Archivo de la etiqueta: matematicas

2.3. TEOREMA DE LA DIMENSIÓN: demostración e implicaciones

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

El primero de los teoremas en esta entrada es uno de los más importantes del curso. Este teorema nos simplifica cálculos, ya que en ocasiones nos permite calcular la dimensión de ciertos subespacios sin necesidad de hacer una descripción explícita de una de sus bases.

El segundo de los teoremas resulta también muy útil ya que nos da otra manera de estudiar si una transformación lineal es o no inyectiva.

Teorema: Sean $K$ un campo y $V,W$ $K$-espacios vectoriales, $T\in\mathcal{L}(V,W)$.
Si $V$ es de dimensión finita, entonces se cumple que:

a) $Núc\,T$ es de dimensión finita
b) $Im\,T$ es de dimensión finita
c) $dim_K Núc\,T+dim_KIm\,T=dim_KV.$

Demostración: Supongamos que $V$ es de dimensión finita, digamos $dim_K\,V=n$.

a) Como $Núc\,T\subseteq V$ y $V$ es de dimensión finita, entonces $Núc\,T$ también es de dimensión finita, digamos que $dim_KNúc\,T=m$.

b) Consideremos $\Delta =\{v_1,v_2,…,v_m\}$ una base de $Núc\,T$.
Como es un conjunto linealmente independiente en $V,$ podemos completar $\Delta$ a una base de $V,$ digamos $\beta =\{v_1,v_2,…,v_m,v_{m+1},…,v_n\}$.
Veamos que $\Gamma = \{ T(v_{m+1}),T(v_{m+2}),…,T(v_{n})\}$ es una base de $Im\,T$ con $n-m$ elementos.

  1. P.D. $T(v_{m+1}),T(v_{m+2}),…,T(v_n)$ es una lista l.i.

Sean $\lambda_{m+1},\lambda_{m+2},…,\lambda_n\in K$ tales que $\sum_{i=m+1}^n \lambda_i T(v_i)=\theta_W$.

Como $T$ es lineal $T \left( \sum_{i=m+1}^n \lambda_iv_i \right) =\sum_{i=m+1}^n \lambda_i T(v_i)=\theta_W$.
Por lo cual, $\sum_{i=m+1}^n \lambda_iv_i\in Núc\,T$.

Como $\Delta =\{v_1,v_2,…,v_m\}$ es base de $Núc\,T$, existen $\mu_1,\mu_2,…,\mu_m\in K$ tales que $\sum_{i=m+1}^n \lambda_iv_i=\sum_{j=1}^m \mu_jv_j$.
De donde $- \sum_{j=1}^m \mu_jv_j + \sum_{i=m+1}^n \lambda_iv_i =\theta_W$.

Tenemos igualada a $\theta_W$ una combinación lineal de elementos de $\beta =\{v_1,v_2,…,v_m,v_{m+1},…,v_n\}$ que es linealmente independiente.
Por lo tanto, todos los coeficientes de esta combinación lineal son $0_K$ y en particular llegamos a que $\lambda_{m+1}=\lambda_{m+2}=…=\lambda_n=0_K$.

Concluimos que $T(v_{m+1}),T(v_{m+2}),…,T(v_n)$ es una lista l.i., en consecuencia el conjunto $\{T(v_{m+1}),T(v_{m+2}),…,T(v_n)\}$ es l.i. y tiene $n-m$ elementos.

  1. P.D. $\langle\Gamma\rangle =Im\,T$

Sabemos que $\Gamma\subseteq Im\,T$ y que $Im\,T$ es un espacio vectorial. Por lo tanto, $\langle\Gamma\rangle\subseteq Im\,T$.

Ahora bien, sea $w\in Im\,T$. Por definición de $Im\,T$, existe $v\in V$ tal que $T(v)=w$.

Como $\beta =\{v_1,v_2,…,v_n\}$ es base de $V$, entonces existen $\lambda_1,\lambda_2,…,\lambda_n\in K$ tales que $v=\sum_{i=1}^n \lambda_iv_i$.

