Archivo de la etiqueta: diferencia

Teoría de los Conjuntos I: Propiedades del producto cartesiano (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta entrada veremos otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

Producto cartesiano y unión

Las siguientes dos proposiciones verifican que el producto cartesiano se distribuye sobre la unión.

Proposición. Para A,B,C conjuntos se cumple que (AB)×C=(A×C)(B×C).

Demostración.

Se tiene que (x,y)(AB)×C
si y sólo si xAB y yC
si y sólo si (xA o xB) y yC
si y sólo si (xA y yC) o (xB y yC)
si y sólo si (x,y)A×C o (x,y)B×C
si y sólo si (x,y)(A×C)(B×C).

◻

Proposición. Para A,B,C conjuntos se cumple que A×(BC)=(A×B)(A×C).

Demostración.

Se tiene que (x,y)A×(BC)
si y sólo si xA y yBC
si y sólo si xA y (yB o yC)
si y sólo si (xA y yB) o (xA y yC)
si y sólo si (x,y)A×B o (x,y)A×C
si y sólo si (x,y)(A×B)(A×C).

◻

Proposición. Para cualesquiera A,B,C,D conjuntos no vacíos ocurre que (A×C)(B×D)(AB)×(CD).

Demostración.

Sean A,B,C,D conjuntos no vacíos. Tomemos (x,y)(A×C)(B×D) arbitrario, entonces (x,y)A×C o (x,y)B×D.

Si (x,y)A×C, entonces xA y yC. Luego, como AAB y CCD se sigue que xAB y yCD. Así, (x,y)(AB)×(CD).

Si (x,y)B×D, entonces xB y yD. Luego, como BAB y DCD se sigue que xAB y yCD. Así, (x,y)(AB)×(CD).

◻

Producto cartesiano e intersección

Con la siguientes dos demostraciones podremos ver que el producto cartesiano se distribuye sobre la intersección.

Proposición. Para A,B,C conjuntos se cumple que (AB)×C=(A×C)(B×C).

Demostración.

Se tiene que (x,y)(AB)×C
si y sólo si xAB y yC
si y sólo si (xA y xB) y yC
si y sólo si (xA y yC) y (xB y yC)
si y sólo si (x,y)A×C y (x,y)B×C
si y sólo si (x,y)(A×C)(B×C).

◻

Proposición. Para A,B,C conjuntos se cumple que A×(BC)=(A×B)(A×C).

Demostración.

Se tiene que (x,y)A×(BC)
si y sólo si xA y yBC
si y sólo si xA y (yB y yC)
si y sólo si (xA y yB) y (xA y yC)
si y sólo si (x,y)A×B y (x,y)A×C
si y sólo si (x,y)(A×B)(A×C).

◻

Proposición. Para cualesquiera A,B,C,D conjuntos no vacíos ocurre que (A×C)(B×D)=(AB)×(CD).

Demostración.

Sean A,B,C,D conjuntos no vacíos. Tenemos que:
(x,y)(A×C)(B×D)
si y sólo si (x,y)A×C y (x,y)B×D
si y sólo si (xA y yC) y (xB y yD)
si y sólo si (xA y xB) y (yC y yD)
si y sólo si xAB y yC×D
si y sólo si (x,y)(AB)×(CD).

◻

Producto cartesiano y diferencia

Con los siguientes resultados probamos que el producto cartesiano se distribuye sobre la diferencia.

Proposición. Sean A,B,C conjuntos no vacíos. Se tiene que A×(BC)=(A×B)(A×C).

Demostración.

Se tiene que (x,y)A×(BC)
si y sólo si xA y yBC
si y sólo si xA y (yB y yC)
si y sólo si (xA y yB) y (xA y yC)
si y sólo si (x,y)A×B y (x,y)A×C
si y sólo si (x,y)(A×B)(A×C).

◻

Proposición. Para A,B,C conjuntos se cumple que (AB)×C=(A×C)(B×C).

Demostración.

Se tiene que (x,y)(AB)×C
si y sólo si xAB y yC
si y sólo si (xA y xB) y yC
si y sólo si (xA y yC) y (xB y yC)
si y sólo si (x,y)A×C y (x,y)B×C
si y sólo si (x,y)(A×C)(B×C).

