Archivo de la etiqueta: matematicas

Seis herramientas fundamentales para concursos matemáticos en tiempos de pandemia

La Olimpiada Mexicana de Matemáticas (OMM) se organiza en varios niveles: estatal, nacional y participación en concursos internacionales. Los estudiantes comienzan con la etapa estatal, en donde realizan varios exámenes y además se les prepara mediante entrenamientos. Después de repetir esto algunas veces, algunos estudiantes son elegidos para ir al Concurso Nacional de la OMM, para el cual se preparan adicionalmente.

A grandes rasgos, la forma en la que se organiza una olimpiada estatal se ve así:

En la parte de arriba se ve el flujo de los estudiantes. En la parte de abajo se ven varias actividades que realizan los comités estatales.

En esta época de la pandemia de COVID19, es muy importante encontrar alternativas para realizar muchas de estas actividades de manera digital. La idea de esta entrada de blog es ser un mini-curso introductorio a material y tecnologías de educación a distancia que pueden ser usadas para realizar estas actividades. Si bien está pensada originalmente como una entrada para ayudar a la organización de los concursos estatales de la OMM, el contenido puede:

  • Ser de utilidad incluso cuando salgamos de la pandemia, para tener más alcance.
  • Apoyar a otros concursos de otras ciencias, y otros países, a encontrar alternativas.

Para cada tecnología también hay un video, para ver cada uno de los recursos más en acción. El video introductorio es el siguiente.

Página de la Olimpiada Mexicana de Matemáticas

La página de la Olimpiada Mexicana de Matemáticas es uno de los mejores lugares para encontrar material de entrenamiento gratuito, de calidad, de acceso libre y con soluciones. Además, en esta página están disponibles en versión digital todos los números de la revista Tzaloa, que tiene otro tanto de material.

Otras cosas que se pueden encontrar en la página son los datos de contacto de los organizadores, resultados históricos de México en las olimpiadas internacionales y un sistema para pedir libros de la serie Cuadernos de Olimpiada.

La página de la OMM es http://www.ommenlinea.org. En el siguiente video se exploran con más detalle las distintas secciones.

El blog de Leo

El blog de Leo es precisamente esta página, en donde está esta entrada de blog. Forma parte de los recursos que propongo pues aquí en el blog hay también bastante material para preparar a olímpicos y entrenadores de la Olimpiada. Algunas secciones que pueden ser de utilidad son:

En el siguiente video se explora el blog más a detalle.

Facebook

La red social más popular es Facebook, y una de sus misiones es conectar a las personas. Se puede aprovechar todo el potencial que tienen sus herramientas para dar difusión a los concursos de matemáticas, para estar en contacto con los concursantes y para entrar en contacto con otras comunidades.

Dentro de Facebook, los dos lugares más indicados para ir y estar cerca de la comunidad olímpica matemática de México son:

  • La página de FB de la OMM: Página oficial, manejada por el Comité. Ahí se sube información de eventos, se publican resultados a nivel nacional y se informa de la participación de México en concursos internacionales.
  • El grupo Insommnia: El ambiente es más relajado. Es un grupo extraoficial, pero con una comunidad enorme de olímpicos y ex-olímpicos. Hay chistes, problemas propuestos, videos, discusiones de mejora del proyecto, mini-exámenes, etc.

Cada Comité Estatal puede aprovechar que en Facebook se pueden hacer grupos privados para estar en contacto con organizadores, papás o concursantes.

Hablo más de Facebook y su papel en concursos matemáticos en el siguiente video.

Overleaf

LaTeX es un lenguaje para escribir matemáticas y que se produzca un documento en el cual las matemáticas se vean bonito. Con él se pueden hacer exámenes selectivos, notas de entrenamiento e incluso libros.

Típicamente, para usar LaTeX en una computadora es necesario instalar una distribución y un editor. Overleaf es una página de internet en la cual se puede escribir y compliar LaTeX sin necesidad de instalar nada adicional.

Una ventaja de Overleaf es que lo que se trabaja se queda en la nube, así que se puede acceder a los documentos desde cualqueir computadora con internet. Esto tiene la desventaja de que se necesita tener internet, pero es fácilmente arreglable ya que, de ser necesario, se pueden bajar a una computadora todos los archivos fuente.

