Archivo de la etiqueta: matematicas

Definición y ejemplos de SUBESPACIO GENERADO por un conjunto

Por Jennyfer Paulina Bennetts Castillo

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

Definición y ejemplos de COMBINACIÓN LINEAL

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

La combinación lineal es el «equipo» que formamos por medio de nuestras «parejas» (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas

Definición y ejemplos con demostración de SUBESPACIO

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Si tenemos un conjunto $C$ con ciertas propiedades de nuestro interés, no forzosamente todo subconjunto de $C$ va a conservar esas propiedades, pero nos interesa encontrar condiciones suficientes (y de preferencia también necesarias) para saber si un subconjunto $D$ de $C$ dado tiene o no las propiedades que queremos.

Si $C$ es un conjunto que contiene a hombres y a mujeres, podemos definir un subconjunto que no contenga hombres y un subconjunto que no tenga mujeres, con lo que ya no preservan la propiedad deseada.

En esta entrada analizaremos qué se requiere para que un subconjunto de un espacio vectorial, tenga también estructura de espacio vectorial. Veremos que aunque aparentemente se requiere pedir muchas condiciones, en realidad éstas se pueden reducir sólo a unas cuantas.

SUBESPACIO

Definición: Sea $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Decimos que $W$ es un subespacio de $V$, y se le denota como $W\leqslant V$ si:

i) $W$ contiene al neutro del espacio $V$,
i.e. $\theta_V\in W$

ii) La suma es cerrada en $W,$
i.e. $\forall u,v\in W:$
$u+v\in W$

iii) El producto por escalar es cerrado en $W$,
i.e. $\lambda\in K$, $w\in W:$
$\lambda w\in W$

Veamos una equivalencia a esta definición que nos facilitará demostrar si un subconjunto dado de un espacio vectorial es por sí mismo un espacio vectorial.

Proposición: Sean $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Se cumple que $W\leqslant V$ si y sólo si $W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

Demostración: Veamos que se cumplen ambas implicaciones.

$\Longrightarrow )$ Sup. que $W\leqslant V$.
Por ii) y iii) la suma y el producto por escalar son cerrados en $W$, entonces las operaciones restringidas de $V$ dan una suma y un producto por escalar en $W$.
Propiedades $1$, $2$, $5$, $6$, $7.1$ y $7.2$ de espacio vectorial: Como $u+v=v+u$ para cualesquiera $u,v\in V$, en particular $u+v=v+u$ para toda $u,v\in W$. Por lo tanto, la suma en $W$ es conmutativa.
Nota: Decimos en este caso que la conmutatividad de la suma se hereda de $V$.
Análogamente se heredan la asociatividad de la suma en $W$ y las propiedades $5$, $6$, $7.1$ y $7.2$ de espacio vectorial.
Propiedad $4$ de espacio vectorial: Para cada $w\in W$ se cumple que $-w=(-1_K)w\in W$ ya que el producto es cerrado en $W$.
Propiedad $5$ de espacio vectorial: Por hipótesis $\theta_V\in W$ y como es el neutro en $V$, $\theta_V+v=v+\theta_V=v$ para todo $v\in V$, en particular $\theta_V+w=w+\theta_V=w$ para todo $w\in W$, así $\theta_V$ funciona como neutro en $W$.
$\therefore W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

$\Longleftarrow )$ Sup. que $W$ es un $K$ – espacio vectorial con las operaciones restringidas de $V$.
Entonces la suma y el producto por escalar son cerrados en $W$, es decir, se cumplen ii. y iii.
Además $W$ tiene un neutro, digamos $\theta_W\in W$.
Por un lado $\theta_V+\theta_W=\theta_W$ en $V$, pues $\theta_V$ es neutro en $V$.
Por otro lado $\theta_W+\theta_W=\theta_W$ en $W$, pues $\theta_W$ es neutro en $W$.
Así, $\theta_V+\theta_W=\theta_W+\theta_W$ en $V$ y por cancelación en $V$, $\theta_V=\theta_W$.
De donde $\theta_V\in W$
$\therefore W\leqslant V$ .

Obs. Sean $V$ un $K$ – espacio vectorial, $W$ un subconjunto de $V$. Resulta que
$W\leqslant V$ si y sólo si se cumple que: a) $W\not=\emptyset$ y b) $\forall u,v\in W$ $\forall\lambda\in K(\lambda u+v\in W)$.

