Archivo de la etiqueta: matematicas

1.8. CONJUNTOS LINEALMENTE (IN)DEPENDIENTES Y CONJUNTOS GENERADORES: relación entre sí

Por Jennyfer Paulina Bennetts Castillo

Lema (Dependencia lineal): Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista de vectores en $V$. Si $v_1,v_2,…,v_m$ es una lista l.d. y $v_1\not=\theta_V$, entonces existe $j\in\{2,3,…,m\}$ tal que
a) $v_j\in\langle\{v_1,v_2,…,v_{j-1}\}\rangle$ y
b) $\langle\{v_1,v_2,…,\widehat{v_j},…,v_m\}\rangle =\langle\{v_1,v_2,…,v_m\}\rangle$

Nota: $\langle\{v_1,v_2,…,v_{j-1},v_{j+1},…,v_m\}\rangle$ lo denotamos por $\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$

Demostración: Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista l.d. con $v_1\not=\theta_V$.

(*) Como la lista es l.d., entonces existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no todos nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.

a) De (*) observemos que por no ser todos nulos, tenemos dos casos:

Caso 1. Únicamente $\lambda_1\not=0_K$.
Así, $\theta_V=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m$$=\lambda_1v_1+0_Kv_2+…+0_Kv_m$$=\lambda_1v_1+\theta_V+…+\theta_V=\lambda_1v_1$.
De donde, $\lambda_1v_1=\theta_V$ con $\lambda_1\not=0_K$ y $v_1\not=\theta_V$.
Por lo tanto, este caso no es posible.

Caso 2. Existe al menos un $\lambda_j\not=0_K$ con $j\in\{2,3,…,m\}$.
Consideremos $j=m\acute{a}x\{i\in\{2,3,…,m\}|\lambda_i\not=0_K\}$
Entonces $\lambda_{j+1}v_{j+1}+…+\lambda_mv_m=0_Kv_{j+1}+…+0_Kv_m$$=\theta_V+…+\theta_V=\theta_V$ y además, existe el inverso multiplicativo de $\lambda_j.$
De lo anterior tenemos que $\theta_V=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m$$=\lambda_1v_1+\lambda_2v_2+…+\lambda_jv_j+\theta_V$$=\lambda_1v_1\lambda_2v_2+…+\lambda_jv_j.$
Así, $\lambda_1v_1+…+\lambda_jv_j=\theta_V$, por lo cual $\lambda_jv_j=-\lambda_1v_1-\lambda_2v_2…-\lambda_{j-1}v_{j-1},$
entonces

$\begin{array}{ll}v_j&=\lambda_j^{-1}(-\lambda_1v_1-\lambda_2v_2…-\lambda_{j-1}v_{j-1})\\&=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}\in\langle v_1,v_2,…,v_{j-1}\rangle\end{array}$

$\therefore v_j\in\langle v_1,v_2,…,v_{j-1}\rangle$

b) Veamos que se cumplen las dos contenciones entre los subconjuntos deseados, contemplando que la $j$ para este inciso debe ser la misma que en el inciso anterior.

En primer lugar:
Tenemos que $\{v_1,v_2,…,\widehat{v_j},…,v_m\}\subseteq \{v_1,v_2,…,v_j,…,v_m\}\subseteq\langle v_1,v_2,…,v_j,…,v_m\rangle$ y este último subconjunto es un subespacio de $V$.
Además, sabemos que si $S\subseteq W\subseteq V$ con $W$ un subespacio vectorial, entonces $\langle S\rangle\subseteq W$.
$\therefore\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle\subseteq\langle v_1,v_2,…,v_j,…,v_m\rangle$.