Otra ventaja de Overleaf es que se puede hacer colaboración simultánea en un mismo documento. Esto es muy útil para cuando se tiene que escribir matemáticas con otras personas: al hacer notas, escribir artículos de investigación y textos más grandes como libros o tesis.

En el siguiente video hablo más acerca de Overleaf.

Moodle

Un LMS es una plataforma que tiene todo lo que necesita un curso a distancia: herramientas para hacer exámenes, definir actividades, calendarizar, contactar a estudiantes, etc. Uno de los LMS más importantes y de más uso en la docencia a distancia es Moodle.

La principal dificultad con usar Moodle reside en que es necesario descargar un software e instalarlo en un servidor. Esto puede ser muy difícil para alguien que no conoce del tema. Sin embargo, una vez que Moodle queda instalado, es muy facil de usar para profesores y estudiantes (o en este contexto, delegados, entrenadores y concursantes).

El tipo de cosas que se pueden hacer en Moodle incluyen:

  • Tener un sistema de registro de nuevos concursantes
  • Subir notas
  • Subir mini-libros
  • Crear exámenes con límites de tiempo
  • Crear actividades de aprendizaje
  • Hacer cuestionarios
  • Tener foros personalizados

En el siguiente video hablo más a detalle de algunas de estas cosas.

Zoom, Hangouts y otras plataformas de videollamada

Finalmente, me gustaría platicar un poco acerca de opciones para tener videollamadas hoy en día. Sobre todo, me gustaría enfocarme en Zoom y en Hangouts. Ambas son buenas opciones para tener llamadas con grupos de varias personas.

Zoom agarró mucha popularidad en esta época de pandemia, y tiene sentido. Es una herramienta fácil de usar y de instalar que permite:

  • Armar reuniones con muchas personas
  • Compartir la pantalla con los asistentes (por ejemplo, puede servir para dar entrenamientos)
  • Programar reuniones y avisar a los participantes
  • Tener mecanismos de participación por chat, reacciones de “levantar la mano” o “aplaudir”

La versión gratuita de Zoom tiene algunas limitaciones, como que sólo se puede usar por 40 minutos de manera simultánea. La versión de paga permite hacer varias cosas como dividir a un grupo en sub-grupos.

Google Hangouts es una herramienta muy similar. También permite reuniones con muchas personas y compartir la pantalla. Se integra mejor con todo el ecosistema de Google y puede ser muy útil para quienes ya tengan una cuenta ahí.

En el siguiente video hablo de estas y un par de opciones más.

Reflexión final

Esta entrada fue un mini-curso al material y las tecnologías que se pueden usar para seguir organizando concursos matemáticos a distancia. El material que se presentó toma en mente el flujo de participantes en un modelo básico del concurso. También toma en cuenta el tipo de tecnología que podría necesitar un comité organizador local para hacer todas las actividades que se necesitan.

Hay una hipótesis muy fuerte que estamos haciendo: que los organizadores y participantes tienen acceso estable y bueno a internet. Al realizar actividades que aprovechen la tecnología hay que tener en cuenta que esta hipótesis es posible que no se cumpla. Puede suceder que:

  • Haya personas sin acceso a internet
  • Haya personas con acceso sólo con datos, para quienes ver videos es impermisiblemente caro
  • Haya personas con computadora y acceso a internet en su casa, pero de los cuales no puedan disponer
  • Haya personas con todos los recursos tecnológicos, pero viviendo muchas dificultades debido a la pandemia.

Así como muchos otros aspectos de la docencia, es importante tener empatía en el aspecto digital.

Seminario de Resolución de Problemas: La regla de L’Hôpital

Introducción

Como hemos visto en entradas anteriores, la noción de límite es fundamental en cálculo y ayuda a definir funciones continuas y funciones diferenciables. Un tipo de límite que aparece frecuentemente en problemas de cálculo involucra el cociente de dos expresiones cuyo límite no está determinado. La regla de L’Hôpital ayuda a trabajar con límites de este estilo.

Estamos familiarizados con esta regla debido a cursos de cálculo. De hecho, este resultado es una consecuencia directa del teorema del valor medio.

Como mencionamos arriba, esta regla resulta de utilidad para determinar límites indeterminados de la forma \frac{0}{0} o \frac{\infty}{\infty}. En un primer acercamiento, si tenemos una función racional de la forma \frac{f(x)}{g(x)} cuyo límite conforme x\to c resulta en una indeterminación con las formas ya mencionadas, y además f y g son diferenciables cerca de c, entonces para determinar el valor del límite basta con derivar por separado las funciones f(x) y g(x) y determinar el límite de \frac{f^\prime (x)}{g^\prime (x)}, si este existe, entonces es igual al límite de \frac{f(x)}{g(x)} .