Así, obtenemos que $w=T(v)=T\left( \sum_{i=1}^n \lambda_iv_i\right)$.
Y como $T$ es lineal, podemos concluir de las igualdades anteriores que $w=\sum_{i=1}^n \lambda_iT(v_i)$.

Tenemos que $\Delta =\{v_1,v_2,…,v_m\}$ es base de $Núc\,T$ y por lo tanto $\Delta\subseteq Núc(T)$. Es decir, $T(v_1)=T(v_2)=…=T(v_m)=\theta_W$.

Así, $w=\sum_{i=1}^n \lambda_iT(v_i)=\sum_{i=1}^m \lambda_iT(v_i)+\sum_{i={m+1}}^n \lambda_iT(v_i)$$=\sum_{i=1}^m \lambda_i\theta_W+\sum_{i={m+1}}^n \lambda_iT(v_i)=\theta_W+\sum_{i={m+1}}^n \lambda_iT(v_i)$$=\sum_{i={m+1}}^n \lambda_iT(v_i)$.

Obtuvimos a $w$ expresado como una combinación lineal de términos de $\Gamma =\{T(v_{m+1}),T(v_{m+2}),…,T(v_n)\}$. Por lo tanto, $Im\,T\subseteq\Gamma$.

Concluimos que $\Gamma$ es base de $Im\,T$.
Como $|\Gamma|=n-m$, entonces $Im\,T$ es de dimensión finita y $dim_KIm\,T=n-m.$

c) Tenemos por el inciso anterior que $dim_KNúc\,T=m$, $dim_KIm\,T=n-m$ y $dim_K\,V=n$.
Así, $dim_KV-dim_KNúc\,T=n-m=dim_KIm\,T$, lo que implica que $dim_KV=dim_KNúc\,T+dim_KIm\,T$.

Teorema: Sean $K$ un campo y $V,W$ $K$-espacios vectoriales y $T\in\mathcal{L}(V,W)$.
Entonces $T$ es inyectiva si y sólo si $Núc\,T=\{\theta_V\}.$

Demostración: Veamos ambas implicaciones.

$\Longrightarrow$ Supongamos que $T$ es inyectiva.
P.D. $Núc\,T=\{\theta_V\}$.

Dado que $\theta_V\in Núc\,T$ se tiene que $\{\theta_V\}\subseteq Núc\,T$ por lo que basta en realidad verificar la otra contención.

Sea $v\in Núc\,T$.
Por definición de núcleo tenemos que $T(v)=\theta_W$.
Además, sabemos que $T(\theta_V)=\theta_W$.
Así, tenemos que $T(v)=T(\theta_V)$ con $T$ inyectiva.
Por lo tanto, $v=\theta_V$.

Llegamos a que el único elemento del núcleo de $T$ es $\theta_V$.

$\Longleftarrow$ Supongamos que $Núc\,T=\{\theta_V\}$.
P.D. $T$ es inyectiva.

Sean $u,v\in V$ tales que $T(u)=T(v)$.
Entonces $T(u)-T(v)=\theta_W$.
Como $T$ es lineal, tenemos que $T(u-v)=T(u)-T(v)$.
Así que $T(u-v)=\theta_W$ y por lo tanto, $u-v\in Núc\,T$ donde (por hipótesis) el único elemento que existe es $\theta_V$.
Así, $u-v=\theta_V$ y concluimos que $u=v$.

Partiendo de que $T(u)=T(v)$ llegamos a que $u$ debe ser igual a $v$ y por lo tanto, $T$ es inyectiva.

Corolario: Sean $K$ un campo y $V,W$ $K$-espacios vectoriales, $T\in\mathcal{L}(V,W)$. Si $V,W$ son de dimensión finita y de la misma dimensión, entonces $T$ es inyectiva si y sólo si $T$ es suprayectiva.