La implicación de ida es muy directa y queda como ejercicio. Para justificar el regreso sup. que se cumplen a) y b). Dados $u,v\in W$ se tiene que $u+v=1_Ku+v$ y gracias a b) sabemos que $1_Ku+v\in W$, así se cumple la propiedad ii). Por otro lado, como se cumple a) podemos asegurar que existe $v \in W$, y por la propiedad b) $\theta_V=-v+v=(-1_K)v+v\in W$, por lo que $\theta_V\in W$ y se cumple i). Finalmente dados $u\in W, \lambda \in K$ como $\theta_V\in W$, usando b) se tiene que $\lambda u=\lambda u+\theta_V\in W$ por lo que se cumple la propiedad iii).

Ejemplos:

  • $\{ (x,y,0)|x,y\in\mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$
  • $\{\begin{pmatrix}a&b\\b&a\end{pmatrix}|a,b\in\mathbb{R}\}$ es un subespacio de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
  • $\mathcal{P}_n(\mathbb{R})$ (el conjunto de polinomios de grado mayor o igual a $n$ con coeficientes en $\mathbb{R}$) es un subespacio de $\mathbb{R}[x]$
  • $\{ f:\mathbb{R}\longrightarrow\mathbb{R}| f$ es continua$\}$ es un subespacio de $\{ f|f:\mathbb{R}\longrightarrow\mathbb{R}\}.$
  • $\{(x,y,z)|x=y=z\in \mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$

EJEMPLO SISTEMA HOMOGÉNEO

Sean $V=\mathcal{M}{n\times 1}(K)$ y $A\in\mathcal{M}{m\times n}(K)$.
$W={X\in V|AX=0}$$\leqslant V$.

Recordemos que si tenemos el sistema de ecuaciones homogéneo de $m$ ecuaciones con $n$ incógnitas:

\begin{align*}
\begin{matrix}a_{11}x_1 & +a_{12}x_2 & \cdots & +a_{1n}x_n=0\\ a_{21}x_1 & +a_{22}x_2 & \cdots & +a_{2n}x_n=0 \\ \vdots & & \ddots & \vdots \\ a_{m1} x_1& +a_{m2}x_2 & \cdots & +a_{mn}x_n=0, \end{matrix} \end{align*}
entonces su forma matricial es:
\begin{align*}
AX=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}
= \begin{pmatrix}0\\ \vdots\\ 0\end{pmatrix} = 0 \end{align*}
Recordemos que estamos usando al $0$ para denotar a la matriz $n\times 1$ con todas sus entradas iguales al cero del campo. Veamos que las soluciones del sistema homogéneo dado por $A$ es un subespacio del espacio vectorial de matrices de $n\times 1$ con entradas en el campo $K$.

DEMOSTRACIÓN

Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $X,Y\in W$, $\lambda\in K$.

  1. P.D. $W$ tiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $A\theta_V=A0=0$.
$\therefore\theta_V\in W.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $X+Y\in W$.

Como $X,Y\in W$, $AX=AY=0$ y por lo tanto, $AX+AY=0+0=0$.
Basta recordar que por distributividad en las matrices $A(X+Y)=AX+AY$ para obtener que $A(X+Y)=0$.
$\therefore X+Y\in W.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda X\in W$.

Como $X\in W$, $AX=0$ y por lo tanto, $\lambda (AX)=0$.
Basta recordar que por propiedad del producto por escalar en matrices $A(\lambda X)=\lambda(AX)$ para obtener que $A(\lambda X)=0$
$\therefore\lambda X\in W.$

Así, concluimos que $W=\{X\in V|AX=0\}$, donde $A\in\mathcal{M}_{m\times n}(K)$, es un subespacio de $V=\mathcal{M}_{n\times 1}(K)$.

Proposición: La intersección de una familia no vacía de subespacios es un subespacio.

Demostración: Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$.

Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$. Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $u,v\in W$, $\lambda\in K$.

  1. P.D. $W$ contiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $\forall i\in I(\theta_V\in W_i)$ porque todos los $W_i$ son subespacios de $V$.
$\displaystyle\therefore\theta_V\in\bigcap_{i\in I}W_i.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $u+v\in W$.

Dado que $u,v\in W$, $\forall i\in I(u,v\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(u+v\in W_i)$.
$\displaystyle\therefore u+v\in\bigcap_{i\in I}W_i.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda u\in W$.