Por ejemplo, supongamos que queremos determinar \lim_{x\to c} \frac{f(x)}{g(x)} para f y g diferenciables cerca de c y que tenemos

    \begin{align*}\lim_{x\to c} f(x)=0\\\lim_{x\to c} g(x)=0.\end{align*}

Entonces, si

\lim_{x \to c}\frac{f^\prime (x)}{g^\prime (x)}=L,

tenemos que

\lim_{x \to c}\frac{f(x)}{g(x)}=L.

Tenemos algo similar si \lim_{x\to c} f(x)= \pm \infty y \lim_{x\to c} g(x)= \pm \infty.

Aplicar la regla de L’Hôpital múltiples veces

En ocasiones es necesario aplicar la regla de L’Hôpital más de una vez.

Problema. Determinar el \lim_{x \to 0 }\frac{\cos^2(x)-1}{x^2}.

Sugerencia pre-solución. Intenta aplicar la regla de L’Hôpital de manera directa y verifica que tienes que aplicarla nuevamente.

Solución. Tenemos que al sustituir x=0 en la función \frac{\cos^2(x)-1}{x^2}, nos resulta la indeterminación \frac{0}{0}.

El numerados y denominador son diferenciables, así que aplicando la regla de L’Hôpital, el límite original es equivalente al siguiente límite

\lim_{x \to 0 }\frac{(\cos^2(x)-1)^\prime}{(x^2)^\prime}= \lim_{x \to 0 }\frac{-2\cos(x)\sin(x)}{2x},

en donde de nuevo, al evaluar en 0, tenemos 0 en el numerador y en el denominador.

Como volvemos a tener una indeterminación, volvemos a aplicar la regla. Sin embargo, antes de derivar, resulta conveniente modificar el límite aplicando la identidad trigonométrica

\sin(2\theta)=2\sin\theta \cos\theta

Así,

\lim_{x \to 0 }\frac{-2\cos(x)\sin(x)}{2x}=\lim_{x \to 0 }\frac{-\sin(2x)}{2x}

Aplicando la regla de L´Hôpital una vez más, tenemos que:

    \begin{align*}\lim_{x \to 0 }\frac{-\sin(2x)}{2x}&=\lim_{x \to 0 }\frac{(-\sin(2x))^\prime}{(2x)^\prime}\\&=\lim_{x \to 0 }\frac{-2\cos(2x)}{2}\\&=\frac{-2cos(0)}{2}\\&=-1\end{align*}

\square

Aplicar la regla de L’Hôpital con exponentes

Otro tipo de limites que son de interés son aquellos cuyas indeterminaciones son 0^0, \infty^0 y 1^\infty, las cuales se obtienen de determinar el límite de funciones del estilo

[f(x)]^{g(x)}

Para resolver limites de funciones exponenciales, hay que hacer uso de las propiedades del logaritmo, para encontrar encontrar un problema equivalente.

Por ejemplo, supongamos que queremos resolver el siguiente problema.

Problema. Determinar el siguiente límite

\lim_{x \to 0} (cos(2x))^{\frac{3}{x^2}}.

Sugerencia pre-solución. Aplica logaritmo a la expresión para encontrar una que puedas estudiar usando la regla de L’Hôpital.

Solución. Al evaluar x=0 en la función (\cos(2x))^{\frac{3}{x^2}}, nos resulta la indeterminación 1^\infty. Para transformar esta expresión en una que podamos estudiar con la regla de L’Hôpital, consideramos

    \[y=(\cos(2x))^{\frac{3}{x^2}},\]

y tenemos que

\ln(y)=\ln((\cos(2x))^{\frac{3}{x^2}})=\frac{3}{x^2}\ln(\cos(2x)).

Con lo que tendríamos la siguiente expresión para y

y=e^{\frac{3}{x^2}\ln(\cos(2x))}.