En segundo lugar:
Si $w\in\langle v_1,v_2,…v_j,…,v_m\rangle$, entonces existen $\mu_1,\mu_2,…,\mu_j,…,\mu_m\in K$ tales que $w=\mu_1v_1+\mu_2v_2+…+\mu_jv_j+…+\mu_mv_m$.
Sabemos que $v_j=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}$.
De donde,

\begin{array}{ll}w&=\mu_1v_1+\mu_2v_2+…+\mu_{j-1}v_{j-1}+\\ &\mu_j[(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}]+\\ &\mu_{j+1}v_{j+1}…+\mu_mv_m\\ &=(\mu_1-\mu_j\lambda_j^{-1}\lambda_1)v_1+(\mu_2-\mu_j\lambda_j^{-1}\lambda_2)v_2+\\ &…+(\mu_{j-1}-\mu_j\lambda_j^{-1}\lambda_{j-1})v_{j-1}+\mu_{j+1}v_{j+1}+…+\mu_mv_m\\ &\in\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle\end{array}
Así, $w\in\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$.
$\therefore \langle v_1,v_2,…,v_j,…,v_m\rangle\subseteq\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle .$

Teorema: Sea $V$ un $K$ – espacio vectorial. Si $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$ con $m\in\mathbb{N}$, entonces todo conjunto generador de $V$ tiene al menos $m$ elementos.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$, llamémosle $L$ a esta lista.
Sea $S$ tal que $\langle S\rangle = V$.

Caso 1. $S$ es infinito.
Entonces $S$ tiene más de $m$ elementos.

Caso 2. $S$ es finito.
Digamos que $S=\{w_1,w_2,…,w_k\}$ y probemos que $m\leq k$.

Observemos que como $L$ es una lista l.i. de vectores en $V$, entonces para cada $i\in\{1,2,…,m\}$ tenemos que $v_i\not=\theta_V$.

(1) Como $ v_1\in V=\langle S\rangle$, entonces $v_1,w_1,w_2,…,w_k$ es una lista l.d.
Dado que $v_1\not= \theta_V$, por el lema podemos concluir que existe $j_1\in\{1,2,…,k\}$ tal que $\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =\langle v_1,w_1,w_2,…,w_k\rangle =V.$

(2) Como $ v_2\in V=\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle$, entonces $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es una lista l.d.
Dado que con $v_2\not= \theta_V$, por el lema podemos concluir que algún vector $v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, pero sabemos que $L$ es l.i., por lo que $v_2$ no puede ser combinación lineal de $v_1$. Así, existe algún vector $w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, digamos $w_{j_2}$ con $j_2\in\{1,2,…,k\}\setminus\{j_1\}$, que es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_{j_k}$, y tal que $\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1},w_{j_2}\}\rangle$$=\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =V.$

Continuando de este modo, en cada paso quitamos un vector $w_{j_t}$ del conjunto generador, y lo sustituimos por $v_t$, obteniendo de esta manera un nuevo conjunto generador. Observemos entonces que después de $t$ pasos hemos quitado $t$ vectores de $S$, y los hemos sustituido por $v_t,\dots ,v_2,v_1$.

Veamos que $k\geq m$. Supongamos por reducción al absurdo que $k< m$.

Continuando con el proceso anterior, después de $k$ pasos hemos quitado $k$ vectores de $S$, $w_{j_1},w_{j_2},…,w_{j_k}$ que de hecho son precisamente $w_1,w_2,…,w_k$ sólo que quizás en otro orden, y los hemos sustituido por $v_k,\dots ,v_2,v_1$. Tenemos además que:
$V=\langle \{v_{k-1},v_{k-2},…,v_2,v_1,w_1,w_2,…,w_k\}-\{w_{j_1},w_{j_2},…,w_{j_k}\}\rangle$$=\langle \{v_{k-1},v_{k-2},…,v_2,v_1\}\rangle$
Pero si $V=\langle \{v_{k-1},…,v_2,v_1\}\rangle$, entonces $v_k\in \langle \{v_{k-1},…,v_2,v_1\}\rangle$ y por lo tanto, $v_1,v_2,…,v_k$ es l.d.
Entonces $v_1,v_2,…,v_m$ es l.d., lo cual contradice nuestra hipótesis.

Por lo tanto, $m\leq k$.

Corolario: Sea $V$ un $K$-espacio vectorial. Si existe $S$ un subconjunto finito de $V$ generador con $k$ elementos, entonces todo conjunto linealmente independiente es finito y tiene a lo más $k$ elementos.
En consecuencia, no existen conjuntos infinitos l.i. en $V$.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $S\subseteq V$ finito con $k$ elementos tal que $\langle S\rangle =V$.
Sea $T\subseteq V$ un subconjunto l.i. Supongamos por reducción al absurdo que $T$ es infinito, consideremos entonces $\hat{T}$ un subconjunto de $T$ con $k+1$ elementos. Tenemos que $\hat{T}$ es un conjunto l.i. con $k+1$ elementos, y $S$ es un conjunto generador con $k$ elementos, lo que contradice el teorema anterior. Concluimos entonces que $T$ debe ser finito.
Nuevamente por el teorema anterior se cumple que $|T|\leq |S|$, y como $|S|=k$ entonces $|T|\leq k$.

