_n(\mathbb{R})$ es ortogonal si $P^tP=I$.

Teorema (el teorema espectral). Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces, existe una matriz ortogonal $P$ tal que $PAP^t$ es una matriz diagonal.

El teorema anterior nos dice no únicamente que la matriz $A$ es diagonalizable, sino que además es diagonalizable mediante un tipo muy especial de matrices. Un estudio y demostración de este teorema queda fuera de los alcances de nuestro curso, pero puedes revisar, por ejemplo la entrada teorema espectral del curso de Álgebra Lineal I que tenemos en el blog.

Más adelante

Lo que haremos en la siguiente entrada es desarrollar un método para conocer los eigenvalores de una matriz. A partir de ellos podremos encontrar sus eigenvectores. Y en ciertos casos especiales, esto nos permitirá mostrar que la transformación es diagonalizable y, de hecho, nos dará la base para la cual la matriz asociada es diagonal.

Tarea moral

  1. Considera la transformación lineal de $\mathbb{R}^{3}$ en $\mathbb{R}^{2}$, dada como $T(x,y,z)=(x+y,z+y)$. Encuentra su representación matricial con las bases canónicas de $\mathbb{R}^3$ y $\mathbb{R}^2$. Luego, encuentra su representación matricial con las bases $\{(1,2,3),(1,0,1),(0,-1,0)\}$ de $\mathbb{R}^3$ y $\{(1,1),(1,-1)\}$ de $\mathbb{R}^2$.
  2. Considera la siguiente matriz: \[ \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & 0 & 2 \\ \end{pmatrix}\] Da una transformación lineal $T:\mathbb{R}^4\to \mathbb{R}^2$ y ciertas bases $\beta$ de $\mathbb{R}^4$ y $\gamma$ de $\mathbb{R}^2$ para las cuales esta matriz sea la representación matricial de $T$ en las bases $\beta$ y $\gamma$.
  3. Fija bases $\beta$, $\gamma$ y $\delta$ para $\mathbb{R}^n$, $\mathbb{R}^m$ y $\mathbb{R}^l$. Considera dos transformaciones lineales $T:\mathbb{R}^n\to \mathbb{R}^m$ y $S:\mathbb{R}^m\to \mathbb{R}^l$. Demuestra que:
    $$\text{Mat}_{\delta, \beta} (S \circ T) = \text{Mat}_{\delta,\gamma}(S) \text{Mat}_{\gamma, \beta} (T).$$
    En otras palabras que la «composición de transformaciones corresponde al producto de sus matrices».
  4. Sea $T:\mathbb{R}^n\to\mathbb{R}^n$ una transformación lineal y $\beta$ una base de $\mathbb{R}^n$. Demuestra que $T$ es biyectiva si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.
  5. Verifica que los vectores $\bar{v}_1,\ldots,\bar{v}_n$ dados en el último teorema en efecto ayudan a dar una representación matricial diagonal para $T$.
  6. La demostración del último corolario es un conjunto de sencillas consecuencias de las definiciones y teoremas desarrollados en esta entrada con respecto a los eigenvalores y eigenvectores. Realiza esta demostración.

Entradas relacionadas