Archivo de la etiqueta: diferencia

Teoría de los Conjuntos I: Propiedades del producto cartesiano (parte II)

Por Gabriela Hernández Aguilar

En esta sección vamos a ver otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

Producto cartesiano y unión

Las siguientes dos proposiciones verifican que el producto cartesiano distribuye a la unión:

Proposición: Demuestra que $(A\cup B)\times C=(A\times C)\cup (B\times C)$.

Demostración:

Sea $(x,y)\in (A\cup B)\times C$
si y sólo si $x\in A\cup B$ y $y\in C$
si y sólo si $(x\in A$ o $x\in B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ o $(x\in B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ o $(x,y)\in B\times C$
si y sólo si $(x, y)\in (A\times C)\cup (B\times C)$.

$\square$

Proposición: Demuestra que $A\times (B\cup C)=(A\times B)\cup (A\times C)$.

Demostración:

Sea $(x,y)\in A\times (B\cup C)$
si y sólo si $x\in A$ y $y\in B\cup C$
si y sólo si $x\in A$ y $(y\in B$ o $y\in C)$
si y sólo si $(x\in A$ y $y\in B)$ o $(x\in A$ y $y\in C)$
si y sólo si $(x,y)\in A\times B$ o $(x,y)\in A\times C$
si y sólo si $(x, y)\in (A\times B)\cup (A\times C)$.

$\square$

Proposición: Demuestra que para cualesquiera $A, B, C, D$ conjuntos no vacíos ocurre que $(A\times C)\cup (B\times D)\subseteq (A\cup B)\times (C\cup D)$.

Demostración:

Sean $A, B, C, D$ conjuntos no vacíos. Tomemos $(x,y)\in (A\times C)\cup (B\times D)$ arbitrario, entonces $(x,y)\in A\times C$ o $(x,y)\in B\times D$.

Si $(x, y)\in A\times C$, entonces $x\in A$ y $y\in C$. Luego, como $A\subseteq A\cup B$ y $C\subseteq C\cup D$ se sigue que $x\in A\cup B$ y $y\in C\cup D$. Así, $(x,y)\in (A\cup B)\times (C\cup D)$.

Si $(x, y)\in B\times D$, entonces $x\in B$ y $y\in D$. Luego, como $B\subseteq A\cup B$ y $D\subseteq C\cup D$ se sigue que $x\in A\cup B$ y $y\in C\cup D$. Así, $(x,y)\in (A\cup B)\times (C\cup D)$.

$\square$

Producto cartesiano e intersección

Con la siguientes dos demostraciones podremos ver que el producto cartesiano se distribuye sobre la intersección:

Proposición: Demuestra que $(A\cap B)\times C=(A\times C)\cap (B\times C)$.

Demostración:

Sea $(x,y)\in (A\cap B)\times C$
si y sólo si $x\in A\cap B$ y $y\in C$
si y sólo si $(x\in A$ y $x\in B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\in B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\in B\times C$
si y sólo si $(x, y)\in (A\times C)\cap (B\times C)$.

$\square$

Proposición: Demuestra que $A\times (B\cap C)=(A\times B)\cap (A\times C)$.

Demostración:

Sea $(x,y)\in A\times (B\cap C)$
si y sólo si $x\in A$ y $y\in B\cap C$
si y sólo si $x\in A$ y $(y\in B$ y $y\in C)$
si y sólo si $(x\in A$ y $y\in B)$ y $(x\in A$ y $y\in C)$
si y sólo si $(x,y)\in A\times B$ y $(x,y)\in A\times C$
si y sólo si $(x, y)\in (A\times B)\cap (A\times C)$.

$\square$

Proposición: Demuestra que para cualesquiera $A, B, C, D$ conjuntos no vacíos ocurre que $(A\times C)\cap (B\times D)= (A\cap B)\times (C\cap D)$.

Demostración:

Sean $A, B, C, D$ conjuntos no vacíos. Tenemos que:
$(x,y)\in (A\times C)\cap (B\times D)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\in B\times D$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\in B$ y $y\in D)$
si y sólo si $(x\in A$ y $x\in B)$ y $(y\in C$ y $y\in D)$
si y sólo si $x\in A\cap B$ y $y\in C\times D$
si y sólo si $(x,y)\in (A\cap B)\times (C\cap D)$.

$\square$

Producto cartesiano y diferencia

Con los siguientes resultados probamos que el producto cartesiano se distribuye sobre la diferencia:

Proposición: Sean $A, B, C$ conjuntos no vacíos. Prueba que $A\times (B\setminus C)= (A\times B)\setminus (A\times C)$.

Demostración:

$(x,y)\in A\times (B\setminus C)$
si y sólo si $x\in A$ y $y\in B\setminus C$
si y sólo si $x\in A$ y ($y\in B$ y $y\notin C$)
si y sólo si $(x\in A$ y $y\in B)$ y $(x\in A$ y $y\notin C)$
si y sólo si $(x,y)\in A\times B$ y $(x,y)\notin A\times C$
si y sólo si $(x,y)\in (A\times B)\setminus (A\times C)$.

$\square$

Proposición: Demuestra que $(A\setminus B)\times C=(A\times C)\setminus (B\times C)$.