◻

Producto cartesiano y diferencia simétrica

La siguiente proposición demuestra que el producto cartesiano distribuye a la diferencia simétrica. Como ya demostramos propiedades de cómo interactúa el producto cartesiano con la unión, intersección y diferencia, podremos dar una demostración muy breve usando álgebra de conjuntos.

Proposición. Sean A,B,C conjuntos. Se tiene que A×(BC)=(A×B)(A×C).

Demostración. Procedemos por álgebra de conjuntos:

A×(BC)=A×((BC)(BC))=(A×(BC))(A×(BC))=((A×B)(A×C))(A×(BC))=((A×B)(A×C)((A×B)(A×C))=(A×B)(A×C).

◻

Tarea moral

Los siguientes ejercicios te permitirán aprender otras propiedades del producto cartesiano:

  • Muestra que no siempre se da la igualdad (A×C)(B×D)=(AB)×(CD).
  • Demuestra que (AB)×(CD)=(A×C)(B×D)(A×D)(B×C).
  • Muestra que (X×Y)(B×C)=((XB)×Y)(X×(YC)).
  • Demuestra que (AB)×C=(A×C)(B×C).

Más adelante…

En la siguiente entrada definiremos qué es una relación. Para ello utilizaremos el concepto de producto cartesiano y pareja ordenada. Resultará que una relación es un subconjunto de un producto cartesiano, por lo que es importante que comprendas bien el concepto de producto cartesiano que hemos visto en las últimas dos entradas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: El complemento de un conjunto

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

Complemento de un conjunto

Definición. Sean A y X conjuntos, tales que AX. Definimos al complemento de A respecto del conjunto X, como la diferencia XA.

Ejemplo.

Sea X={,{},{{}},{,{}}} y sea A={,{,{}}}. Tenemos que XA={xX:xA}={{},{{}}}.

En efecto, pues X y A por lo que XA pues no cumple la propiedad para ser elemento del conjunto XA. Por su parte, {,{}} tampoco es elemento de XA pues {,{}}X y {,{}}A. Finalmente, {}, {{}}X y {}, {{}}A, por lo que {}, {{}}XA.

◻

Resultados del conjunto complemento

Usaremos el siguiente resultado repetidamente para la demostración de propiedades posteriormente.

Proposición. Sean A, B, X conjuntos, tales que A, BX. Se cumple que AB=A(XB).

Demostración.

] Sea aAB, entonces aA y aB. Como aAX, entonces aX. Así, es cierto que aA y (aX y aB), por lo que aA y aXB y por lo tanto, aA(XB).

Concluimos que ABA(XB).

] Sea aA(XB), entonces aA y aXB. Entonces aA y aX y aB, en particular, aA y aB. Así, aAB.

Por lo tanto, A(XB)=AB.

◻

Veamos otras tres propiedades del complemento.

Proposición. Sean A y X conjuntos tales que AX. Entonces se cumple lo siguiente:

a) A(XA)=,

b) A(XA)=X,

c) X(XA)=A.

Demostración:

a) Supongamos que A(XA) en búsqueda de una contradicción. Entonces, existe xA(XA), de donde xA y xXA.

Así, xA y xX y xA. En particular, xA y xA lo cual no puede ocurrir. Por lo tanto, A(XA)=.

b) Sea xA(XA), entonces xA o xXA.

Caso 1: Si xA, entonces xX pues AX.

Caso 2: Si xXA, entonces xX y xA. En particular, xX.

En cualquier caso, xX. Por lo tanto, A(XA)X.

Por otro lado, supongamos que xX. Tenemos dos casos: xA o xA.

Caso 1: Si xA, entonces xA(XA).

Caso 2: Si xA, entonces xX y xA y así, xXA. Por lo tanto, xA(XA).

En cualquiera de los dos casos concluimos que XA(XA).

Por lo tanto, A(XA)=X.

c) Primero veamos que AX(XA). Sea xA, entonces xXA. Por otro lado, xX pues AX.

Por lo que xX y xXA, es decir, xX(XA). Esto concluye la prueba de que AX(XA).