Demostración: Supongamos que $V,W$ son $K$-espacios vectoriales de dimensión finita y $dim_KV=dim_KW.$

Tenemos por el teorema anterior que $T$ es inyectiva si y sólo si $Núc\,T=\{\theta_V\}$.
Podemos utilizar este resultado porque nuestras nuevas hipótesis no afectan.

Observemos además que $Núc\,T=\{\theta_V\}$ si y sólo si $dim_KNúc\,T=0$ porque el único conjunto que no tiene elementos es el conjunto vacío, que es una base del espacio trivial.

Por el teorema de la dimensión tenemos que $dim_KNúc\,T+dim_hIm\,T=dim_KV$.
Así, que $dim_KNúc\,T=0$ si y sólo si $dim_KIm\,T=dim_KV$.

Como tenemos por hipótesis que $dim_KV=dim_KW$, entonces $dim_KIm\,T=dim_KV$ si y sólo si $dim_KIm\,T=dim_KW$.

Recordando que $Im\,T\leqslant W$ se cumple que $dim_KIm\,T=dim_KW$ si y sólo si $Im\,T=W$.

Y dentro de las equivalencias de que $T$ sea suprayectiva está que $Im\,T=W$.

Por la cadena de dobles implicaciones concluimos que, bajo nuestras hipótesis, $T$ es inyectiva si y sólo si $T$ es suprayectiva.

Tarea Moral

  1. Para la transformación lineal $T:\mathbb{R}^3\longrightarrow \mathbb{R}^2$ con $T(a_1,a_2,a_3)=(a_1 + 2a_2, 2a_3 – a_1)$ verifica que se cumple el primer teorema de esta entrada y determina si $T$ es inyectiva o suprayectiva.
  2. Si $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ es lineal y sabemos que $T(1,0)=(2,4)$ y $T(1,1)=(8,5)$. ¿Es $T$ inyectiva?

Más adelante…

El último ejercicio de la Tarea Moral en la entrada anterior, 2.1. TRANSFORMACIÓN LINEAL: definición y ejemplos, pregunta la existencia de una transformación lineal de acuerdo a dos valores dados y a continuación veremos cómo podemos plantear y resolver este problema de manera más general.

Entradas relacionadas

2.1. TRANSFORMACIÓN LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

¿Por qué el uso de la palabra «transformación»?
Como veremos, una transformación lineal es una función que va de un espacio lineal a otro espacio lineal. Y toda función, básica e informalmente, transforma un elemento del dominio en uno del codominio.

Ahora bien, no es una función «cualquiera». Y aunque sólo son dos condiciones las que se piden, estas transformaciones de un espacio vectorial en sí mismo o en otro espacio vectorial tienen un comportamiento que permite aplicaciones muy útiles tanto en matemáticas, como en física, ingenierías e incluso arte digital. Sus propiedades gracias a esas dos condiciones hacen de este tipo de funciones sea un punto esencial del Álgebra lineal.

TRANSFORMACIÓN LINEAL

Definición: Sean $V$ y $W$ $K$ – espacios vectoriales. Una función $T:V\longrightarrow W$ es una transformación lineal de $V$ en $W$ si:
$1)$ $\forall u,v\in V(T(u+v)=T(u)+T(v))$
$2)$ $\forall \lambda\in K(\forall v\in V(T(\lambda v)=\lambda T(v)))$

Nota: Al conjunto de las transformaciones lineales de $V$ a $W$ se le denota como $\mathcal{L}(V,W)$. Cuando una función cumple la condición $1)$ diremos que abre sumas mientras que si cumple la condición $2)$ diremos que saca escalares.

Observación: Si $T$ abre sumas, entonces manda al neutro de $V$ en el neutro de $W$, pues $\theta_W+T(\theta_V)=T(\theta_V)=T(\theta_V+\theta_V)=T(\theta_V)+T(\theta_V)$$\Rightarrow\theta_W+T(\theta_V)=T(\theta_V)+T(\theta_V)\Rightarrow\theta_W=T(\theta_V).$
En otras palabras, las transformaciones lineales envían el neutro del dominio en el neutro del codominio.