Tarea Moral

  1. Demuestra que, dado $V$ un $K$ – espacio vectorial con $K$ un campo, sólo existe un subconjunto $S$ unitario linealmente dependiente y exhíbelo.
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V.$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $v_j\in \langle S-{v_j}\rangle$
  3. Recordando que $\{e_1,e_2,e_3\}$ genera a $\mathbb{R}^3$ y el Teorema de esta entrada sabemos que cualquier conjunto de solo $1$ o $2$ elementos, no podrá generar a $\mathbb{R}^3$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ arbitrario si $|S|=1$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ arbitrario si $|S|=2$.

Más adelante…

Ahora que sabemos la relación de cardinalidad que existe entre los conjuntos linealmente independientes y los conjuntos generadores, nos damos cuenta de que, dicho muy informalmente, los conjuntos generadores de un espacio vectorial $V$ tienen una cardinalidad mayor o igual a los l.i. en $V$.
Nos enfocaremos en aquellos conjuntos que son generadores del espacio vectorial $V$ al que pertenecen y linealmente independientes. Veremos algunas propiedades de sus cardinalidades.

Entradas relacionadas

1.7. (IN)DEPENDENCIA LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

En matemáticas es de mucho interés estudiar aquello que es único (por qué lo es, «quién» es y cómo encontrarlo). En este punto de la teoría, sabemos que el neutro aditivo de un campo $K$ cualquiera siempre existe y es único, al igual que el neutro de un $K$ – espacio vectorial $V$ cualquiera.

Sabemos que las combinaciones lineales son elementos del espacio vectorial donde estamos trabajando y ahora estudiaremos conjuntos de vectores y la(s) combinación(es) lineale(s) que podemos obtener igualadas al neutro de nuestro espacio vectorial. Este sutil detalle de que sea sólo una o resulten existir más combinaciones lineales que cumplan la igualdad será el centro del tema… al fin y al cabo, sí sabemos que al menos existe una: la trivial, obtenida si todos los escalares involucrados son el neutro aditivo del campo.

LISTA LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Una lista $v_1,v_2,…,v_m$$\in V$ en una lista linealmente dependiente si existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.
Decimos que es una lista linealmente independiente en caso contrario. Es decir, si $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ con $\lambda_1,\lambda_2,…,\lambda_m\in K$, entonces $\lambda_1,\lambda_2,…,\lambda_m=0_K$ necesariamente.

Nota: Es común abreviar «linealmente dependiente» con l.d. y «linealmente independiente» con l.i.

Ejemplos

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_3[\mathbb{R}]$
    Sean $v_1=1+x-x^2+2x^3$, $v_2=2-3x+x^3$, $v_3=4-x-2x^2+5x^3$
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Se cumple que $2v_1+1v_2-1v_3=0x^3+0x^2+0x+0=\theta_V$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^n$
    La lista $e_1,e_2,…,e_n$ es l.i.