Así, usando la continuidad de la función exponencial, tenemos que

    \begin{align*}\lim_{x \to 0}y&=\lim_{x \to 0}e^{\frac{3}{x^2}\ln(\cos(2x))}\\&=e^{\lim_{x \to 0}\frac{3}{x^2}\ln(\cos(2x))}.\end{align*}

De modo que nuestro problema se ha convertido en determinar el siguiente límite

    \[\lim_{x \to 0} \ln((\cos(2x))^{\frac{3}{x^2}})=\lim_{x \to 0}\frac{3\ln(\cos(2x))}{x^2}.\]

Notemos que el numerador y denominador evaluados en 0 son cero. Con esto, tenemos una indeterminación como las que vimos al principio. Así que aplicando la regla de L’Hôpital, tenemos lo siguiente.

    \begin{align*}\lim_{x \to 0}\frac{3\ln(\cos(2x))}{x^2}&=\lim_{x \to 0}\frac{\frac{-6\sin(2x)}{\cos(2x)}}{2x}\\&=\lim_{x \to 0}\frac{-3\tan(2x)}{x}\\&=\frac{0}{0}.\end{align*}

La última igualdad se debe entender como que “tenemos una determinación de la forma 0/0 “. Como volvemos a tener la indeterminación, aplicamos nuevamente la regla

    \begin{align*}\lim_{x \to 0}\frac{-3\tan(2x)}{x}&=\lim_{x \to 0}\frac{-6\sec^2(2x)}{1}\\&=\frac{-6\sec^2(2(0))}{1}\\&=-6\sec^2(0)=-6.\end{align*}

Por lo tanto tenemos que

\lim_{x \to 0} \ln((\cos(2x))^{\frac{3}{x^2}})=-6.

Así,

\lim_{x \to 0} (\cos(2x))^{\frac{3}{x^2}}=e^{-6}.

\square

Dos ejemplos más

Problema. Determina el siguiente límite

    \[\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n.\]

Solución. Tenemos que el límite nos resulta en la indeterminación 1^\infty

Así que resulta conveniente considerar

y=\left(1+\frac{1}{n}\right)^n.

Con lo que tendríamos que

    \begin{align*}\ln(y)&=\ln\left(\left(1+\frac{1}{n}\right)^n\right)\\&=n\ln\left(1+\frac{1}{n}\right).\end{align*}

Así que podemos reescribir a y como

y=e^{n\ln\left(1+\frac{1}{n}\right)}.

Entonces, por la continuidad de la función exponencial, tenemos que

\lim_{x \to \infty}y=e^{\lim_{n \to \infty}n\ln\left(1+\frac{1}{n}\right)}.

Ahora para calcular el límite \lim_{n \to \infty}n\ln\left(1+\frac{1}{n}\right)}, hacemos un cambio de variable n\mapsto 1/n, de donde tenemos que

    \begin{align*} \lim_{n \to \infty}n\ln\left(1+\frac{1}{n}\right)&=\lim_{n \to 0} \frac{\ln\left(1+n\right)}{n}\\&=\frac{0}{0}.\end{align*}

Como nos resulta en una indeterminación de la forma \frac{0}{0}, aplicando la regla de L’Hôpital tenemos que

\lim_{n \to 0}\frac{\ln\left(n+1\right)}{n}=\lim_{n \to 0}\frac{\frac{1}{n+1}}{1}=\frac{1}{1}=1.

Por lo tanto

\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n=e.

\square

En la siguiente solución ya no seremos tan explícitos con cada uno de los argumentos, sin embargo, hay que tener cuidado con que al usar la regla de L’Hôpital se satisfagan todas las hipótesis que se necesitan, y que los cambios de variable que hagamos se puedan hacer por continuidad.

Problema. Determina el siguiente límite

    \[\lim_{n \to \infty}\left(\frac{n+1}{n+2}\right)^n.\]

Solución. Tenemos que este límite llega a una indeterminación, así que nos conviene expresar a la función como

y=\left(\frac{n+1}{n+2}\right)^n=\left(1-\frac{1}{n+2}\right)^n.

Así,

\ln(y)=\ln\left(\frac{n+1}{n+2}\right)^n,

y=e^{n\ln\left(\frac{n+1}{n+2}\right)}.