Demostración:

Sea $(x,y)\in (A\setminus B)\times C$
si y sólo si $x\in A\setminus B$ y $y\in C$
si y sólo si $(x\in A$ y $x\notin B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\notin B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\notin B\times C$
si y sólo si $(x, y)\in (A\times C)\setminus (B\times C)$.

$\square$

Producto cartesiano y diferencia simetrica

La siguiente proposición demuestra que el producto cartesiano distribuye a la diferencia simétrica:

Proposición: Sean $A, B, C$ conjuntos no vacíos. Prueba que $A\times (B\triangle C)= (A\times B)\triangle (A\times C)$.

Demostración:

$(x,y)\in A\times (B\triangle C)$
si y sólo si $x\in A$ y $y\in B\triangle C$
si y sólo si $x\in A$ y $(y\in (B\setminus C)\cup (C\setminus B))$
si y sólo si $x\in A$ y $((y\in B$ y $y\notin C)$ o $(y\in C$ y $y\notin B))$
si y sólo si $(x\in A$ y $(y\in B$ y $y\notin C))$ o $(x\in A$ y $(y\in C$ y $y\notin B))$
si y sólo si $((x\in A$ y $y\in B)$ y $(x\in A$ y $y\notin C))$ o $((x\in A$ y $y\in C)$ y $(x\in A$ y $y\notin B))$
si y sólo si $((x,y)\in A\times B$ y $(x,y)\notin A\times C)$ o $((x,y)\in A\times C$ y $(x,y)\notin A\times B)$
si y sólo si $(x,y)\in (A\times B)\setminus (A\times C)$ o $(x,y)\in (A\times C)\setminus (A\times B)$.
si y sólo si $(x,y)\in (A\times B)\triangle (A\times C)$.

$\square$

Tarea moral

Los siguientes ejercicios te permitirán aprender otras propiedades del producto cartesiano:

  • Muestra que no siempre se da la igualdad $(A\times C)\cup (B\times D)= (A\cup B)\times (C\cup D)$.
  • Demuestra que $(A\cup B)\times (C\cup D)=(A\times C)\cup (B\times D)\cup (A\times D)\cup (B\times C)$.
  • $(X\times Y)\setminus (B\times C)=((X\setminus B)\times Y)\cup(X\times (Y\setminus C))$.
  • Demuestra que $(A\triangle B)\times C=(A\times C)\triangle (B\times C)$.

Más adelante

En la siguiente sección definiremos a una relación, para ello utilizaremos el concepto de producto cartesiano y pareja ordenada.

Enlaces

Ver lección anterior: Teoría de los Conjuntos I: Parejas ordenadas y producto cartesiano

Teoría de los Conjuntos I: El complemento de un conjunto

Por Gabriela Hernández Aguilar

Introducción

En esta nueva sección hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez veremos las leyes de De Morgan.

Problemas con la definición

Para un conjunto $A$ definimos al complemento de $A$, como la colección:

$A^c=\set{x:x\notin A}$.

Entonces los elementos de $A^c$ serán aquellos que no pertenecen al conjunto $A$. Sin embargo, esta colección no es un conjunto, esto debido a que no existe ninguna restricción extra para sus elementos. Veamos con la siguiente proposición que ocurre si suponemos que $A^c$ definido de esta forma es un conjunto.

Proposición: Para $A$ un conjunto, entonces $\set{x:x\notin A}$ no es un conjunto.

Demostración:

Sea $A$ un conjunto arbitrario y supongamos que $z= \set{x:x\notin A}$ si es un conjunto en busca de una contradicción. Luego, por el axioma de unión $A\cup z$ es un conjunto. Notemos ahora que $A\cup z=\set{x: x\in A\ o\ x\notin A}$ es la colección de todos los conjuntos, pues cualquier conjunto $y$ satisface $y\in A$ o $y\notin A$, es decir, cualquier conjunto $y$ está en $A\cup z$.

Por lo tanto, como $A\cup z$ es un conjunto, concluimos que la colección de todos los conjuntos es un conjunto y esto sabemos que es falso.

Como la contradicción viene de suponer que $z=\set{x:x\notin A}$ es un conjunto, se sigue que $z$ no es un conjunto.

$\square$

Arreglemos la definición

Para quitar el problema que nos genera definir al complemento de un conjunto como lo hicimos antes, haremos uso de el axioma esquema de comprensión. De modo que, el complemento de un conjunto quedará bien definido si condicionamos a sus elementos. Esto último lo haremos de la siguiente forma:

Definición: Sean $A$ y $X$ conjuntos, definimos al complemento de $A$ respecto del conjunto $X$, como:

$A^c= \set{x\in X:x\notin A}$.

Ejemplo:

Sea $X=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$ y sea $A=\set{\emptyset, \set{\emptyset, \set{\emptyset}}}$. Tenemos que $A^c=\set{x\in X: x\notin A}=\set{\set{\emptyset}, \set{\set{\emptyset}}}$.