Ejemplos

  • Sea $V$ un $K$ – espacio vectorial.
    $T:V\longrightarrow V$ donde $\forall v\in V(T(v)=\theta_V)$ es una transformación lineal de $V$ en $V$

Justificación. Sean $\lambda\in K$ y $u,v\in V$.

Entonces $T(u+v)=\theta_V=\theta_V+\theta_V=T(u)+T(v)$ y
$\lambda T(v)=\lambda\theta_V=\theta_V=T(\lambda v)$

  • Sea $K$ un campo. $T:K[x]\longrightarrow K[x]$ donde $\forall p(x)\in K[x](T(p(x))=p'(x))$ es una transformación lineal de $K[x]$ en $K[x]$

Justificación. Sean $\lambda\in K$ y $p(x),q(x)\in K[x]$.

Entonces $T(p(x)+q(x))=(p(x)+q(x))’=p'(x)+q'(x)=T(p(x))+T(q(x))$ y
$T(\lambda p(x))=(\lambda p(x))’=\lambda p'(x)=\lambda T(p(x))$

Proposición: Sean $V,W$ $K$ – espacios vectoriales, $T:V\longrightarrow W$.
$T$ es lineal si y sólo si $\forall\lambda\in K$ $\forall u,v\in V$ $(T(\lambda u+v)=\lambda T(u)+T(v))$

Demostración: $\Longrightarrow )$ Sean $T:V\longrightarrow W$ lineal, $\lambda\in K$, $u,v\in V$.

$\begin{align*}
T(\lambda u+v)&=T(\lambda u)+T(v)\tag{$1$}\\
&=\lambda T(u)+T(v)\tag{$2$}\\
\therefore T(\lambda u+v)&=\lambda T(u)+T(v)
\end{align*}$

$\Longleftarrow )$ Sea $T$ tal que $\forall\lambda\in K$ $\forall u,v\in V$ $(T(\lambda u+v)=\lambda T(u)+T(v))$. Sean $\lambda\in K$ y $u,v\in V$.

$\begin{align*}
T(u+v)&=T(1_K u+v)\tag{}\\
&=1_KT(u)+T(v)\tag{hip}\\
&=T(u)+T(v)\tag{}\\
\therefore T(u+v)&=T(u)+T(v)
\end{align*}$

$\begin{align*}
T(\lambda u)&=T(\lambda u+\theta_V)\tag{}\\
&=\lambda T(u)+T(\theta_V)\tag{hip}\\
&=\lambda T(u)+\theta_W\tag{Obs.}\\
&=\lambda T(u)\tag{}\\
\therefore T(\lambda u)&=\lambda T(u)
\end{align*}$

$\therefore T$ es lineal

Ejemplos

  • $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ donde $\forall (x,y,z)\in\mathbb{R}^3(T(x,y,z)=(x+y+z,2x-7y))$ es una transformación lineal de $\mathbb{R}^3$ en $\mathbb{R}^3$.

Justificación. Sean $(x,y,z),(u,v,w)\in\mathbb{R}^3$ y $\lambda\in\mathbb{R}$.

$T(\lambda(x,y,z)+(u,v,w))=T((\lambda x,\lambda y,\lambda z)+(u,v,w))$$=T(\lambda x + u,\lambda y + v,\lambda z + w)$$=(\lambda x + u+\lambda y + v+\lambda z + w,2(\lambda x + u)-7(\lambda y + v))$$=(\lambda(x+y+z)+u+v+w,2\lambda x-7\lambda y+2u-7v)$$=\lambda (x+y+z,2x-7y)+(u+v+w,2u-7v)$$=\lambda T(x,y,z)+T(u,v,w)$

  • Sea $K$ un campo.
    Si $A\in\mathcal{M}_{m\times n}(K)$, entonces $T:K^n\longrightarrow K^m$ donde $\forall X\in K^n(T(X)=AX)$ es una transformación lineal de $K^n$ en $K^m$.