Entonces,

\lim_{n \to \infty}\left(\frac{n+1}{n+2}\right)^n=e^{\lim_{x \to \infty}n\ln\left(\frac{n+1}{n+2}\right)},

por lo que nos enfocamos en encontrar el límite en el exponente. Fijándonos en el \lim_{n \to \infty}n\ln\left(\frac{n+1}{n+2}\right)}, tenemos que

    \begin{align*}\lim_{n \to \infty}n\ln\left(\frac{n+1}{n+2}\right)}&=\lim_{n \to \infty}n\ln\left(\frac{n+1}{n+2}\right)}\\&=\lim_{n \to \infty}n\ln\left(1-\frac{1}{n+2}\right)}\end{align*}

lo cual es equivalente al límite mediante el cambio de variable n\mapsto 1/n a

\lim_{n \to 0}\frac{1}{n}\ln\left(1-\frac{1}{\frac{1}{n}+2}\right)}=\lim_{n \to 0}\frac{\ln\left(1-\frac{n}{2n+1}\right)}{n}=\lim_{n \to 0}\frac{\ln\left(\frac{n+1}{2n+1}\right)}{n}

Además. tenemos que

\lim_{n \to 0}\frac{\ln\left(\frac{n+1}{2n+1}\right)}{n}=\lim_{n \to 0}\frac{\ln(n+1)-\ln(2n+1)}{n}

que tiene una indeterminación de la forma 0/0. Aplicando la regla de L’Hôpital tenemos que

\lim_{n \to 0}\frac{\ln(n+1)-\ln(2n+1)}{n}=\lim_{n \to 0}\frac{\frac{1}{n+1}-\frac{2}{2n+1}}{1}=\lim_{n \to 0}\frac{\frac{-1}{(n+1)(2n+1)}}{1}=-1

Por lo tanto

\lim_{n \to \infty}\left(\frac{n+1}{n+2}\right)^n=e^{-1}=\frac{1}{e}

\square

Más problemas

Hay más ejemplos de problemas relacionados con la aplicación de la regla de L’Hôpital en la Sección 6.7 del libro Problem Solving through Problems de Loren Larson.

Teorema de navidad de Fermat: primos suma de dos cuadrados

Comentario de Leo: Esta es una escrita en conjunto con por Alexandher Vergara, estudiante en ESFM. En ella hablamos del teorema de navidad de Fermat, una idea de la prueba y de las consecuencias. Si quieres contribuir con algún tema de matemáticas, puedes contactarme por correo electrónico, o dejando un comentario aquí en el blog.

Introducción

En entradas anteriores hemos visto temas de teoría de números, como divisibilidad y teoría de congruencias. También hablamos acerca de números primos y del teorema fundamental de la aritmética. A continuación probaremos una parte del famoso “teorema de navidad de Fermat”, el cual dice cuáles primos impares son la suma de dos cuadrados.

Teorema (teorema de Navidad de Fermat). Un número primo p>2 es la suma del cuadrado de dos enteros si y sólo si p\equiv 1 \pmod 4.

Enunciado del teorema de Navidad de Fermat

El teorema recibe este nombre pues Fermat escribió una carta con muchos detalles acerca del resultado para Mersenne, cuya fecha fue el 25 de diciembre de 1640.

Este resultado nos lleva un paso más adelante en teoría de números. Por un lado, tiene “el mismo sabor” que el teorema de los cuatro cuadrados de Lagrange.

Teorema (teorema de los cuatro cuadrados de Lagrange). Todo entero no negativo puede ser escrito como suma de los cuadrados de cuatro números enteros.

Por otro lado, el teorema de Navidad de Fermat también nos ayuda a demostrar un caso particular del teorema de Dirichlet para primos sobre progresiones aritméticas.

Teorema 1. Hay infinitos números primos de la forma 4k+1 e infinitos números de la forma 4k+3.

El teorema de Dirichlet es una generalización de este resultado.

Teorema (teorema de Dirichlet). Si a y b son primos relativos, entonces existe una infinidad de primos p tales que p\equiv a \pmod b.

Las demostraciones de los teoremas de Lagrange y de Dirichlet requieren de varios argumentos para los cuales aún no hemos desarrollado teoría suficiente. La idea de esta entrada de blog es demostrar el teorema de Navidad de Fermat y usarlo para demostrar el Teorema 1.

El teorema de Navidad de Fermat

En la demostración del teorema de navidad de Fermat usaremos el siguiente resultado.

Teorema 2. Si p es un número primo y la ecuación a^2+1 \equiv 0 \pmod p tiene solución para algún a, entonces p se puede representar como una suma de dos cuadrados.