En efecto, pues $\emptyset\in X$ y $\emptyset\in A$ por lo que $\emptyset\notin A^c$ pues no cumple la propiedad para ser elemento del conjunto $A^c$. Por su parte, $\set{\emptyset,\set{\emptyset}}$ tampoco es elemento de $A^c$ pues $\set{ \emptyset,\set{\emptyset}}\in X$ y $\set{ \emptyset,\set{\emptyset}}\in A$. Finalmente, $\set{\emptyset}$, $\set{\set{\emptyset}}\in X$ y $\set{\emptyset}$, $\set{\set{\emptyset}}not\in A$, por lo que $\set{\emptyset}$, $\set{\set{\emptyset}}\in A^c$.

$\square$

Observación: Para $A$ y $X$ conjuntos cualesquiera, $A^c= X\setminus A$.

Demostración:

En efecto, pues:

$X\setminus A=\set{x\in X: x\notin A}= A^c$

$\square$

Resultados del conjunto complemento

Teorema: Sean $A$, $B$, $X$ conjuntos, tales que $A$, $B\subseteq X$. Demuestra que $A\setminus B=A\cap (X\setminus B)$.

Demostración:

$\subseteq$] Sea $a\in A\setminus B$, entonces $a\in A$ y $a\notin B$. Como $a\in A\subseteq X$, entonces $a\in X$. Así, es cierto que $a\in A$ y ($a\in X$ y $a\notin B$), por lo que $a\in A$ y $a\in X\setminus B$ y por lo tanto, $a\in A\cap (X\setminus B)$.

Concluimos que $A\setminus B\subseteq A\cap (X\setminus B)$.

$\supseteq$] Sea $a\in A\cap(X\setminus B)$, entonces $a\in A$ y $a\in X \setminus B$. Entonces $a\in A$ y $a\in X$ y $a\notin B$, en particular, $a\in A$ y $a\notin B$. Así, $a\in A\setminus B$.

Por lo tanto, $A\cap (X\setminus B)= A\setminus B$.

Lo que concluye la prueba.

$\square$

Proposición: Sean $A$ y $B$ conjuntos tales que $A$, $B\subseteq X$. Entonces se cumple lo siguiente:

a) $A\cap (X\setminus A)=\emptyset$,

b) $A\cup (X\setminus A)=X$,

c) $X\setminus(X\setminus A)= A$,

Demostración:

a) Supongamos que $A\cap(X\setminus A)\not=\emptyset$ es busca de una contradicción. Entonces, existe $x\in A\cap(X\setminus A)$, de donde $x\in A$ y $x\in X\setminus A$.

Así, $x\in A$ y $x\in X$ y $x\notin A$. En particular, $x\in A$ y $x\notin A$ lo cual no puede ocurrir. Por lo tanto, $A\cap(X\setminus A)=\emptyset$.

b) Sea $x\in A\cup (X\setminus A)$, entonces $x\in A$ o $x\in X\setminus A$.

Caso 1: Si $x\in A$, entonces $x\in X$ pues $A\subseteq X$ y por lo tanto, $A\cup (X\setminus A)\subseteq X$.

Caso 2: Si $x\in X\setminus A$, entonces $x\in X$ y $x\notin A$. En particular, $x\in X$ y así, $A\cup (X\setminus A)\subseteq X$.

Por lo tanto, $A\cup (X\setminus A)\subseteq X$.

Por otro lado, supongamos que $x\in X$. Tenemos dos casos: $x\in A$ o $x\notin A$.

Caso 1: Si $x\in A$, entonces $x\in A\cup (X\setminus A)$.

Caso 2: Si $x\notin A$, entonces $x\in X$ y $x\notin A$ y así, $x\in X\setminus A$. Por lo tanto, $x\in A\cup(X\setminus A)$.

En cualquiera de los dos casos concluimos que $X\subseteq A\cup (X\setminus A)$.

Por lo tanto, $ $A\cup (X\setminus A)= X$.

c) Primero veamos que $A\subseteq X\setminus (X\setminus A)$. Sea $x\in A$, entonces $x\notin X\setminus A$. Por otro lado, $x\in X$ pues $A\subseteq X$.

Por lo que $x\in X$ y $x\notin X\setminus A$, es decir, $x\in X\setminus(X\setminus A$. Lo que concluye la prueba de que $A\subseteq X\setminus (X\setminus A)$.

Ahora, sea $x\in X\setminus (X\setminus A)$, entonces $x\in X$ y $x\notin X\setminus A$. Esto implica que $x\in X$ y ($x\notin X$ o $x\in A$). Como $x\in X$, entonces $x\notin X$ no es posible y así, $x\in A$. Por lo tanto, $X\setminus(X\setminus A)\subseteq A$.

Por lo tanto, $A=X\setminus (X\setminus A)$.

$\square$

Leyes de De Morgan

Teorema: Sean $A$, $B\subseteq X$, demuestra que:

  1. $X\setminus (A\cap B)= (X\setminus A)\cup (X\setminus B)$,
  2. $X\setminus (A\cup B)= (X\setminus A)\cap (X\setminus B)$.