Justificación. Sean $X,Y\in K^n,\lambda\in K$.

$T(\lambda X+Y)=A(\lambda X+Y)=\lambda AX + AY=\lambda T(X)+T(Y)$.

Tarea Moral

  1. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$.
    Sea $T: V \longrightarrow W$ una transformación lineal. Demuestra que para todo $v_1,v_2,…,v_n\in V$ y para todo $\lambda_1, \lambda_2,…,\lambda_n\in F$ con $n\in\mathbb{N}^{+}$ se tiene que $T(\lambda_1 v_1 + \lambda_2 v_2 + … + \lambda_n v_n) = \lambda_1 T(v_1) + \lambda_2 T(v_2) + … + \lambda_n T(v_n)$.
  2. Sea $T:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ una transformación lineal tal que $T(1,0)=(2,4)$ y $T(1,1)=(8,5)$. Determina si es posible hallar la regla de correspondencia de $T$, es decir, $T(x,y)$ para todo $(x,y)\in\mathbb{R}^2$. Si no es posible argumenta por qué y si es posible encuéntrala.
  3. ¿Existe una transformación lineal $T:\mathbb{R}^3\longrightarrow \mathbb{R}^2$ tal que $T(1,2,4)=(1,2)$ y $T(-2,-4,-8)=(-2,1)$?

Más adelante…

Veremos ahora cuatro elementos que surgen de una transformación lineal:
Núcleo e imagen, que son dos conjuntos relevantes para dominio y codominio.
Nulidad y rango, que son dos números que nos revelan dimensiones. Comenzaremos por definir el núcleo y la imagen de una transformación lineal y probando que son subespacios vectoriales.

Entradas relacionadas

1.11. SUMA Y SUMA DIRECTA DE SUBESPACIOS: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

La suma entre espacios vectoriales se construye con la suma de vectores, sin embargo, al ser subespacios, lo que resulta de esta operación, dónde vive y cómo se comporta es algo que que debe analizarse de forma particular.

La suma directa, una vez que aprendemos a distinguirla y manejarla, nos permite expresar a nuestro espacio vectorial en términos de algunos de sus subespacios. De este modo es más clara la estructura que tienen todos los elementos del espacio.

SUMA DE SUBESPACIOS

Definición: Sean $V$ un $K$ – espacio vetorial y $U,W$ subespacios de $V$. La suma de $U$ y $W$ es $U+W=\{u+w|u\in U, w\in W\}$ (donde $+$ es la suma del espacio $V$).

Nota: La generalización para $U_1,U_2,…,U_m$ ($m$ subespacios de $V$) es:
$U_1+U_2+…+U_m=\{u_1+u_2+…+u_m|u_1\in U_1,u_2\in U_2,…,u_m\in U_m\}$

Propiedades

Justificación. Veamos que $U+W$ contiene a $\theta_V$ y conserva suma y producto por escalar.

Como $U,W\leqslant V$, entonces $\theta_V\in U,W$.
Así, $\theta_V =\theta_V+\theta_V\in U+W$
$\therefore \theta_V\in U+W$

Como $U,W\subseteq V$, entonces $u_1,u_2,w_1,w_2\in V$, así que $$(u_1+w_1)+\lambda (u_2+w_2)=(u_1+w_1)+(\lambda u_2 + \lambda_2 w_2)=(u_1+\lambda u_2)+(w_1+\lambda w_2 ) $$ y como $U,W\leqslant V$, entonces tanto $U$ como $W$ conservan suma y producto por escalar así que $u_1+\lambda u_2 \in U$ y $w_1+\lambda w_2 \in W$.
Por lo cual, $(u_1+w_1)+\lambda(u_2+w_2)=(u_1+\lambda u_2)+(w_1+\lambda w_2 ) \in U+W$
$\therefore (u_1+w_1)+\lambda(u_2+w_2)\in U+W$

