Archivo de la etiqueta: teoría de los conjuntos

Teoría de los Conjuntos I: El complemento de un conjunto

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del complemento de un conjunto y algunos resultados que se dan a partir de esta definición. A su vez, veremos las leyes de De Morgan, las cuales nos dirán cuál es el complemento de la intersección y de la unión de dos o más conjuntos.

Problemas con la definición

Al intentar hablar del complemento de un conjunto, nos gustaría referirnos a la parte que lo completa, es decir, todo lo que no pertenece a él. Por lo que bajo esta idea, podríamos intentar definir al complemento de un conjunto como sigue.

Para un conjunto $A$ definimos al complemento de $A$, como la colección:

$A^c=\set{x:x\notin A}$.

Entonces los elementos de $A^c$ serían aquellos que no pertenecen al conjunto $A$. Sin embargo, esta colección no es un conjunto, esto debido a que no existe ninguna restricción extra para sus elementos. De hecho, la siguiente proposición muestra que existe un problema si suponemos que $A^c$ definido de esta forma es un conjunto.

Proposición. Para $A$ cualquier conjunto, se tiene que $\set{x:x\notin A}$ no es un conjunto.

Demostración.

Sea $A$ un conjunto arbitrario y, en busca de una contradicción, supongamos que $z= \set{x:x\notin A}$ sí es un conjunto. Luego, por el axioma de unión $A\cup z$ es un conjunto. Notemos ahora que $A\cup z=\set{x: x\in A\ o\ x\notin A}$ es la colección de todos los conjuntos, pues cualquier conjunto $y$ satisface $y\in A$ o $y\notin A$, es decir, cualquier conjunto $y$ está en $A\cup z$.

Por lo tanto, como $A\cup z$ es un conjunto, concluimos que la colección de todos los conjuntos es un conjunto y esto sabemos que es falso. (Revisar Teoría de los Conjuntos I: Paradoja de Russell)

Como la contradicción viene de suponer que $z=\set{x:x\notin A}$ es un conjunto, se sigue que $z$ no es un conjunto.

$\square$

Arreglemos la definición

Para quitar el problema que nos genera definir al complemento de un conjunto como lo hicimos antes, haremos uso del esquema de comprensión. El complemento de un conjunto quedará bien definido si condicionamos a sus elementos a pertenecer a cierto conjunto y cumplir una propiedad. Esto último lo haremos de la siguiente forma:

Definición. Sean $A$ y $X$ conjuntos, definimos al complemento de $A$ respecto del conjunto $X$, como:

$A^c= \set{x\in X:x\notin A}$.

Ejemplo.

Sea $X=\set{\emptyset, \set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$ y sea $A=\set{\emptyset, \set{\emptyset, \set{\emptyset}}}$. Tenemos que $A^c=\set{x\in X: x\notin A}=\set{\set{\emptyset}, \set{\set{\emptyset}}}$.

En efecto, pues $\emptyset\in X$ y $\emptyset\in A$ por lo que $\emptyset\notin A^c$ pues no cumple la propiedad para ser elemento del conjunto $A^c$. Por su parte, $\set{\emptyset,\set{\emptyset}}$ tampoco es elemento de $A^c$ pues $\set{ \emptyset,\set{\emptyset}}\in X$ y $\set{ \emptyset,\set{\emptyset}}\in A$. Finalmente, $\set{\emptyset}$, $\set{\set{\emptyset}}\in X$ y $\set{\emptyset}$, $\set{\set{\emptyset}}\notin A$, por lo que $\set{\emptyset}$, $\set{\set{\emptyset}}\in A^c$.

$\square$

Observación. Para $A$ y $X$ conjuntos cualesquiera, $A^c= X\setminus A$.

Demostración.

En efecto, pues:

$X\setminus A=\set{x\in X: x\notin A}= A^c$.

$\square$

Si bien $A^c$ y $X\setminus A$ son lo mismo, hay que tomar en cuenta que en la notación $A^c$ no aparece $X$, y por lo tanto debe ser muy claro por el contexto quién es $X$. De no ser así, habría ambiguedades. Si $X$ queda claro, usualmente preferiremos usar $A^c$ pues es más breve. Además, cuando usamos $A^c$ pensaremos que $A\subseteq X$.

Resultados del conjunto complemento

Usaremos el siguiente resultado repetidamente para la demostración de propiedades posteriormente.

Proposición. Sean $A$, $B$, $X$ conjuntos, tales que $A$, $B\subseteq X$. Demuestra que $A\setminus B=A\cap (X\setminus B)$.

Demostración.

$\subseteq$] Sea $a\in A\setminus B$, entonces $a\in A$ y $a\notin B$. Como $a\in A\subseteq X$, entonces $a\in X$. Así, es cierto que $a\in A$ y ($a\in X$ y $a\notin B$), por lo que $a\in A$ y $a\in X\setminus B$ y por lo tanto, $a\in A\cap (X\setminus B)$.

Concluimos que $A\setminus B\subseteq A\cap (X\setminus B)$.

$\supseteq$] Sea $a\in A\cap(X\setminus B)$, entonces $a\in A$ y $a\in X \setminus B$. Entonces $a\in A$ y $a\in X$ y $a\notin B$, en particular, $a\in A$ y $a\notin B$. Así, $a\in A\setminus B$.

Por lo tanto, $A\cap (X\setminus B)= A\setminus B$.

$\square$

Veamos otras tres propiedades del complemento.

Proposición. Sean $A$ y $X$ conjuntos tales que $A\subseteq X$. Entonces se cumple lo siguiente:

a) $A\cap (X\setminus A)=\emptyset$,

b) $A\cup (X\setminus A)=X$,

c) $X\setminus(X\setminus A)= A$.