Dado que $u\in W$, $\forall i\in I(u\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(\lambda u\in W_i)$.
$\displaystyle\therefore\lambda u\in\bigcap_{i\in I}W_i.$

Concluimos así que $W\leqslant V.$

Tarea Moral

  1. Dado $V$ un $K$ – espacio vectorial. Sean $W_1, W_2\leqslant V$. Demuestra que si $W_1\bigcup W_2\leqslant V$, entonces $W_1\subseteq W_2$, o bien, $W_2\subseteq W_1$.
    Para lograrlo se te sugiere lo siguiente:
    • Sup. que $W_1 \nsubseteq W_2$.
    • Observamos que para cualesquiera $w_1\in W_1\backslash W_2$ y $w_2\in W_2$, tenemos que $w_1,w_2\in W_1\bigcup W_2$. Y como $W_1\bigcup W_2\leqslant V$, entonces $w_1+w_2\in W_1\bigcup W_2$. Además, gracias a la primera proposición de esta entrada, sabemos que $W_1$ y $W_2$ son $K$ – espacios vectoriales, de modo que los inversos aditivos de $w_1$ y $w_2$ son elementos de $W_1$ y $W_2$ respectivamente.
    • Ahora argumenta por qué $w_1+w_2\notin W_2$ para concluir que $w_1+w_2\in W_1$.
    • Por último argumenta por qué gracias a que $w_1+w_2\in W_1$, obtenemos que $w_2\in W_1$ para concluir que $W_2\subseteq W_1$.
  1. Sean $K=\mathbb{R}$ y $V=\{a+bx+cx^2+dx^3\mid a,b,c,d\in\mathbb{R}\}$.
    Determina si $U=\{p(x)\in V|p(1)=0\}$ y $T=\{p(x)\in V|p'(1)=0\}$ son subespacios de $V$ y encuentra $U\cap T$.

MÁS ADELANTE…

Definiremos y analizaremos un nuevo concepto que dará lugar a un nuevo subespacio muy peculiar y central en el Álgebra Lineal.

Entradas relacionadas

Inversas de matrices de 2×2 con reducción gaussiana

Por Leonardo Ignacio Martínez Sandoval

Introducción

Es posible que sepas que una matriz $$A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$$de $2\times 2$ es invertible si y sólo si $ad-bc=0$, y que en ese caso la inversa está dada por $$B=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$ De hecho, una vez que se propone a $B$ como esta matriz, es sencillo hacer la multiplicación de matrices y verificar que en efecto tanto $AB$ como $BA$ son la matriz identidad de $2\times 2$.

Sin embargo, la idea de esta entrada es deducir que $ad-bc$ tiene que ser distinto de $0$ para que $A$ sea invertible y que, en ese caso, la inversa tiene que ser de la forma que dijimos. En esta deducción no usaremos nunca la definición ni propiedades de determinantes.

El procedimiento

Lo que haremos es aplicar el procedimiento de reducción gaussiana para encontrar inversas, es decir, le haremos reducción gaussiana a la matriz $A’=\begin{pmatrix}
a & b & 1 & 0\\
c & d & 0 & 1
\end{pmatrix}$ obtenida de «pegar» a la matriz $A$ una matriz identidad a su derecha. Es un resultado conocido que si $A$ es invertible, entonces al terminar la reducción gaussiana de $A’$ la matriz de $2\times 2$ que queda a la izquierda será la identidad y la que quede a la derecha será la inversa de $A$.

Empecemos con una matriz $A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ de $2\times 2$ cualquiera. Si ambos $a$ y $c$ son iguales a $0$, entonces la primer columna de $BA$ es $0$ para toda $B$, y por lo tanto $A$ no puede tener inversa. Así, una primera condición para que $A$ tenga inversa es que $a$ o $c$ sean distintos de cero. Si $a$ fuera $0$, el primer paso de reducción gaussiana sería intercambiar las filas, así que podemos suponer sin pérdida de generalidad que $a$ no es $0$. De este modo, el primer paso de reducción gaussiana es multiplicar la primer fila por $1/a$ para que el pivote sea $1$: $$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
c & d & 0 & 1
\end{pmatrix}$$

El siguiente paso es hacer al resto de las entradas en la columna de ese primer pivote iguales a $0$. Para eso basta restar a la segunda fila $c$ veces la primera:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & d – \frac{bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}=\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & \frac{ad-bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}.$$

Si $ad-bc=0$, entonces el pivote de la segunda fila ya no quedaría en la segunda columna, y la forma escalonada reducida no tendría a la identidad a la izquierda. Así que una segunda condición para que $A$ sea invertible es que $ad-bc$ no sea cero. Notemos que si $ad-bc$ no es cero, entonces tampoco $a$ y $c$ son simultaneamente $0$, así que nuestra condición anterior ya está capturada con pedir que $ad-bc$ no sea cero.