Ahora, sea xX(XA), entonces xX y xXA. Esto implica que xX y (xX o xA). Como xX, entonces xX no es posible y así, xA. Por lo tanto, X(XA)A.

Por lo tanto, A=X(XA).

◻

Leyes de De Morgan

Las leyes de De Morgan nos dicen cómo se comportan los complementos de uniones e intersecciones. A continuación damos la versión para uniones e intersecciones de dos conjuntos. En los ejercicios tendrás que demostrar las versiones para uniones e intersecciones arbitrarias.

Teorema. Sean A, B y X conjuntos. Entonces

  1. X(AB)=(XA)(XB),
  2. X(AB)=(XA)(XB). 1

Demostración.

  1. Se tiene xX(AB),
    si y sólo si xX y xAB por definición de complemento,
    si y sólo si xX y (xA o xB),
    si y sólo si (xX y xA) o (xX y xB),
    si y sólo si xXA o xXB,
    si y sólo si x(XA)(XB).
    Por lo tanto, X(AB)=(XA)(XB).
  2. Se tiene xX(AB),
    si y sólo si xX y xAB por definición de complemento,
    si y sólo si xX y (xA y xB),
    si y sólo si (xX y xA) y (xX y xB),
    si y sólo si xXA y xXB,
    si y sólo si x(XA)(XB).
    Por lo tanto, X(AB)=(XA)(XB).

◻

Tarea moral

  • Demuestra que para X un conjunto cualquiera se cumple que X=X.
  • Prueba que si X un conjunto arbitrario, entonces XX=.
  • Sean A, BX conjuntos. Prueba que AB si y sólo si XBXA.
  • Muestra que si A es un conjunto no vacío, entonces (AA)AA(AA).
  • Sean X y F conjuntos:
    – Muestra que X(F)=(XF).
    – Supongamos que F. Muestra que X(F)=(XF).

Este último ejercicio son las leyes de De Morgan para intersecciones y uniones arbitrarias.

Más adelante…

En la siguiente entrada hablaremos acerca del álgebra de conjuntos, para ello retomaremos las operaciones entre conjuntos que definidas anteriormente. Así mismo, haremos uso de los resultados que probamos en esta sección acerca del complemento de un conjunto. Un poco después, definiremos una nueva operación entre conjuntos: la diferencia simétrica.

Entradas relacionadas

Entradas relacionadas:


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. También puedes consultar la demostración de este teorema en: Gómez L. C, Álgebra Superior Curso Completo. Publicaciones Fomento Editorial, 2014, pp. 32-33. ↩︎

Teoría de los Conjuntos I: Operaciones entre conjuntos

Por Gabriela Hernández Aguilar

Introducción

A continuación definiremos algunas de las operaciones que hay entre conjuntos como lo son la unión, intersección y diferencia. Retomaremos algunos axiomas como el de unión y el esquema de comprensión, para ver que estas operaciones definen nuevos conjuntos.

Unión

Recordemos la definición de la unión de dos conjuntos.

Definición. Si A y B son conjuntos, entonces definimos la unión de A y B como:


AB={A,B}

o bien,

AB={x:xA o xB}.

Ejemplos.

  1. Consideremos los conjuntos A={} y B={,{}}. Luego, AB={A,B}={,{,{}}}={,{}}=B.
  2. Ahora, consideremos A={{}} y B={{{}}}. Tendremos que AB={{}}{{{}}}={{},{{}}}.

◻

Propiedades de la unión

Proposición. Para cualquier conjunto A se tiene que AAB. Además, AB=BA.

Demostración.

Primero veamos que AAB. Supongamos que xA, entonces existe A{A,B} tal que xA. Esto es, por definición de unión que x{A,B}=AB.

La unión es conmutativa

Para ver que AB=BA, notemos que AB={A,B} y BA={B,A}. Sabemos que {A,B}={B,A} por axioma de extensión. Así, AB=BA.

◻

Intersección

Definición. Sean A y B conjuntos. La intersección de dos conjuntos estará definida como sigue:

AB={x:xAxB}.