Justificación. Recordando que $\theta_V\in U,W$ (porque $U,V\leqslant V$) tenemos que $\forall u\in U(u=u+\theta_V\in U+W)$ y $\forall w\in W(w=\theta_V+w\in U+W)$

Justificación. Sea $\tilde{V}\leqslant V$ tal que $U,W\subseteq \tilde{V}$
Sea $u+w\in U+W$ con $u\in U$ y $w\in W$.
Entonces $u\in U\subseteq \tilde{V}$ y $w\in W\subseteq \tilde{V}$.
De donde $u,w\in\tilde{V}$ y como $\tilde{V}\leqslant V$, entonces $\tilde{V}$ es cerrado bajo suma. Así, $u+w\in\tilde{V}$.
$\therefore U+W\subseteq\tilde{V}$

Teorema: Sean $V$ un $K$ – espacio vectorial y $U,W$ subespacios de $V$. Entonces $dim_K(U+W)=dim_KU+dim_KW-dim_K(U\cap W)$

Demostración: Sea $\beta=\{v_1,v_2,…,v_m\}$ una base de $U\cap W$ con $dim_K U\cap W=m$.
Podemos completar a una base de $U$ y a una base de $W$:

Sea $A=\{v_1,v_2,…,v_m,u_1,u_2,…,u_r\}$ una base de $U$.
Sea $\Gamma =\{v_1,v_2,…,v_m,w_1,w_2,…,w_s\}$ una base de $W$.

donde $dim_K U=m+r$ y $dim_K W =m+s$.

Veamos que $\Delta =A\cup\Gamma =\{v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s\}$ es base de $U+W$ con $m+r+s$ elementos.

Tenemos que $A$ es base de $U$, por lo que $A\subseteq U$.
Tenemos que $\Gamma$ es base de $W$, por lo que $\Delta\subseteq W$.
Así, $\Delta =A\cup\Gamma \subseteq U\cup W$. Y como $U,W\subseteq U+W$, entonces $U\cup W\subseteq U+W$.
Por lo tanto $\Delta\subseteq U+W$ y como $U+W\leqslant V$ concluimos que $\langle\Delta\rangle\subseteq U+W.$

Ahora bien, sea $u+w\in U+W$ con $u\in U$ y $w\in W$.
Entonces $u\in U=\langle A\rangle\subseteq\langle A\cup\Gamma\rangle =\langle\Delta\rangle$ y $w\in W=\langle\Gamma\rangle\subseteq\langle A\cup\Gamma\rangle =\langle\Delta\rangle$.
De donde $u,w\in\langle\Delta\rangle$ y como $\langle\Delta\rangle\leqslant V$, entonces $u+w\in\langle\Delta\rangle$.
Por lo tanto, $U+W\subseteq\langle\Delta\rangle$.

$\therefore\langle\Delta\rangle =U+W$

Veamos que la lista $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ es l.i. Como consecuencia de ello se tendrá que $\Delta$ es linealmente independiente y $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ son distintos y por lo tanto son $m+r+s$ elementos.

Sean $\kappa_1,\kappa_2,…,\kappa_m,\lambda_1,\lambda_2,…,\lambda_r,\mu_1,\mu_2,…,\mu_s\in K$ tales que:
$\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i +\sum_{i=1}^s\mu_iw_i=\theta_V$ $…(1)$

Como $W\leqslant V$, entonces $\sum_{i=1}^s\mu_iw_i\in W$ $…(2)$
Como $U=\langle A\rangle$, entonces $-\sum_{i=1}^m\kappa_iv_i-\sum_{i=1}^r\lambda_iu_i\in U$ $…(3)$

De $(1)$ tenemos que $\sum_{i=1}^s\mu_iw_i=-\sum_{i=1}^m\kappa_iv_i-\sum_{i=1}^r\lambda_iu_i$ y en consecuencia, por $(2)$ y $(3)$, concluimos que $\sum_{i=1}^s\mu_iw_i$ es un elemento que está tanto en $U$ como en $W$.