Sabiendo que $ad-bc$ no es cero, el siguiente paso en la reducción gaussiana es multiplicar la segunda fila por $a/(ad-bc)$ para hacer el pivote igual a $1$:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Finalmente, para que el pivote de la segunda columna sea la única entrada no cero, tenemos que restar a la primera fila la segunda multiplicada por $-b/a$:

$$\begin{pmatrix}
1 & 0 & \frac{1}{a}+\frac{bc}{a(ad-bc)} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\begin{pmatrix}
1 & 0 & \frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Así, basta pedir $ad-bc$ para que la reducción gaussiana deje a la identidad en la matriz de $2\times 2$ de la izquierda y, al terminar el procedimiento, tenemos a la derecha a la inversa de $A$ que es la matriz:

$$\begin{pmatrix}
\frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
-\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$

Esto es a lo que queríamos llegar. Por supuesto, el camino fue largo y hay formas de llegar al mismo resultado de manera más corta, pero usando más teoría.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Seis herramientas fundamentales para concursos matemáticos en tiempos de pandemia

Por Leonardo Ignacio Martínez Sandoval

La Olimpiada Mexicana de Matemáticas (OMM) se organiza en varios niveles: estatal, nacional y participación en concursos internacionales. Los estudiantes comienzan con la etapa estatal, en donde realizan varios exámenes y además se les prepara mediante entrenamientos. Después de repetir esto algunas veces, algunos estudiantes son elegidos para ir al Concurso Nacional de la OMM, para el cual se preparan adicionalmente.

A grandes rasgos, la forma en la que se organiza una olimpiada estatal se ve así:

En la parte de arriba se ve el flujo de los estudiantes. En la parte de abajo se ven varias actividades que realizan los comités estatales.

En esta época de la pandemia de COVID19, es muy importante encontrar alternativas para realizar muchas de estas actividades de manera digital. La idea de esta entrada de blog es ser un mini-curso introductorio a material y tecnologías de educación a distancia que pueden ser usadas para realizar estas actividades. Si bien está pensada originalmente como una entrada para ayudar a la organización de los concursos estatales de la OMM, el contenido puede:

  • Ser de utilidad incluso cuando salgamos de la pandemia, para tener más alcance.
  • Apoyar a otros concursos de otras ciencias, y otros países, a encontrar alternativas.

Para cada tecnología también hay un video, para ver cada uno de los recursos más en acción. El video introductorio es el siguiente.

Página de la Olimpiada Mexicana de Matemáticas

La página de la Olimpiada Mexicana de Matemáticas es uno de los mejores lugares para encontrar material de entrenamiento gratuito, de calidad, de acceso libre y con soluciones. Además, en esta página están disponibles en versión digital todos los números de la revista Tzaloa, que tiene otro tanto de material.

Otras cosas que se pueden encontrar en la página son los datos de contacto de los organizadores, resultados históricos de México en las olimpiadas internacionales y un sistema para pedir libros de la serie Cuadernos de Olimpiada.

La página de la OMM es http://www.ommenlinea.org. En el siguiente video se exploran con más detalle las distintas secciones.

El blog de Leo

El blog de Leo es precisamente esta página, en donde está esta entrada de blog. Forma parte de los recursos que propongo pues aquí en el blog hay también bastante material para preparar a olímpicos y entrenadores de la Olimpiada. Algunas secciones que pueden ser de utilidad son:

En el siguiente video se explora el blog más a detalle.

Facebook

La red social más popular es Facebook, y una de sus misiones es conectar a las personas. Se puede aprovechar todo el potencial que tienen sus herramientas para dar difusión a los concursos de matemáticas, para estar en contacto con los concursantes y para entrar en contacto con otras comunidades.

Dentro de Facebook, los dos lugares más indicados para ir y estar cerca de la comunidad olímpica matemática de México son:

  • La página de FB de la OMM: Página oficial, manejada por el Comité. Ahí se sube información de eventos, se publican resultados a nivel nacional y se informa de la participación de México en concursos internacionales.
  • El grupo Insommnia: El ambiente es más relajado. Es un grupo extraoficial, pero con una comunidad enorme de olímpicos y ex-olímpicos. Hay chistes, problemas propuestos, videos, discusiones de mejora del proyecto, mini-exámenes, etc.