Justificación. Tenemos que $e_i$ se define como el vector de $n$ entradas donde la $i$-ésima es $1$ y las demás son $0$. Así, $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(\lambda_1,\lambda_2,…,\lambda_n)$. Por lo que, si $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(0,0,…,0)=\theta_V$, entonces $(\lambda_1,\lambda_2,…,\lambda_n)=(0,0,…,0)$ y en consecuencia $\lambda_i=0$ para toda $i\in{1,2,…,n}.$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^2$
    Sean $v_1=(x_1,0)$, $v_2=(x_2,0)$, $v_3=(x_3,y_3)$ con $x_i\not= 0$ para toda $i\in\{1,2,3\}$.
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Consideremos $\lambda_1,\lambda_2,\lambda_3$ tales que
$\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0).$
Entonces $\lambda_1(x_1,0)+\lambda_2(x_2,0)+\lambda_3(x_3,y_3)=(0,0).$
Desarrollando el lado izquierdo de esta igualdad tenemos que $(\lambda_1x_1+\lambda_2x_2+\lambda_3x_3,y_3)=(0,0).$ Por lo tanto $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0)$ si y sólo si
a) $\lambda_1x_1+\lambda_2x_2+\lambda_3x_3=0$ y b) $\lambda_3y_3=0$.
Si $\lambda_3=0$, b) se cumple para cualesquiera $\lambda_1,\lambda_2\in\mathbb{R}$. Veamos si se le puede asignar un valor distinto de cero a $\lambda_1$ o a $\lambda_2$ y que se cumpla a).
Tenemos que a) se cumple si y sólo si $\lambda_1x_1=-(\lambda_2x_2+\lambda_3x_3)$. Por lo tanto, si $\lambda_3=0$, tenemos que $\lambda_1x_1=-\lambda_2x_2$, y dado que $x_1$ es no nulo esto implica que $\lambda_1=-\lambda_2\frac{x_2}{x_1}$. Así, eligiendo $\lambda_2=1$, $\lambda_1=-\frac{x_2}{x_1}$ y $\lambda_3=0$ se cumplen a) y b), existiendo así una combinación lineal no trivial de $v_1,v_2$ y $v_3$ igualada al vector cero.

CONJUNTO LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Un subconjunto $S$ de $V$ es un conjunto linealmente dependiente si existe $m\in\mathbb{N}^+$ tal que $S$ contiene $m$ elementos distintos que forman una lista dependiente.
Decimos que es un conjunto linealmente independiente en caso contrario. Es decir, si para cualquier $m\in\mathbb{N}^+$ todas las listas que se pueden formar con $m$ elementos distintos de $S$ son linealmente independientes.

Observación: Si $S$ es un conjunto finito con $m$ vectores distintos, digamos $\{v_1,v_2,…,v_m\}$, entonces:
i) Si se puede encontrar una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$ con al menos una $\lambda_j$ distinta de $0_K$ para alguna $j\in\{1,2,…,m\}$, entonces $S$ es l.d.
ii) Si el hecho de que se tenga una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$, implica que $\lambda_j$ debe ser $0_K$ para toda $j\in\{1,2,…,m\}$, entonces $S$ es l.i.

Ejemplos

  • Sean $K$ un campo y $V=\mathcal{P}_m(K)$
    $S=\{1,x,x^2,…,x^m\}$$\subseteq\mathcal{P}_m(K)$ es l.i.

Justificación. Sean $\lambda_0,\lambda_1,\lambda_2,…,\lambda_m\in\mathbb{R}$ tales que $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=\theta_V$, es decir $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=0+0x+0x^2+…+0x^m$.
Recordando que dos polinomios so iguales si y sólo si coinciden coeficiente a coeficiente concluimos que $\lambda_i=0$ para toda $i\in\{0,1,2,…,m\}.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(1,3,-7),(2,1,-2),(5,10,-23)\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1(1,3,-7)+\lambda_2(2,1,-2)+\lambda_3(5,10,-23)=(0,0,0)$.
Entonces $(\lambda_1+2\lambda_2+5\lambda_3,3\lambda_1+\lambda_2+10\lambda_3,-7\lambda_1-2\lambda_2-23\lambda_3)=(0,0,0)$. De donde:
\begin{align*}
\lambda_1+2\lambda_2+5\lambda_3&=0…(1)\\
3\lambda_1+\lambda_2+10\lambda_3&=0…(2)\\
-7\lambda_1-2\lambda_2-23\lambda_3&=0…(3)\\
\end{align*}
De $(1)$: $\lambda_1=-2\lambda_2-5\lambda_3…(4)$
Sustituyendo $(4)$ en $(2)$: $3(-2\lambda_2-5\lambda_3)+\lambda_2+10\lambda_3=0$
$\Longrightarrow-5\lambda_2-5\lambda_3…(5)\Longrightarrow\lambda_2=-\lambda_3…(5)$
Sustituyendo $(5)$ en $(4)$: $\lambda_1=-2(-\lambda_3)-5\lambda_3$
$\Longrightarrow\lambda_1=-3\lambda_3…(6)$
En particular, si $\lambda_3=1$tenemos que $\lambda_2=-1$ y $\lambda_1=-3$, y encontramos así una solución no trivial del sistema dado por $(1)$, $(2)$ y $(3)$.