Demostración:

  1. Sea $x\in X\setminus (A\cap B)$,
    si y sólo si $x\in X$ y $x\notin A\cap B$ por definición de complemento,
    si y sólo si $x\in X$ y ($x\notin A$ o $x\notin B$) usando que ($\neg (p\land q)\equiv \neg p\vee \neg q$),
    si y sólo si ($x\in X$ y $x\notin A$) o $(x\in X$ y $x\notin B$),
    si y sólo si $x\in X\setminus A$ o $x\in X\setminus B$,
    si y sólo si $x\in (X\setminus A)\cup (X\setminus B)$.
    Por lo tanto, $X\setminus(A\cap B)=(X\setminus A)\cup (X\setminus B)$.
  2. Sea $x\in X\setminus (A\cup B)$,
    si y sólo si $x\in X$ y $x\notin A\cup B$ por definición de complemento,
    si y sólo si $x\in X$ y ($x\notin A$ y $x\notin B$) usando que ($\neg (p\vee q)\equiv \neg p\land\neg q$),
    si y sólo si ($x\in X$ y $x\notin A$) y $(x\in X$ y $x\notin B$),
    si y sólo si $x\in X\setminus A$ y $x\in X\setminus B$,
    si y sólo si $x\in (X\setminus A)\cap (X\setminus B)$.
    Por lo tanto, $X\setminus(A\cup B)=(X\setminus A)\cap (X\setminus B)$.

$\square$

Tarea Moral

  • Demuestra que para $X$ un conjunto cualquiera se cumple que $X\setminus \emptyset= X$.
  • Prueba que si $X$ un conjunto arbitrario, entonces $X\setminus X=\emptyset$.
  • Sean $A$, $B\subseteq X$ conjuntos. Prueba que $A\subseteq B$ si y sólo si $X\setminus B\subseteq X\setminus A$.
  • Muestra que si $A$ es un conjunto no vacío, entonces $(A\cup A)\setminus A\not=A\cup (A\setminus A)$.

Más adelante…

En la siguiente lección hablaremos acerca del álgebra de conjuntos, para ello retomaremos las operaciones entre conjuntos que definimos en una de las secciones anteriores. Así mismo, haremos uso de los resultados que probamos en esta sección acerca del complemento de un conjunto. A su vez, definiremos una nueva operación entre conjuntos: la diferencia simétrica.

Enlaces

En los siguientes enlaces podrás encontrar contenido acerca del complemento de un conjunto y sobre las leyes de De Morgan:


Teoría de los Conjuntos I: Operaciones entre conjuntos

Por Gabriela Hernández Aguilar

Introducción

A continuación definiremos algunas de las operaciones que hay entre conjuntos como lo son la unión, intersección y diferencia. Retomaremos algunas axiomas como el de unión y el axioma esquema de comprensión, para ver que estas operaciones definen nuevos conjuntos.

Unión

Definición: Si $A$ y $B$ son conjuntos, entonces definimos la unión de $A$ y $B$ como:


$A\cup B=\bigcup\set{A,B}$

o bien,

$A\cup B= \set{x: x\in A\ o\ x\in B}$

Ejemplos:

  1. Consideremos los conjuntos $A= \set{\emptyset}$ y $B= \set{\emptyset, \set{\emptyset}}$. Luego, $A\cup B=\bigcup\set{A,B} = \bigcup\set{\emptyset, \set{\emptyset, \set{\emptyset}}}=\set{\emptyset,\set{\emptyset}}=B$.
  2. Ahora, consideremos $A=\set{\set{\emptyset}}$ y $B=\set{\set{\set{\emptyset}}}$. Tendremos que $A\cup B=\set{\set{\emptyset}}\cup \set{\set{\set{\emptyset}}}=\set{\set{\emptyset},\set{\set{\emptyset}}}$.

$\square$

Propiedades de la unión

Proposición: Para cualquier conjunto $A$ se tiene que $A\subseteq A\cup B$. Además, $A\cup B= B\cup A$.

Demostración:
Primero veamos que $A\subseteq A\cup B$. Supongamos que $x\in A$, entonces $x\in A$ o $x\in B$ es verdadero para cualquier conjunto $B$, dado que estamos suponiendo que $x\in A$ si ocurre.
Si $x\in B$ es verdadero, tendremos que $x\in A$ o $x\in B$ es verdadero, y si $x\in B$ es falso, entonces $x\in A$ o $x\in B$ es verdadero. (Ver tablas de verdad en Teoría de los Conjuntos I: Repaso sobre lenguaje de la Teoría de los Conjuntos).

Por lo que no importa el valor de verdad que tenga la proposición $x\in B$, siempre que ocurra $x\in A$ va a resultar que $x\in A$ o $x\in B$ es verdadero, y así $x\in A\cup B$.

La unión es conmutativa

Luego, para ver que $A\cup B= B\cup A$ tenemos que $x\in A\cup B$ si y sólo si $x\in A$ o $x\in B$, si y sólo si $x\in B$ o $x\in A$ (pues la tabla de verdad de «$p\vee q$» es equivalente a la de «$q\vee p$»), si y sólo si $x\in B\cup A$. Esto prueba que la unión es conmutativa.

$\square$

Proposición: Sea $A$ un conjunto tal que $A\in S$, entonces $A\subseteq \bigcup S$.

Demostración:
Supongamos que $A\in S$ y sea $x\in A$, tenemos que $x\in \bigcup S$. En efecto, para $x\in A$ arbitrario existe $y\in S$ tal que $x\in y$, a saber $y=A$. Por lo tanto, $A\subseteq S$.