La intersección de dos conjuntos nos permite obtener un conjunto cuyos elementos son aquellos que se encuentran en ambos conjuntos. En la imagen que proporcionamos arriba podemos ver que la intersección nos deja solamente a la manzana y la pera, pues están en ambos conjuntos y descarta al plátano y la naranja pues solo viven en el primer conjunto. Lo mismo hace con la fresa y la sandía que solo viven en el segundo conjunto.

Proposición. AB es un conjunto.

Demostración. Sean A y B conjuntos.

Definamos la propiedad «P(x):xB». Por el esquema de comprensión se tiene que

{xA:xB}

es un conjunto.

Luego, {xA:xB}=AB. En efecto, zAB si y sólo si zA y zB si y sólo si z{xA:xB}.

Por lo tanto, AB es conjunto.

◻

Ejemplos.

  1. Consideremos A={} y B={{}}, tenemos que AB= esto último debido a que no existe ningún elemento x tal que x{} y x{{}} al mismo tiempo. De ocurrir, tendriamos que x= y x={} y por lo tanto, ={} lo cual sabemos que no ocurre. Por lo tanto, AB=.
  2. Sean A={,{}} y B={} conjuntos. Notemos que en este ejemplo el único elemento que está tanto en el conjunto A como en el conjunto B es x=. De este modo, AB={}.

◻

También podemos definir intersecciones arbitrarias, no sólo de dos conjuntos.

Definición. Sea A un conjunto no vacío, definimos a la intersección de A como la colección:

{x:yA(xy)}.

Ejemplo.

Sea A={{},{{}},{,{}}}, tenemos que la intersección de A es . En efecto, esto pasa ya que no existe ningún elemento x que pertenezca a todos los elementos de A.

◻

Ejemplo.

Sea X={A,B} con A y B conjuntos. Resulta que X={A,B}=AB. En efecto, xX si y sólo si para todo yX, xy si y sólo si xA y xB.

◻

El hecho de que la unión arbitraria es conjunto es resultado del axioma de la unión. No hay un axioma de la intersección, por lo que demostraremos que la intersección de un conjunto A es un conjunto, siempre que A no sea vacío.

Proposición. Para todo A, la intersección de A es un conjunto.1

Demostración:

Sea A conjunto no vacío, entonces A tiene al menos un elemento. Sea zA, tenemos que {xz:yA(xy)} es conjunto por esquema de comprensión.

Resulta que a{xz:yA(xy)} si y sólo si ay para todo yA. En efecto, si a{xz:yA(xy)}, entonces az y yA, ay. Entonces ay para todo yA.

Ahora, si ay para todo yA, en particular az pues zA. Por tanto, a{xz:yA(xy)}.

◻

Si observamos, para realizar la demostración anterior usamos el hecho de que A, por lo que podríamos preguntarnos qué pasa si A es vacío. Veremos esto con detalle en la siguiente entrada.

Ahora que hemos probado que la intersección de A es un conjunto cuando A es no vacío, le asignaremos una notación la cual estará dada por A.

Propiedades de la intersección

Teorema. Para cualesquiera A, B conjuntos, tenemos que:

  1. ABA,
  2. AA=A,
  3. AB=BA.

Demostración.

  1. Sea xAB. Veamos que xA.
    Como xAB tenemos por definición de intersección que xA y xB. En particular, xA. Por lo tanto, ABA.
  2. Tomemos xAA. Veamos que xA.
    Que xAA es equivalente a decir que xA y xA, lo cual pasa si y sólo si xA. Por lo tanto, AA=A.
  3. AB=BA pues xAB arbitrario si y sólo si xA y xB, si y sólo si xB y xA, si y sólo si xBA.

◻

Diferencia

Definición. Sean A y B conjuntos. La diferencia de A con B estará definida como sigue:

AB={xA:xB}.

Por esquema de comprensión AB es conjunto.

La diferencia entre dos conjuntos nos permite obtener un conjunto cuyos elementos se encuentra en el primero pero no el segundo conjunto. En la imagen anterior podemos ver que la diferencia nos deja solamente al plátano y la naranja, pues el plátano y la naranja se encuentran en el primer conjunto, pero no en el segundo. La manzana y la pera no forma parte del conjunto final pues vive en ambos conjuntos. La fresa no es elemento de la diferencia pues ni siquiera es elemento del primer conjunto.