  • Sean $K=\mathbb{R}$ y $V=\mathcal{M}_{2\times 2}(\mathbb{R})$
    $S=\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$\subseteq\mathcal{M}_{2\times 2}(\mathbb{R})$ es l.i.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} +\lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Entonces $\begin{pmatrix} \lambda_1 & \lambda_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \lambda_2 \\ 0 & \lambda_2 \end{pmatrix}+ \begin{pmatrix} 0 & 0 \\ \lambda_3 & \lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. De donde:
\begin{align*}
\lambda_1&=0…(1)\\
\lambda_1+\lambda_2&=0…(2)\\
\lambda_3&=0…(3)\\
\lambda_2+\lambda_3&=0…(4)\\
\end{align*}
Sustituyendo $(1)$ en $(2)$: $\lambda_2=0$
Por lo tanto, $\lambda_1,\lambda_2,\lambda_3=0.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(n,n,n)|n\in\mathbb{Z}\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. La lista en $S$ dada por $(1,1,1),(5,5,5)$ es l.d. porque $-5(1,1,1)+(5,5,5)=(0,0,0)$.

Tarea Moral

Sean $K$ un campo y $V$ un $K$ – espacio vectorial.

  1. Sean $S,\tilde{S}\subseteq V$ tales que $S\subseteq\tilde{S}$.
    Para cada inciso, responde y justifica tu respuesta demostrándolo o dando un contraejemplo.
    • Si $S$ es l.d., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $S$ es l.i., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.d., ¿es posible determinar si $S$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.i., ¿es posible determinar si $S$ es l.d. o l.i.?
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $\langle S\rangle=\langle S-\{v_j\}\rangle$

Más adelante…

El segundo ejercicio de la tarea moral se refiere al subespacio generado por un conjunto linealmente dependiente.
Veamos ahora más relaciones que existen entre los conjuntos linealmente dependientes, los linealmente independientes y los espacios que estos conjuntos generan.

Entradas relacionadas

1.6. SUBESPACIO GENERADO POR UN CONJUNTO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

1.5. COMBINACIÓN LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

En el caso de $K=\mathbb{R}$ tenemos que las parejas nos dicen «cuánto» de cada «ingrediente».

La combinación lineal es el «equipo» que formamos por medio de nuestras «parejas» (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)$$=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas

1.4. SUBESPACIO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Si tenemos un conjunto $C$ con ciertas propiedades de nuestro interés, no forzosamente todo subconjunto de $C$ va a conservar esas propiedades, pero nos interesa encontrar condiciones suficientes (y de preferencia también necesarias) para saber si un subconjunto $D$ de $C$ dado tiene o no las propiedades que queremos.

Si $C$ es un conjunto que contiene a hombres y a mujeres, podemos definir un subconjunto que no contenga hombres y un subconjunto que no tenga mujeres, con lo que ya no preservan la propiedad deseada.

En esta entrada analizaremos qué se requiere para que un subconjunto de un espacio vectorial, tenga también estructura de espacio vectorial. Veremos que aunque aparentemente se requiere pedir muchas condiciones, en realidad éstas se pueden reducir sólo a unas cuantas.

SUBESPACIO

Definición: Sea $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Decimos que $W$ es un subespacio de $V$, y se le denota como $W\leqslant V$ si:

i) $W$ contiene al neutro del espacio $V$,
i.e. $\theta_V\in W$

ii) La suma es cerrada en $W,$
i.e. $\forall u,v\in W:$
$u+v\in W$

iii) El producto por escalar es cerrado en $W$,
i.e. $\lambda\in K$, $w\in W:$
$\lambda w\in W$

Veamos una equivalencia a esta definición que nos facilitará demostrar si un subconjunto dado de un espacio vectorial es por sí mismo un espacio vectorial.

Proposición: Sean $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Se cumple que $W\leqslant V$ si y sólo si $W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

Demostración: Veamos que se cumplen ambas implicaciones.