$\square$

Intersección

Definición: Sean $A$ y $B$ conjuntos. La intersección de dos conjuntos estará definida como sigue:

$A\cap B=\set{x:x\in A\ y\ x\in B}$.

Proposición: Demuestra que $A\cap B$ es un conjunto.

Demostración: Sean $A$ y $B$ conjuntos.

Definamos la propiedad «$P(x)=x\in B$». Por el axioma esquema de comprensión se tiene que

$\set{x\in A:P(x)}=\set{x\in A:x\in B}$

es un conjunto.

Luego, $\set{x\in A:x\in B}=A\cap B$. En efecto, $x\in A\cap B$ si y sólo si $x\in A$ y $x\in B$ si y sólo si $x\in \set{x\in A:x\in B}$.

Por lo tanto, $A\cap B$ es conjunto.

$\square$

Ejemplos:

  1. Consideremos $A=\set{\emptyset}$ y $B=\set{\set{\emptyset}}$, tenemos que $A\cap B=\emptyset$ esto último debido a que no existe ningún elemento $x$ tal que $x\in \set{\emptyset}$ y $x\in\set{\set{\emptyset}}$ al mismo tiempo. De ocurrir, tendriamos que $x=\emptyset$ y $x=\set{\emptyset}$ y por lo tanto, $\emptyset=\set{\emptyset}$ lo cual sabemos que no ocurre. Por lo tanto, $A\cap B=\emptyset$.
  2. Sean $A=\set{\emptyset,\set{\emptyset}}$ y $B=\set{\emptyset}$ conjuntos. Notemos que en este ejemplo el único elemento que está tanto en el conjunto $A$ como en el conjunto $B$ es $x=\emptyset$. De este modo, $A\cap B=\set{\emptyset}$

$\square$

Definición: Sea $A$ un conjunto no vacío, definimos a la intersección de $A$ como el conjunto:

$\bigcap A=\set{x: \forall y\in A(x\in y)}$.

Ejemplo:

Sea $A=\set{\set{\emptyset}, \set{\set{\emptyset}}}$, tenemos que $\bigcap A=\emptyset$. En efecto, ya que no existe ningún elemento $x$ que pertenezca a todos los elementos de $A$.

$\square$

Propiedades de la intersección

Teorema: Para cualesquiera $A$, $B$ conjuntos, tenemos que:

  1. $A\cap B\subseteq A$,
  2. $A\cap A=A$,
  3. $A\cap B=B\cap A$.

Demostración:

  1. Sea $x\in A\cap B$. Veamos que $x\in A$.
    Como $x\in A\cap B$ tenemos por definición de intersección que $x\in A$ y $x\in B$. En particular, $x\in A$. Por lo tanto, $A\cap B\subseteq A$.
  2. Tomemos $x\in A\cap A$. Veamos que $x\in A$.
    Que $x\in A\cap A$ es equivalente a decir que $x\in A$ y $x\in A$ si y sólo si $x\in A$. Por lo tanto, $A\cap A=A$.
  3. $A\cap B=B\cap A$ pues $x\in A\cap B$ arbitrario si y sólo si $x\in A$ y $x\in B$, si y sólo si $x\in B$ y $x\in A$, si y sólo si $x\in B\cap A$.

$\square$

Diferencia

Definición: Sean $A$ y $B$ conjuntos. La diferencia de $A$ con $B$ estará definida como sigue:

$A\setminus B=\set{x:x\in A\ y\ x\notin B}$.

Proposición: Demuestra que $A\setminus B$ es un conjunto.

Demostración: Sean $A$ y $B$ conjuntos.

Definamos la propiedad «$P(x)=x\notin B$». Por el axioma esquema de comprensión se tiene que

$\set{x\in A:P(x)}=\set{x\in A:x\notin B}$

es un conjunto.

Luego, $\set{x\in A:x\notin B}=A\setminus B$. En efecto, $x\in A\setminus B$ si y sólo si $x\in A$ y $x\notin B$ si y sólo si $x\in \set{x\in A:x\notin B}$.

$\square$

Ejemplos:

  1. Consideremos $A=\set{\emptyset}$ y $B=\set{\set{\emptyset}}$, tenemos que $A\setminus B=\set{\emptyset}$ pues el único elemento que cumple estar en $A$ y no pertenecer al conjunto $B$ es $\emptyset$.
  2. Sea $A=\set{\emptyset, \set{\emptyset}}$ y $B=\set{\emptyset}$. Luego,
    $A\setminus B=\set{x\in A:x\notin B}=\set{x\in \set{\emptyset, \set{\emptyset}}: x\notin\set{\emptyset}}= \set{\emptyset}$.

Propiedades de la diferencia

Teorema: Para cualesquiera $A$, $B$ conjuntos, tenemos que:

  1. $A\setminus \emptyset= A$,
  2. $A\setminus A=\emptyset$,
  3. $A\setminus B=A\setminus (A \cap B)$.