Ejemplos.

  1. Consideremos A={} y B={{}}, tenemos que AB={} pues el único elemento que cumple estar en A y no pertenecer al conjunto B es .
  2. Sea A={,{}} y B={}. Luego,
    AB={xA:xB}={x{,{}}:x{}}={{}}.

Propiedades de la diferencia

Teorema. Para cualesquiera A, B conjuntos, tenemos que:

  1. A=A,
  2. AA=,
  3. AB=A(AB).

Demostración.

  1. Sea xA. Entonces xA y x. En particular xA, por lo tanto AA.
    Luego, supongamos que xA. Como x es verdadero para cualquier conjunto x, tenemos que xA y x es verdadero. Por lo tanto, xA y así AA.
    De lo anterior tenemos que A=A.
  2. Supongamos que AA, es decir, existe al menos un elemento xAA. Entonces xA y xA, lo cual no puede ocurrir. Dado que la contradicción provino de suponer que AA, concluimos que AA=.
  3. Veamos que AB=A(AB).
    ] Sea xAB, entonces xA y xB. Luego, como xB entonces xA o xB es verdadero. Lo que equivale a decir que x(AB). Por lo tanto, xA y x(AB) y así, ABA(AB).
    ] Sea xA(AB), entonces xA y x(AB). Lo que equivale a decir que xA y (xA o xB). Dado que xA no puede ocurrir pues xA, entonces xB. Por lo tanto, xA y xB y así, A(AB)AB.
    Por lo tanto, A(AB)=AB.

◻

Proposición. AB= si y sólo si AB.

Demostración.

Supongamos que AB= y supongamos que AB en busca de una contradicción. Como AB, existe xA tal que xB, y por lo tanto, xAB, lo que contradice que AB=.
Por lo tanto, AB.

Ahora, si AB, entonces para cualquier xA, xB, por lo que no es posible que AB sea no vacío.

◻

Tarea moral

Los siguientes ejercicios te servirán para poner en práctica los conocimientos que has adquirido en este sección, en la siguiente lista podrás probar las siguientes propiedades de la unión, intersección y diferencia de conjuntos:

  1. Prueba que A= para todo conjunto A.
  2. Prueba que para cualesquiera A, B y C conjuntos:
    A(BC)=(AB)C.
    A(BC)=(AB)C.
  3. Prueba que para cualesquiera A, B y C conjuntos:
    A(BC)=(AB)(AC),
    A(BC)=(AB)(AC).
  4. Si AC y BD entonces ABCD.
  5. Demuestra que AB=A si y sólo si AB=.
  6. Demuestra a partir de los axiomas que en efecto si A es un conjunto no vacío, entonces A es conjunto.

Más adelante…

En la siguiente entrada retomaremos la definición de intersección de conjuntos y mencionaremos el axioma de buena fundación. Además abordaremos el tema de la colección de todos los conjuntos apoyados de este último axioma. Finalmente, veremos que la intersección del conjunto vacío resulta ser la colección de todos los conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

  1. También puedes consultar la demostración de este resultado en: Amor, J. A., Teoría de Conjuntos para Estudiantes de Ciencias, México: Serv. Editoriales Fac. Ciencias, UNAM, 1997, p. 17. ↩︎

Álgebra Superior I: Leyes de De Morgan y diferencia simétrica de conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora ya hemos visto cómo juntar dos conjuntos (unión), cómo encontrar elementos en común entre dos conjuntos (intersección), y hemos considerado cualquier elemento excepto los que están dentro de un conjunto (complemento). Ahora vamos a hablar de otros dos conectores: La diferencia y la diferencia simétrica. Estos dos nos permitirán a hablar de los elementos de un conjunto A sin considerar los elementos de otro conjunto B, así como de la unión de ambos conjuntos a excepción de su intersección. Después hablaremos de algunas propiedades conocidas como las leyes de De Morgan.