$\Longrightarrow )$ Sup. que $W\leqslant V$.
Por ii) y iii) la suma y el producto por escalar son cerrados en $W$, entonces las operaciones restringidas de $V$ dan una suma y un producto por escalar en $W$.
Propiedades $1$, $2$, $5$, $6$, $7.1$ y $7.2$ de espacio vectorial: Como $u+v=v+u$ para cualesquiera $u,v\in V$, en particular $u+v=v+u$ para toda $u,v\in W$. Por lo tanto, la suma en $W$ es conmutativa.
Nota: Decimos en este caso que la conmutatividad de la suma se hereda de $V$.
Análogamente se heredan la asociatividad de la suma en $W$ y las propiedades $5$, $6$, $7.1$ y $7.2$ de espacio vectorial.
Propiedad $4$ de espacio vectorial: Para cada $w\in W$ se cumple que $-w=(-1_K)w\in W$ ya que el producto es cerrado en $W$.
Propiedad $5$ de espacio vectorial: Por hipótesis $\theta_V\in W$ y como es el neutro en $V$, $\theta_V+v=v+\theta_V=v$ para todo $v\in V$, en particular $\theta_V+w=w+\theta_V=w$ para todo $w\in W$, así $\theta_V$ funciona como neutro en $W$.
$\therefore W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

$\Longleftarrow )$ Sup. que $W$ es un $K$ – espacio vectorial con las operaciones restringidas de $V$.
Entonces la suma y el producto por escalar son cerrados en $W$, es decir, se cumplen ii. y iii.
Además $W$ tiene un neutro, digamos $\theta_W\in W$.
Por un lado $\theta_V+\theta_W=\theta_W$ en $V$, pues $\theta_V$ es neutro en $V$.
Por otro lado $\theta_W+\theta_W=\theta_W$ en $W$, pues $\theta_W$ es neutro en $W$.
Así, $\theta_V+\theta_W=\theta_W+\theta_W$ en $V$ y por cancelación en $V$, $\theta_V=\theta_W$.
De donde $\theta_V\in W$
$\therefore W\leqslant V$ .

Obs. Sean $V$ un $K$ – espacio vectorial, $W$ un subconjunto de $V$. Resulta que
$W\leqslant V$ si y sólo si se cumple que: a) $W\not=\emptyset$ y b) $\forall u,v\in W$ $\forall\lambda\in K(\lambda u+v\in W)$.

La implicación de ida es muy directa y queda como ejercicio. Para justificar el regreso sup. que se cumplen a) y b). Dados $u,v\in W$ se tiene que $u+v=1_Ku+v$ y gracias a b) sabemos que $1_Ku+v\in W$, así se cumple la propiedad ii). Por otro lado, como se cumple a) podemos asegurar que existe $v \in W$, y por la propiedad b) $\theta_V=-v+v=(-1_K)v+v\in W$, por lo que $\theta_V\in W$ y se cumple i). Finalmente dados $u\in W, \lambda \in K$ como $\theta_V\in W$, usando b) se tiene que $\lambda u=\lambda u+\theta_V\in W$ por lo que se cumple la propiedad iii).

Ejemplos:

  • $\{ (x,y,0)|x,y\in\mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$
  • $\{\begin{pmatrix}a&b\\b&a\end{pmatrix}|a,b\in\mathbb{R}\}$ es un subespacio de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
  • $\mathcal{P}_n(\mathbb{R})$ (el conjunto de polinomios de grado mayor o igual a $n$ con coeficientes en $\mathbb{R}$) es un subespacio de $\mathbb{R}[x]$
  • $\{ f:\mathbb{R}\longrightarrow\mathbb{R}| f$ es continua$\}$ es un subespacio de $\{ f|f:\mathbb{R}\longrightarrow\mathbb{R}\}.$
  • $\{(x,y,z)|x=y=z\in \mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$

EJEMPLO SISTEMA HOMOGÉNEO

Sean $V=\mathcal{M}{n\times 1}(K)$ y $A\in\mathcal{M}{m\times n}(K)$.
$W={X\in V|AX=0}$$\leqslant V$.