Demostración:

  1. Sea $x\in A\setminus \emptyset$., entonces $x\in A$ y $x\notin \emptyset$. En particular $x\in A$, por lo tanto $A\setminus \emptyset\subseteq A$.
    Luego, supongamos que $x\in A$. Como $x\notin \emptyset$ es verdadero para cualquier conjunto $x$, tenemos que $x\in A$ y $x\notin \emptyset$ es verdadero. Por lo tanto, $x\in A\setminus \emptyset$ y así $A\subseteq A\setminus \emptyset$.
    De lo anterior tenemos que $A=A\setminus \emptyset$.
  2. Supongamos que $A\setminus A\not=\emptyset$, es decir, existe al menos un elemento $x\in A\setminus A$. Entonces $x\in A$ y $x\notin A$, lo cual no puede ocurrir. Dado que la contradicción provino de suponer que $A\setminus A\not=\emptyset$, concluimos que $A\setminus A=\emptyset$.
  3. Veamos que $A\setminus B=A\setminus (A \cap B)$.
    $\subseteq$] Sea $x\in A\setminus B$, entonces $x\in A$ y $x\notin B$. Luego, como $x\notin B$ entonces $x\notin A$ o $x\notin B$ es verdadero. Lo que equivale a decir que $x\notin (A\cap B)$. Por lo tanto, $x\in A$ y $x\notin (A \cap B)$ y así, $A\setminus B\subseteq A\setminus(A\cap B)$.
    $\supseteq$] Sea $x\in A\setminus (A\cap B)$, entonces $x\in A$ y $x\notin (A\cap B)$. Lo que equivale a decir que $x\in A$ y ($x\notin A$ o $x\notin B$). Dado que $x\notin A$ no puede ocurrir pues $x\in A$, entonces $x\notin B$. Por lo tanto, $x\in A$ y $x\notin B$ y así, $A\setminus(A\cap B)\subseteq A\setminus B$.
    Por lo tanto, $A\setminus(A\cap B)= A\setminus B$

$\square$

Tarea moral

Los siguientes ejercicios te servirán para poner en practica los conocimientos que has adquirido en este sección, en la siguiente lista podrás probar las siguientes propiedades de la unión, intersección y diferencia de conjuntos:

  • Verifica que si $p$ y $q$ son proposiciones, entonces $p\vee q\equiv q\vee p$.
  • Verifica que si $p$ y $q$ son proposiciones, entonces $\neg(p\land q)\equiv (\neg p\vee \neg q)$.
  • Prueba que para cualesquiera $A$, $B$ y $C$ conjuntos, $A\cup(B\cup C)=(A\cup B)\cup C$.
  • $A\cap (B\cap C)= (A\cap B)\cap C$.
  • Prueba que para cualesquiera $A$, $B$ y $C$ conjuntos:
    – $A\cup (B\cap C)= (A\cup B)\cap(A\cup C)$,
    – $A\cap (B\cup C)= (A\cap B)\cup(A\cap C)$.
  • Si $A\subseteq C$ y $B\subseteq C$ entonces $A\cap B\subseteq C\cap D$.
  • Demuestra que $A\setminus B=A$ si y sólo si $A\cap B=\emptyset$.

Más adelante…

En la siguiente sección retomaremos la definición de intersección de conjuntos y mencionaremos el axioma de buena fundación. Además abordaremos el tema de la colección de todos los conjuntos apoyados de este último axioma. Finalmente, veremos que la intersección del conjunto vacío resulta ser la clase de todos los conjuntos.

Enlaces

Álgebra Superior I: Leyes de De Morgan y diferencia simétrica de conjuntos

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora ya hemos visto cómo juntar dos conjuntos (unión), cómo encontrar elementos en común entre dos conjuntos (intersección), y hemos considerado cualquier elemento excepto los que están dentro de un conjunto (complemento). Ahora vamos a hablar de otros dos conectores: La diferencia y la diferencia simétrica. Estos dos nos permitirán a hablar de los elementos de un conjunto $A$ sin considerar los elementos de otro conjunto $B$, así como de la unión de ambos conjuntos a excepción de su intersección. Después hablaremos de algunas propiedades conocidas como las leyes de De Morgan.

La Diferencia

Habrá ocasiones en que nos interesará diferencias algunos conjuntos de otros. Por ejemplo, imagina que quieres comprar una chamarra, visitando un sitio web te das cuenta de que hay una promoción en algunas prendas, incluidas las chamarras, entonces decides que compraras una chamarra solo si tiene descuento. Considera los conjuntos que describen artículos de la página web:

$$A = \{x : x \text{ es chamarra} \} $$

$$B = \{x : x \text{ no tiene descuento} \} $$

Si solo pudiéramos distinguir entre esos dos conjuntos, a nosotros nos gustaría encontrar una chamarra $x$ del conjunto $A$ que no esté en el conjunto $B$. Esto puede describirse como:

$$\{ x: x \in A \land x \not \in B \} = \{x: x \in A \land x \in B^c \} $$

Nota ahora que esto se puede escribir como:

$$ A \cap B^c =\{x: x \in A \land x \in B^c \} $$

Esto es justamente a lo que nosotros llamamos diferencia entre conjuntos, que representa la idea de «restar conjuntos», es decir, considerar los elementos de un conjunto exceptuando los elementos que también están en otro conjunto específico.