Por el momento, no nos enfocaremos en demostrar este resultado auxiliar. Existen muchas pruebas en la literatura, por ejemplo, una por J.H. Grace usando latices de enteros (The four square theorem).

Demostración del teorema de Navidad de Fermat. Supongamos primero que p=x^2+y^2 para enteros no negativos x,y. El hecho de que p \equiv 1 \pmod 4 se desprende de dos propiedades del anillo \mathbb{Z}_4. Notemos primero que cualquier entero impar es congruente con 1 \pmod 4 o con 3\pmod 4. Además, cualquier cuadrado es congruente con 0 \pmod 4 o 1\pmod 4, pues si x es congruente con 0,1,2,3 \pmod 4 entonces x^2 es congruente con 0,1,0,1 \pmod 4, respectivamente. Como p=x^2+y^2, sabemos entonces que

    \[p\equiv x^2+y^2=0,1 \text{ \'o } 2 \pmod 4.\]

Pero p es un primo mayor que 2, entonces p es impar. Así, p\equiv 1 \pmod 4.

Observación. En esta parte de la prueba en realidad es un poco más general, pues muestra que si n es un entero impar que se puede representar como suma de dos cuadrados, entonces n\equiv 1 \pmod 4.

Supongamos ahora que p\equiv 1 \pmod 4. Lo primero que haremos es mostrar que a^2+1\equiv 0 \pmod p tiene solución para alguna a, y después usaremos el Teorema 2 para obtener que p es suma de dos cuadrados.

Primero, examinaremos los factores en

    \[(p-1)!=1\cdot 2 \cdot \ldots \cdot \frac{p-1}{2} \cdot \frac{p+1}{2}\cdot \ldots \cdot (p-2) \cdot (p-1).\]

A los últimos (p-1)/2 factores los pensamos como sigue: p-1\equiv -1 \pmod p, p-2\equiv -2\pmod p, …, \frac{p+1}{2}\equiv -\frac{p-1}{2} \pmod p. El factorial se convierte entonces en

    \begin{align*}(p-1)!&\equiv 1\cdot \ldots \cdot \left(\frac{p-1}{2}\right) \cdot \left(-\frac{p-1}{2}\right) \cdot \ldots \cdot (-1)\\&\equiv (-1)^{(p-1)/2} \left(1\cdot \ldots \cdot \frac{p-1}{2}\right)^2 \pmod p.\end{align*}

Definiendo a= 1\cdot \ldots \cdot \frac{p-1}{2}, lo anterior se puede escribir como

    \[(p-1)!\equiv (-1)^{(p-1)/2} a^2 \pmod p.\]

Por el teorema de Wilson, (p-1)!\equiv -1 \pmod p. Como p\equiv 1 \pmod 4, tenemos p=4k+1 para algún entero k. Entonces, (p-1)/2=2k, que es par, de modo que (-1)^{(p-1)/2}=1. De esta forma, tenemos que

    \[-1\equiv a^2 \pmod p.\]

Sumando 1 de ambos lados, tenemos que a^2+1\equiv 0 \pmod p. Aplicando el Teorema 2, concluimos que p es suma de dos cuadrados.

\square

Infinidad de primos de las formas 4k+1 y 4k+3

Todos los primos mayores que 2 son impares, así que son o bien de la forma 4k+1, o bien de la forma 4k+3. Sabemos además que hay una infinidad de números primos. ¿Será cierto que hay una infinidad de ellos de la forma 4k+1 y una infinidad de ellos de la forma 4k+3?

Por el principio de las casillas, tiene que suceder por lo menos alguna de estas dos opciones. Si hubiera una cantidad finita de la forma 4k+1 y de la forma 4k+3, entonces por el párrafo anterior habría sólo una cantidad finita de primos, lo cual es una contradicción.

Lo que dice el Teorema 1 es más fuerte. Lo volvemos a poner aquí por conveniencia para el lector.

Teorema 1. Hay infinitos números primos de la forma 4k+1 e infinitos números de la forma 4k+3.

Es decir, el Teorema 1 afirma que para cada uno de los tipos hay una infinidad de primos. Veamos que en efecto esto sucede.

La primera parte del Teorema 1 no necesita que usemos el teorema de Navidad de Fermat.

Proposición 1. Hay una infinidad de primos de la forma 4k+3.