La Diferencia

Habrá ocasiones en que nos interesará diferencias algunos conjuntos de otros. Por ejemplo, imagina que quieres comprar una chamarra, visitando un sitio web te das cuenta de que hay una promoción en algunas prendas, incluidas las chamarras, entonces decides que compraras una chamarra solo si tiene descuento. Considera los conjuntos que describen artículos de la página web:

A={x:x es chamarra}

B={x:x no tiene descuento}

Si solo pudiéramos distinguir entre esos dos conjuntos, a nosotros nos gustaría encontrar una chamarra x del conjunto A que no esté en el conjunto B. Esto puede describirse como:

{x:xAxB}={x:xAxBc}

Nota ahora que esto se puede escribir como:

ABc={x:xAxBc}

Esto es justamente a lo que nosotros llamamos diferencia entre conjuntos, que representa la idea de «restar conjuntos», es decir, considerar los elementos de un conjunto exceptuando los elementos que también están en otro conjunto específico.

Definición. Sean X y Y dos conjuntos. Definimos la diferencia de conjuntos X/Y como:

XY=XYc.

Y gráficamente se ve de la siguiente manera:

Diferencia simétrica

Ahora imagina que en una universidad se ofrece el curso de Lógica y el curso de Teoría de Conjuntos. La universidad quiere ver cuántos alumnos se interesan únicamente por la materia de Lógica sin la Teoría de Conjuntos y viceversa para ver cuántos grupos abrir.

Puesto que la universidad piensa abrir un curso que abarca Conjuntos y Lógica para los alumnos que quieren tomar los dos cursos a la vez, por ahora no nos interesan los alumnos que estén en la intersección del conjunto de alumnos que quieren tomar el curso de Lógica con el conjunto de alumnos que quieren tomar el curso de Teoría de Conjuntos. Dicho de otra manera, si el conjunto de los alumnos interesados en un curso de Lógica lo representamos por L y al conjunto de los alumnos interesados en un curso de Teoría de Conjuntos lo representamos por C, entonces los alumnos que están interesados en un curso de Lógica y no de Conjuntos es LC y el conjunto de alumnos que están interesados en un curso de Conjuntos y no de Lógica es CL.

Nota ahora que entre los dos conjuntos, hay (LC)(CL) alumnos que no tomarán el curso de Conjuntos y Lógica pero si una materia en alguna de esas dos disciplinas. A este conjunto lo llamamos la diferencia simétrica o unión disyuntiva entre conjuntos.

Definición . Sean X y Y dos conjuntos. La diferencia simétrica o unión disyuntiva de los conjuntos X y Y se define como:

XY=(XY)(YX)

Y gráficamente se ve como:

Leyes de De Morgan

Una vez que ya definimos los operadores que vamos a usar en la teoría de conjuntos, vamos a anotar una propiedad importante de los conjuntos que tiene su contraparte en la lógica proposicional. Y nos habla de cómo encontrar el complemento de la unión y la intersección.

Teorema (Leyes de De Morgan). Sean X y Y dos conjuntos dentro del conjunto universal U. Entonces:

  1. (XY)c=XcYc
  2. (XY)c=XcYc

Demostración. En esta entrada, solo demostraremos la primera parte, la segunda parte tendrá un argumento muy similar a la demostración que presentaremos a continuación.

Para demostrar que (XY)c=XcYc, necesitaremos considerar un elemento x y probar que x(XY)c si y solo si xXcYc. Para ello, nota lo siguiente:

x(XY)cx{xU:¬(xXY)}x{xU:¬(xXxY)}x{xU:¬(xX)¬(xY)}     ( Por las leyes de De Morgan de la lógica)x{xU:xXcxYc}xXcYc

De esta manera, (XY)c=XcYc. De manera análoga se cumple la otra proposición.

◻

Este teorema lo que nos quiere decir es que la forma de encontrar el complemento de la unión es intersectando el complemento de los conjuntos, y el complemento de la intersección es la unión de los complementos.

Corolario. Las siguientes proposiciones se cumplen con X,Y,Z tres conjuntos:

  1. (XYZ)c=XcYcZc
  2. (XYZ)c=XcYcZc

Demostración. De manera similar al teorema anterior, solo demostraremos el primer inciso.

Para esto, notemos que:

(XYZ)c=(XY)cZc=XcYcZc

De manera análoga se cumple la segunda proposición.