Definición. Sean $X$ y $Y$ dos conjuntos. Definimos la diferencia de conjuntos $X/Y$ como:

$$X \setminus Y = X \cap Y^c .$$

Y gráficamente se ve de la siguiente manera:

Diferencia simétrica

Ahora imagina que en una universidad se ofrece el curso de Lógica y el curso de Teoría de Conjuntos. La universidad quiere ver cuántos alumnos se interesan únicamente por la materia de Lógica sin la Teoría de Conjuntos y viceversa para ver cuántos grupos abrir.

Puesto que la universidad piensa abrir un curso que abarca Conjuntos y Lógica para los alumnos que quieren tomar los dos cursos a la vez, por ahora no nos interesan los alumnos que estén en la intersección del conjunto de alumnos que quieren tomar el curso de Lógica con el conjunto de alumnos que quieren tomar el curso de Teoría de Conjuntos. Dicho de otra manera, si el conjunto de los alumnos interesados en un curso de Lógica lo representamos por $L$ y al conjunto de los alumnos interesados en un curso de Teoría de Conjuntos lo representamos por $C$, entonces los alumnos que están interesados en un curso de Lógica y no de Conjuntos es $L \setminus C$ y el conjunto de alumnos que están interesados en un curso de Conjuntos y no de Lógica es $C \setminus L$.

Nota ahora que entre los dos conjuntos, hay $(L \setminus C) \cup (C \setminus L)$ alumnos que no tomarán el curso de Conjuntos y Lógica pero si una materia en alguna de esas dos disciplinas. A este conjunto lo llamamos la diferencia simétrica o unión disyuntiva entre conjuntos.

Definición . Sean $X$ y $Y$ dos conjuntos. La diferencia simétrica o unión disyuntiva de los conjuntos $X$ y $Y$ se define como:

$$X \vartriangle Y = (X \setminus Y) \cup (Y \setminus X) $$

Y gráficamente se ve como:

Leyes de De Morgan

Una vez que ya definimos los operadores que vamos a usar en la teoría de conjuntos, vamos a anotar una propiedad importante de los conjuntos que tiene su contraparte en la lógica proposicional. Y nos habla de cómo encontrar el complemento de la unión y la intersección.

Teorema (Leyes de De Morgan). Sean $X$ y $Y$ dos conjuntos dentro del conjunto universal $U$. Entonces:

  1. $(X \cap Y)^c = X^c \cup Y^c$
  2. $(X \cup Y)^c = X^c \cap Y^c$

Demostración. En esta entrada, solo demostraremos la primera parte, la segunda parte tendrá un argumento muy similar a la demostración que presentaremos a continuación.

Para demostrar que $(X \cup Y)^c = X^c \cap Y^c$, necesitaremos considerar un elemento $x$ y probar que $x \in (X \cup Y)^c$ si y solo si $ x\in X^c \cap Y^c$. Para ello, nota lo siguiente:

\begin{align*}
x \in (X \cap Y)^c &\Leftrightarrow x \in \{x \in U : \neg(x \in X \cap Y) \} \\
&\Leftrightarrow x \in \{x \in U: \neg (x \in X \land x \in Y) \} \\
&\Leftrightarrow x \in \{x \in U: \neg( x \in X ) \lor \neg (x \in Y) \} \ \ \ \ \text{ ( Por las leyes de De Morgan de la lógica)} \\
&\Leftrightarrow x \in \{x \in U: x \in X^c \lor x \in Y^c \}\\
&\Leftrightarrow x \in X^c \cup Y^c
\end{align*}

De esta manera, $(X \cap Y)^c = X^c \cup Y^c$. De manera análoga se cumple la otra proposición.

$\square$

Este teorema lo que nos quiere decir es que la forma de encontrar el complemento de la unión es intersectando el complemento de los conjuntos, y el complemento de la intersección es la unión de los complementos.

Corolario. Las siguientes proposiciones se cumplen con $X,Y,Z$ tres conjuntos:

  1. $(X \cup Y \cup Z)^c = X^c \cap Y^c \cap Z^c $
  2. $(X \cap Y \cap Z)^c = X^c \cup Y^c \cup Z^c$

Demostración. De manera similar al teorema anterior, solo demostraremos el primer inciso.

Para esto, notemos que:

\begin{align*}
(X \cup Y \cup Z)^c &= (X \cup Y)^c \cap Z^c \\
&= X^c \cap Y^c \cap Z^c
\end{align*}

De manera análoga se cumple la segunda proposición.