Demostración. Supongamos que existiera únicamente una cantidad finita n de primos de la forma 4k+3 y supongamos que ellos son p_1<\ldots<p_n, en donde p_1=3. Consideremos el número N=4p_2p_3\ldots p_n +3 (ojo: no estamos incluyendo al 3 en la multiplicación). Este número no puede ser primo pues es mayor que p_n y N\equiv 3\pmod 4. De esta forma, debe tener al menos un divisor primo.

Tenemos que N es impar, así que 2 no divide a N. Si todos los divisores primos de N fueran 1\pmod 4, entonces N sería 1\pmod 4, pero esto no es cierto. De este modo, algún divisor primo p de N debe satisfacer p\equiv 3 \pmod 4. Notemos que p no puede ser 3, pues si 3\mid N, tendríamos 3\mid 4p_1 \ldots p_n, pero esto es imposible pues el número de la derecha no tiene ningún factor 3. Con esto concluimos que p=p_i para algún entero i=2,\ldots,n. Sin embargo, si p_i\mid N, entonces p_i\mid N-(p_2\ldots p_n)=3. Esto también es imposible pues p_i\neq 3. Así, es inevitable llegar a una contradicción, por lo que hay una infinidad de primos de la forma 4k+3.

\square

La demostración anterior no funciona directamente para los primos de la forma 4k+1, pues si hubiera una cantidad finita n de ellos p_1<\ldots < p_n y consideramos al número 4p_1\ldots p_n+1, este número es congruente con 1\pmod 4, pero nada garantiza que sus factores primos deban ser de la forma 1\pmod 4 pues, por ejemplo, 3\equiv 3\pmod 4, 7\equiv 3\pmod 4, pero 3\cdot 7 \equiv 21 \equiv 1\pmod 4. Tenemos que hacer algo distinto.

Proposición 2. Hay una infinidad de primos de la forma 4k+1.

Demostración. Supongamos que existe una cantidad finita n de primos de la forma 4k+1 y que son p_1<\ldots<p_n. Consideremos al número N=4(p_1p_2\ldots p_n)^2 +1. Este número es de la forma 4k+1. Por esta razón, es imposible que N sea primo, pues es mayor que todo p_i.

Sea p un divisor primo de N. Como N es impar, p\neq 2. Como p divide a N, tenemos que (2p_1\ldots p_n)^2+1\equiv 0 \pmod p, de modo que x^2+1\equiv 0 \pmod p tiene solución y por el Teorema 2, p se puede escribir como suma de dos cuadrados. Por el teorema de Navidad de Fermat, p\equiv 1\pmod 4. De esta forma, p=p_i para alguna i. Pero entonces, p divide a N y a 4(p_1\ldots p_n)^2, de modo que divide a su resta, que es 1. Esto es imposible. Esta contradicción muestra que hay una cantidad infinita de primos de la forma 4k+1.

\square

El Teorema 1 se sigue de las proposiciones 1 y 2.

¿Dónde seguir?

Aquí en el blog hay otras entradas en donde hablamos acerca de teoría de números. Puedes revisar las siguientes:

COVID 2019 – Reflexión y estrategia sobre clases a distancia

Es fundamental durante la crisis del COVID implementar estrategias de distanciamiento social que eviten la propagación del virus. Si bien el virus tiene efectos tenues en el 80% de la población, queremos alentar lo más posible la propagación del virus para que el 20% restante pueda ser atendido sin rebasar la capacidad del sistema de salud.

Con esto en mente, la UNAM ya anunció la suspensión gradual de clases. La Facultad de Ciencias suspende clases ya desde mañana martes.

En estos días he estado pensando bastante en cómo enfrentar la situación como profesor universitario en la UNAM. Tomando en cuenta lo que les he preguntado por acá y pláticas que he tenido con otros colegas, me convencido de que:

  • No podemos asumir que los estudiantes tendrán acceso a computadora o a un buen internet continuamente.
  • No podemos asumir que los estudiantes estarán disponibles exactamente a la hora en la que usualmente es la clase.
  • No a todos los profesores se les hará fácil impartir de improvisto una versión de su clase de manera inmediata.
  • El material que se prepare debe ser gratuito, de libre acceso y de calidad.
  • Hay herramientas maravillosas como Google Classroom, Moodle y otras más. Pero desde mi perspectiva, no cumplen con los estándares de universalidad y libre acceso que este caso requiere.