Cada Comité Estatal puede aprovechar que en Facebook se pueden hacer grupos privados para estar en contacto con organizadores, papás o concursantes.

Hablo más de Facebook y su papel en concursos matemáticos en el siguiente video.

Overleaf

LaTeX es un lenguaje para escribir matemáticas y que se produzca un documento en el cual las matemáticas se vean bonito. Con él se pueden hacer exámenes selectivos, notas de entrenamiento e incluso libros.

Típicamente, para usar LaTeX en una computadora es necesario instalar una distribución y un editor. Overleaf es una página de internet en la cual se puede escribir y compliar LaTeX sin necesidad de instalar nada adicional.

Una ventaja de Overleaf es que lo que se trabaja se queda en la nube, así que se puede acceder a los documentos desde cualqueir computadora con internet. Esto tiene la desventaja de que se necesita tener internet, pero es fácilmente arreglable ya que, de ser necesario, se pueden bajar a una computadora todos los archivos fuente.

Otra ventaja de Overleaf es que se puede hacer colaboración simultánea en un mismo documento. Esto es muy útil para cuando se tiene que escribir matemáticas con otras personas: al hacer notas, escribir artículos de investigación y textos más grandes como libros o tesis.

En el siguiente video hablo más acerca de Overleaf.

Moodle

Un LMS es una plataforma que tiene todo lo que necesita un curso a distancia: herramientas para hacer exámenes, definir actividades, calendarizar, contactar a estudiantes, etc. Uno de los LMS más importantes y de más uso en la docencia a distancia es Moodle.

La principal dificultad con usar Moodle reside en que es necesario descargar un software e instalarlo en un servidor. Esto puede ser muy difícil para alguien que no conoce del tema. Sin embargo, una vez que Moodle queda instalado, es muy facil de usar para profesores y estudiantes (o en este contexto, delegados, entrenadores y concursantes).

El tipo de cosas que se pueden hacer en Moodle incluyen:

  • Tener un sistema de registro de nuevos concursantes
  • Subir notas
  • Subir mini-libros
  • Crear exámenes con límites de tiempo
  • Crear actividades de aprendizaje
  • Hacer cuestionarios
  • Tener foros personalizados

En el siguiente video hablo más a detalle de algunas de estas cosas.

Zoom, Hangouts y otras plataformas de videollamada

Finalmente, me gustaría platicar un poco acerca de opciones para tener videollamadas hoy en día. Sobre todo, me gustaría enfocarme en Zoom y en Hangouts. Ambas son buenas opciones para tener llamadas con grupos de varias personas.

Zoom agarró mucha popularidad en esta época de pandemia, y tiene sentido. Es una herramienta fácil de usar y de instalar que permite:

  • Armar reuniones con muchas personas
  • Compartir la pantalla con los asistentes (por ejemplo, puede servir para dar entrenamientos)
  • Programar reuniones y avisar a los participantes
  • Tener mecanismos de participación por chat, reacciones de «levantar la mano» o «aplaudir»

La versión gratuita de Zoom tiene algunas limitaciones, como que sólo se puede usar por 40 minutos de manera simultánea. La versión de paga permite hacer varias cosas como dividir a un grupo en sub-grupos.

Google Hangouts es una herramienta muy similar. También permite reuniones con muchas personas y compartir la pantalla. Se integra mejor con todo el ecosistema de Google y puede ser muy útil para quienes ya tengan una cuenta ahí.

En el siguiente video hablo de estas y un par de opciones más.

Reflexión final

Esta entrada fue un mini-curso al material y las tecnologías que se pueden usar para seguir organizando concursos matemáticos a distancia. El material que se presentó toma en mente el flujo de participantes en un modelo básico del concurso. También toma en cuenta el tipo de tecnología que podría necesitar un comité organizador local para hacer todas las actividades que se necesitan.

Hay una hipótesis muy fuerte que estamos haciendo: que los organizadores y participantes tienen acceso estable y bueno a internet. Al realizar actividades que aprovechen la tecnología hay que tener en cuenta que esta hipótesis es posible que no se cumpla. Puede suceder que:

  • Haya personas sin acceso a internet
  • Haya personas con acceso sólo con datos, para quienes ver videos es impermisiblemente caro
  • Haya personas con computadora y acceso a internet en su casa, pero de los cuales no puedan disponer
  • Haya personas con todos los recursos tecnológicos, pero viviendo muchas dificultades debido a la pandemia.

Así como muchos otros aspectos de la docencia, es importante tener empatía en el aspecto digital.