$\square$

Más adelante, tendremos herramienta matemática para demostrar que las leyes no solo se cumplen para la dos o tres variables, sino que para una cantidad arbitraria de términos. En otras palabras, podremos demostrar que:

Proposición. Sea $X = \{X_1,X_2,\dots,X_n\}$ una colección finita de conjuntos. Entonces:

  1. $(X_1 \cup X_2 \cup \dots \cup X_n)^c = X_1^c \cap X_2^c \cap \dots \cap X_n^c $
  2. $(X_1 \cap X_2 \cap \dots \cap X_n)^c = X_1^c \cup X_2^c \cup \dots \cup X_n^c$

Por ahora, nos quedaremos únicamente en el caso de tres variables. A este punto, conviene también decir que a veces encontrarás en la literatura la el término $X_1 \cup X_2 \cup \dots \cup X_n$ escrito como $\bigcup_{i=1}^nX_i$ y esta es únicamente una forma de notación que representa la unión de una colección de conjuntos. De manera similar, $X_1 \cap X_2 \cap \dots \cap X_n = \bigcap_{i=1}^nX_i $. De esta manera, la proposición anterior se resume en:

  1. $\big( \bigcup_{i=1}^n X_i \big)^c = \bigcap_{i=1}^n X_i^c$
  2. $\big( \bigcap_{i=1}^n X_i \big)^c = \bigcup_{i=1}^n X_i^c$

Otras propiedades de los conjuntos

A continuación anotamos otras propiedades que tienen los conjuntos, algunas de las cuales ya hemos revisado. Sean $X,Y$ y $Z$ tres conjuntos en el conjunto universal $U$, la siguiente tabla resume algunas propiedades que se cumplen.

Propiedad
Asociatividad de los conjuntos\begin{align*}
X \cup (Y \cup Z) &= (X \cup Y) \cup Z \\
X \cap (Y \cap Z) &= (X \cap Y) \cap Z
\end{align*}
Distributividad de la unión y la intersección\begin{align*}
X \cap (Y \cup Z) &= (X \cap Y) \cup (X \cap Z) \\
X \cup (Y \cap Z) &= (X \cup Y) \cap (X \cup Z)
\end{align*}
Idempotencia de la unión e intersección\begin{align*}
X \cup X = X = X \cap X
\end{align*}
Conmutatividad de unión e intersección\begin{align*}
X \cup Y = Y \cup X \\
X \cap Y = Y \cap X
\end{align*}
Leyes de identidad de unión\begin{align*}
X \cup \emptyset &= X \\
X \cup U &= U
\end{align*}
Leyes de identidad de intersección\begin{align*}
X \cap \emptyset &= \emptyset \\
X \cap U &= X
\end{align*}
Unión de complementos\begin{align*}
X \cup X^c = U
\end{align*}
Intersección de complementos\begin{align*}
X \cap X^c = \emptyset
\end{align*}
\begin{align*}
(X^c)^c = X
\end{align*}
Leyes de De Morgan\begin{align*}
(X \cap Y)^c &= X^c \cup Y^c\\
(X \cup Y)^c &= X^c \cap Y^c
\end{align*}

Y para resumir los operadores entre conjuntos, se encuentra la siguiente imagen:

Notas

*: En la literatura, también puedes encontrar la diferencia entre dos conjuntos $X$ y $Y$ escrita como $X – Y$ en lugar de $X \setminus Y$.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Sean $P, Q, R, S$ cuatro proposiciones y $A = \{x: (P(x) \land Q(x)) \lor R(x) \}$, $B = \{x: (R(x) \land \neg P(x)) \lor S(x) \}$, $C = \{ x: S(x)\}$. Encuentra:
    • $A \cup B$
    • $B^c$
    • $A \setminus B$
    • $A \cap (B \cap C)$
    • $A \vartriangle C$
  2. Demuestra que $(X \cup Y)^c = X^c \cap Y^c$
  3. Demuestra que $(X^c)^c = X$
  4. Describe al conjunto $(X \vartriangle Y)^c \setminus (X \setminus Y)^c$ en términos de complementos, la unión y la intersección.

Más adelante…

Con esta entrada acabamos la primer unidad. Hasta ahora hemos sentado las bases matemáticas de la teoría de conjuntos, en la siguiente unidad vamos a seguir hablando de conjuntos, pero introduciremos un nuevo concepto: las relaciones entre conjuntos. Estas nos permitirán empezar a hablar de funciones, un recurso muy utilizado en todas las áreas de las matemáticas.

Entradas relacionadas

1TFC

Los TFC (Teoremas Fundamentales de los Cuadraditos)

Por Leonardo Ignacio Martínez Sandoval

Esta entrada está motivada por una pregunta en el grupo de Matemáticos de Facebook. Palabras más, palabras menos, alguien preguntaba por qué «derivar es el inverso de integrar», si uno tiene que ver con sacar un área y el otro tiene que ver con sacar una pendiente.

La idea formal que está detrás de esto de que sean «inversas» son los teoremas fundamentales del cálculo (TFC). Pero en esta entrada no me quiero meter con definiciones de límite ni cosas por el estilo. A fin de cuentas es un blog y estamos navegando tranquilos. Así que déjenme trabajar «al ahí se va», osea, informalmente. La idea es entender por qué derivar e integrar son operaciones inversas «con dibujitos» y en un caso más sencillo: el caso discreto. Veremos los teoremas fundamentales de los cuadraditos (TFC). ¡Oh no! ¡Se confunden las siglas! Bueno, ni modo.

Los cuadraditos

Todo empieza con algunos cuadraditos ordenados en columnas. De izquierda a derecha, tenemos 1, 2, 5, 3, 2, 4 y 2 cuadraditos en cada columna. Le voy a llamar $C_j$ a la cantidad de cuadraditos en la columna $j$. Por ejemplo, $C_3=5$.

Funcion

Seguir leyendo…