◻

Más adelante, tendremos herramienta matemática para demostrar que las leyes no solo se cumplen para la dos o tres variables, sino que para una cantidad arbitraria de términos. En otras palabras, podremos demostrar que:

Proposición. Sea X={X1,X2,,Xn} una colección finita de conjuntos. Entonces:

  1. (X1X2Xn)c=X1cX2cXnc
  2. (X1X2Xn)c=X1cX2cXnc

Por ahora, nos quedaremos únicamente en el caso de tres variables. A este punto, conviene también decir que a veces encontrarás en la literatura la el término X1X2Xn escrito como i=1nXi y esta es únicamente una forma de notación que representa la unión de una colección de conjuntos. De manera similar, X1X2Xn=i=1nXi. De esta manera, la proposición anterior se resume en:

  1. (i=1nXi)c=i=1nXic
  2. (i=1nXi)c=i=1nXic

Otras propiedades de los conjuntos

A continuación anotamos otras propiedades que tienen los conjuntos, algunas de las cuales ya hemos revisado. Sean X,Y y Z tres conjuntos en el conjunto universal U, la siguiente tabla resume algunas propiedades que se cumplen.

Propiedad
Asociatividad de los conjuntosX(YZ)=(XY)ZX(YZ)=(XY)Z
Distributividad de la unión y la intersecciónX(YZ)=(XY)(XZ)X(YZ)=(XY)(XZ)
Idempotencia de la unión e intersecciónXX=X=XX
Conmutatividad de unión e intersecciónXY=YXXY=YX
Leyes de identidad de uniónX=XXU=U
Leyes de identidad de intersecciónX=XU=X
Unión de complementosXXc=U
Intersección de complementosXXc=
(Xc)c=X
Leyes de De Morgan(XY)c=XcYc(XY)c=XcYc

Y para resumir los operadores entre conjuntos, se encuentra la siguiente imagen:

Notas

*: En la literatura, también puedes encontrar la diferencia entre dos conjuntos X y Y escrita como XY en lugar de XY.

Más adelante…

Con esta entrada acabamos la primer unidad. Hasta ahora hemos sentado las bases matemáticas de la teoría de conjuntos, en la siguiente unidad vamos a seguir hablando de conjuntos, pero introduciremos un nuevo concepto: las relaciones entre conjuntos. Estas nos permitirán empezar a hablar de funciones, un recurso muy utilizado en todas las áreas de las matemáticas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean P,Q,R,S cuatro proposiciones y A={x:(P(x)Q(x))R(x)}, B={x:(R(x)¬P(x))S(x)}, C={x:S(x)}. Encuentra:
    • AB
    • Bc
    • AB
    • A(BC)
    • AC
  2. Demuestra que (XY)c=XcYc
  3. Demuestra que (Xc)c=X
  4. Describe al conjunto (XY)c(XY)c en términos de complementos, la unión y la intersección.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

1TFC

Los TFC (Teoremas Fundamentales de los Cuadraditos)

Por Leonardo Ignacio Martínez Sandoval

Esta entrada está motivada por una pregunta en el grupo de Matemáticos de Facebook. Palabras más, palabras menos, alguien preguntaba por qué «derivar es el inverso de integrar», si uno tiene que ver con sacar un área y el otro tiene que ver con sacar una pendiente.

La idea formal que está detrás de esto de que sean «inversas» son los teoremas fundamentales del cálculo (TFC). Pero en esta entrada no me quiero meter con definiciones de límite ni cosas por el estilo. A fin de cuentas es un blog y estamos navegando tranquilos. Así que déjenme trabajar «al ahí se va», osea, informalmente. La idea es entender por qué derivar e integrar son operaciones inversas «con dibujitos» y en un caso más sencillo: el caso discreto. Veremos los teoremas fundamentales de los cuadraditos (TFC). ¡Oh no! ¡Se confunden las siglas! Bueno, ni modo.

Los cuadraditos

Todo empieza con algunos cuadraditos ordenados en columnas. De izquierda a derecha, tenemos 1, 2, 5, 3, 2, 4 y 2 cuadraditos en cada columna. Le voy a llamar Cj a la cantidad de cuadraditos en la columna j. Por ejemplo, C3=5.

Funcion

Seguir leyendo…