Demostración:

a) Supongamos que $A\cap(X\setminus A)\not=\emptyset$ en búsqueda de una contradicción. Entonces, existe $x\in A\cap(X\setminus A)$, de donde $x\in A$ y $x\in X\setminus A$.

Así, $x\in A$ y $x\in X$ y $x\notin A$. En particular, $x\in A$ y $x\notin A$ lo cual no puede ocurrir. Por lo tanto, $A\cap(X\setminus A)=\emptyset$.

b) Sea $x\in A\cup (X\setminus A)$, entonces $x\in A$ o $x\in X\setminus A$.

Caso 1: Si $x\in A$, entonces $x\in X$ pues $A\subseteq X$.

Caso 2: Si $x\in X\setminus A$, entonces $x\in X$ y $x\notin A$. En particular, $x\in X$.

En cualquier caso, $x\in X$. Por lo tanto, $A\cup (X\setminus A)\subseteq X$.

Por otro lado, supongamos que $x\in X$. Tenemos dos casos: $x\in A$ o $x\notin A$.

Caso 1: Si $x\in A$, entonces $x\in A\cup (X\setminus A)$.

Caso 2: Si $x\notin A$, entonces $x\in X$ y $x\notin A$ y así, $x\in X\setminus A$. Por lo tanto, $x\in A\cup(X\setminus A)$.

En cualquiera de los dos casos concluimos que $X\subseteq A\cup (X\setminus A)$.

Por lo tanto, $A\cup (X\setminus A)= X$.

c) Primero veamos que $A\subseteq X\setminus (X\setminus A)$. Sea $x\in A$, entonces $x\notin X\setminus A$. Por otro lado, $x\in X$ pues $A\subseteq X$.

Por lo que $x\in X$ y $x\notin X\setminus A$, es decir, $x\in X\setminus(X\setminus A)$. Esto concluye la prueba de que $A\subseteq X\setminus (X\setminus A)$.

Ahora, sea $x\in X\setminus (X\setminus A)$, entonces $x\in X$ y $x\notin X\setminus A$. Esto implica que $x\in X$ y ($x\notin X$ o $x\in A$). Como $x\in X$, entonces $x\notin X$ no es posible y así, $x\in A$. Por lo tanto, $X\setminus(X\setminus A)\subseteq A$.

Por lo tanto, $A=X\setminus (X\setminus A)$.

$\square$

Leyes de De Morgan

Las leyes de De Morgan nos dicen cómo se comportan los complementos de uniones e intersecciones. A continuación damos la versión para uniones e intersecciones de dos conjuntos. En los ejercicios tendrás que demostrar las versiones para uniones e intersecciones arbitrarias.

Teorema. Sean $A$, $B\subseteq X$, demuestra que:

  1. $X\setminus (A\cap B)= (X\setminus A)\cup (X\setminus B)$,
  2. $X\setminus (A\cup B)= (X\setminus A)\cap (X\setminus B)$.

Demostración.

  1. Se tiene $x\in X\setminus (A\cap B)$,
    si y sólo si $x\in X$ y $x\notin A\cap B$ por definición de complemento,
    si y sólo si $x\in X$ y ($x\notin A$ o $x\notin B$),
    si y sólo si ($x\in X$ y $x\notin A$) o $(x\in X$ y $x\notin B$),
    si y sólo si $x\in X\setminus A$ o $x\in X\setminus B$,
    si y sólo si $x\in (X\setminus A)\cup (X\setminus B)$.
    Por lo tanto, $X\setminus(A\cap B)=(X\setminus A)\cup (X\setminus B)$.
  2. Se tiene $x\in X\setminus (A\cup B)$,
    si y sólo si $x\in X$ y $x\notin A\cup B$ por definición de complemento,
    si y sólo si $x\in X$ y ($x\notin A$ y $x\notin B$),
    si y sólo si ($x\in X$ y $x\notin A$) y $(x\in X$ y $x\notin B$),
    si y sólo si $x\in X\setminus A$ y $x\in X\setminus B$,
    si y sólo si $x\in (X\setminus A)\cap (X\setminus B)$.
    Por lo tanto, $X\setminus(A\cup B)=(X\setminus A)\cap (X\setminus B)$.

$\square$

Tarea moral

  • Demuestra que para $X$ un conjunto cualquiera se cumple que $X\setminus \emptyset= X$.
  • Prueba que si $X$ un conjunto arbitrario, entonces $X\setminus X=\emptyset$.
  • Sean $A$, $B\subseteq X$ conjuntos. Prueba que $A\subseteq B$ si y sólo si $X\setminus B\subseteq X\setminus A$.
  • Muestra que si $A$ es un conjunto no vacío, entonces $(A\cup A)\setminus A\not=A\cup (A\setminus A)$.
  • Sea $X$ un conjunto y $F$ un conjunto tal que para todo $A\in F$ se tiene $A\subseteq X$. En este ejercicio tomaremos complemento con respecto a $X$.
    • Muestra que $G=\{A^c: A\in F\}$ es un conjunto, escribiéndolo apropiadamente como una aplicación del axioma de comprensión.
    • Muestra que $(\cup F)^c = \cap G$.
    • Supongamos que $F\neq \emptyset$. Muestra que $G$ es no vacío y que $(\cap F)^c = \cup G$.

Este último ejercicio son las leyes de De Morgan en general.

Más adelante…

En la siguiente entrada hablaremos acerca del álgebra de conjuntos, para ello retomaremos las operaciones entre conjuntos que definidas anteriormente. Así mismo, haremos uso de los resultados que probamos en esta sección acerca del complemento de un conjunto. Un poco después, definiremos una nueva operación entre conjuntos: la diferencia simétrica.

Entradas relacionadas

Entradas relacionadas:


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»