Debido a esto, he decidido enfrentar a la crisis mediante la siguiente estrategia:

  • No usaré streamings o “medios en vivo” como chats para impartir la clase.
  • Para cada sesión, indicaré exactamente qué contenido de la bibliografía veríamos durante la clase.
  • Para cada sesión prepararé, además, con apoyo de los ayudantes del curso, una entrada aquí en el blog para que los estudiantes tengan ejemplos y explicaciones adicionales.
  • Acabo de avisar a la Coordinación de la Carrera de Matemáticas que ayudaré a los colegas del Departamento de Matemáticas que así lo requieran en orientarlos en escribir entradas de blog (con LaTeX y todo).
  • Así mismo, ofreceré de manera gratuita espacio de almacenamiento aquí en el blog para los colegas que requieran subir entradas o tareas. Esto con el fin de que no tengan que abrir cuentas de WordPress o buscar un servidor, y puedan dedicarse a escribir material para su curso de manera inmediata.

Si eres uno de estos colegas, o cualquier otro profesor, me puedes contactar por aquí o por FB para detalles.

VIII Concurso Galois-Noether: Segunda Etapa

Ken 2 CC-BY - Editada2

En esta entrada se dan los resultados de la segunda etapa del VIII Concurso Universitario de Matemáticas Galois-Noether que se aplicó el día sábado 9 de junio de 2018. Hubo 27 participantes de habla hispana y 52 de habla portuguesa.

Problemas y soluciones

El examen consistió de seis problemas para resolver en cuatro horas y media. Al inicio del examen hubo media hora para aclarar los enunciados de los problemas. Puedes ver los problemas del examen, así como sus soluciones, en el siguiente archivo.

Cada problema se evaluó sobre 10 puntos, dando puntos parciales por avances hacia la solución.

A continuación se enuncia el tema de cada problema.

  • Problema 1: Desigualdades
  • Problema 2: Álgebra lineal
  • Problema 3: Cálculo
  • Problema 4: Teoría de números
  • Problema 5: Probabilidad
  • Problema 6: Teoría de grupos

De acuerdo a las estadísticas, los problemas 1, 2, 5 y 6 tuvieron aproximadamente la dificultad deseada. Los problemas 3 y 4 quedaron un poco más fáciles de lo que se esperaba, de modo que en las puntuaciones altas fue difícil marcar una distinción clara entre las habilidades de los concursantes. En años siguientes se buscará subir un poco la dificultad de estos problemas.

Sobre los concursantes

En total 79 personas presentaron el examen de segunda etapa. De entre los que presentaron el examen, el promedio redondeado a centésimas fue de 15.17. La calificación más alta fue 38 puntos y la más baja fue 2.

Ganadores del VIII Concurso Galois-Noether

A continuación se muestran los primeros tres lugares de la competencia. En caso de empate, el criterio de desempate fue la puntuación del examen de primera etapa.

  1. Thiago – Landim de Souza Leao – Universidade Federal de Penambuco – Brasil
  2. Thiago Ribeiro Tergolino – Instituto Militar de Engenharia – Brasil
  3. Wesley Rodrigues Machado – Instituto Militar de Engenharia – Brasil

¡Muchas felicidades a ellos tres! Para quedar en estos lugares se requiere de una gran cantidad de trabajo bien orientado.

Selección de la UNAM para la IX CIIM

De acuerdo a la convocatoria, el examen Galois-Noether sirve como selectivo para determinar a los cuatro estudiantes que representan al equipo de la UNAM en la Competencia Iberoamericana Interuniversitaria de Matemáticas. Los cuatro alumnos de la UNAM con la mejor puntuación del examen y que participarán en la CIIM fueron:

  • Víctor Hugo Almendra Hernández
  • Leonardo Ariel García Morán
  • Siddhartha Emmanuel Guzmán Morales
  • Zeús Caballero Pérez

¡Muchas felicidades!

El Líder del Equipo de la UNAM para la IX CIIM fue el Mat. Luis Eduardo García Hernández, quien ha colaborado en la organización de la competencia y otras actividades de resolución de problemas a nivel universitario.

¡Les deseamos mucho éxito a todos ellos en la IX CIIM!

Constancias y dudas

Todos los concursantes que hayan participado en la segunda etapa pueden solicitar una constancia. Cualquier estudiante puede consultar su calificación personal desglosada por problema. Para realizar cualquiera de estas dos cosas, favor de escribir a leomtz@im.unam.mx.