Recordemos que si tenemos el sistema de ecuaciones homogéneo de $m$ ecuaciones con $n$ incógnitas:

\begin{align*}
\begin{matrix}a_{11}x_1 & +a_{12}x_2 & \cdots & +a_{1n}x_n=0\\ a_{21}x_1 & +a_{22}x_2 & \cdots & +a_{2n}x_n=0 \\ \vdots & & \ddots & \vdots \\ a_{m1} x_1& +a_{m2}x_2 & \cdots & +a_{mn}x_n=0, \end{matrix} \end{align*}
entonces su forma matricial es:
\begin{align*}
AX=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}
= \begin{pmatrix}0\\ \vdots\\ 0\end{pmatrix} = 0 \end{align*}
Recordemos que estamos usando al $0$ para denotar a la matriz $n\times 1$ con todas sus entradas iguales al cero del campo. Veamos que las soluciones del sistema homogéneo dado por $A$ es un subespacio del espacio vectorial de matrices de $n\times 1$ con entradas en el campo $K$.

DEMOSTRACIÓN

Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $X,Y\in W$, $\lambda\in K$.

  1. P.D. $W$ tiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $A\theta_V=A0=0$.
$\therefore\theta_V\in W.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $X+Y\in W$.

Como $X,Y\in W$, $AX=AY=0$ y por lo tanto, $AX+AY=0+0=0$.
Basta recordar que por distributividad en las matrices $A(X+Y)=AX+AY$ para obtener que $A(X+Y)=0$.
$\therefore X+Y\in W.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda X\in W$.

Como $X\in W$, $AX=0$ y por lo tanto, $\lambda (AX)=0$.
Basta recordar que por propiedad del producto por escalar en matrices $A(\lambda X)=\lambda(AX)$ para obtener que $A(\lambda X)=0$
$\therefore\lambda X\in W.$

Así, concluimos que $W=\{X\in V|AX=0\}$, donde $A\in\mathcal{M}_{m\times n}(K)$, es un subespacio de $V=\mathcal{M}_{n\times 1}(K)$.

Proposición: La intersección de una familia no vacía de subespacios es un subespacio.

Demostración: Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$.

Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$. Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $u,v\in W$, $\lambda\in K$.

  1. P.D. $W$ contiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $\forall i\in I(\theta_V\in W_i)$ porque todos los $W_i$ son subespacios de $V$.
$\displaystyle\therefore\theta_V\in\bigcap_{i\in I}W_i.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $u+v\in W$.

Dado que $u,v\in W$, $\forall i\in I(u,v\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(u+v\in W_i)$.
$\displaystyle\therefore u+v\in\bigcap_{i\in I}W_i.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda u\in W$.

Dado que $u\in W$, $\forall i\in I(u\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(\lambda u\in W_i)$.
$\displaystyle\therefore\lambda u\in\bigcap_{i\in I}W_i.$

Concluimos así que $W\leqslant V.$

Tarea Moral

  1. Dado $V$ un $K$ – espacio vectorial. Sean $W_1, W_2\leqslant V$. Demuestra que si $W_1\bigcup W_2\leqslant V$, entonces $W_1\subseteq W_2$, o bien, $W_2\subseteq W_1$.
    Para lograrlo se te sugiere lo siguiente:
    • Sup. que $W_1 \nsubseteq W_2$.
    • Observamos que para cualesquiera $w_1\in W_1\backslash W_2$ y $w_2\in W_2$, tenemos que $w_1,w_2\in W_1\bigcup W_2$. Y como $W_1\bigcup W_2\leqslant V$, entonces $w_1+w_2\in W_1\bigcup W_2$. Además, gracias a la primera proposición de esta entrada, sabemos que $W_1$ y $W_2$ son $K$ – espacios vectoriales, de modo que los inversos aditivos de $w_1$ y $w_2$ son elementos de $W_1$ y $W_2$ respectivamente.
    • Ahora argumenta por qué $w_1+w_2\notin W_2$ para concluir que $w_1+w_2\in W_1$.
    • Por último argumenta por qué gracias a que $w_1+w_2\in W_1$, obtenemos que $w_2\in W_1$ para concluir que $W_2\subseteq W_1$.
  1. Sean $K=\mathbb{R}$ y $V=\{a+bx+cx^2+dx^3\mid a,b,c,d\in\mathbb{R}\}$.
    Determina si $U=\{p(x)\in V|p(1)=0\}$ y $T=\{p(x)\in V|p'(1)=0\}$ son subespacios de $V$ y encuentra $U\cap T$.

MÁS ADELANTE…

Definiremos y analizaremos un nuevo concepto que dará lugar a un nuevo subespacio muy peculiar y central en el Álgebra Lineal.

Entradas relacionadas