Así, $\sum_{i=1}^s\mu_iw_i\in U\cap W=\langle\beta\rangle$ y por tanto existen $\gamma_1,\gamma_2,…,\gamma_m\in K$ tales que $\sum_{i=1}^s\mu_iw_i=\sum_{i=1}^m\gamma_iv_i$ $…(4)$

De $(4)$ tenemos que $\sum_{i=1}^s\mu_iw_i-\sum_{i=1}^m\gamma_iv_i=\theta_V$, y como $\Gamma$ es l.i. por ser base, entonces $\forall i\in\{1,2,…,s\}(\mu_i=0_K)$ y $\forall i\in\{1,2,…,m\}(-\gamma_i=0_K)$. Por lo tanto, $\sum_{i=1}^s\mu_iw_i=\theta_V$ $…(5)$

De $(1)$ y $(5)$ tenemos que $\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i +\theta_V=\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i+\sum_{i=1}^s\mu_iw_i=\theta_V$. De donde $\sum_{i=1}^m\kappa_iv_i+\sum_{i=1}^r\lambda_iu_i=\theta_V$, y como $A$ es l.i. por ser base, entonces $\forall i\in\{1,2,…,m\}(\kappa_i=0_K)$ y $\forall i\in\{1,2,…,r\}(-\lambda_i=0_K)$ $…(6)$

Hemos probado que $\kappa_1,=\kappa_2=…=\kappa_m=\lambda_1=\lambda_2=…=\lambda_r=\mu_1=\mu_2=…=\mu_s=0_K$.

Así, la lista $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ es l.i. y en consecuencia $\Delta$ es un conjunto l.i. con $m+r+s$ elementos.

$\therefore\Delta$ es l.i.

Concluimos que $\Delta$ es base de $U+W$ con $m+r+s$ elementos.

Finalmente sabemos que $dim_KU=m+r$, $dim_KW=m+s$ y $dim_K(U\cap W)=m.$
Además $\Delta$ es base de $U+W$ con $m+r+s$ elementos, entonces $dim_K(U+W)=m+r+s=(m+r)+(m+s)-m.$

Por lo tanto $dim_K(U+W)=dim_KU+dim_KW-dim_K(U\cap W)$

Ejemplos

Justificación. Es claro que $U_1,U_2,U_3\leqslant V$. Veamos el resultado de cada suma entre estos subespacios.
$U_1+U_2=\{(x,0)+(0,y)|x,y\in\mathbb{R}\}=\{(x,y)|x,y\in\mathbb{R}\}=V$
$U_2+U_3=\{(0,y)+(a,a)|y,a\in\mathbb{R}\}=\{(a,a+y)|a,y\in\mathbb{R}\}=\{(a,b)|a,b\in\mathbb{R}\}=V$
$U_3+U_1=\{(a,a)+(x,0)|a,x\in\mathbb{R}\}=\{(a+x,a)|a,x\in\mathbb{R}\}=\{(b,a)|b,a\in\mathbb{R}\}=V$

Verifiquemos para la suma $U_1+U_2$ el teorema previo:

Sabemos que $dim_KV=2$. Además $U_1\cap U_2=\{(0,0)\}$ y así $dim_K(U_1\cap U_2)=dim_K\{(0,0)\}=0$.
Como $\{(1,0)\}$ es base de $U_1$, entonces $dim_KU_1=1$.
Como $\{(0,1)\}$ es base de $U_2$, entonces $dim_KU_2=1$.
Así, $2=dim_KV=dim_K(U_1+U_2)=2=1+1+0=dim_KU_1+dim_KU_2-dim_K(U_1\cap U_2).$

Justificación. Dado que $dim_KV=3$ y $U+W$ es un subespacio de $V$
bastará probar entonces que $dim_K(U+W)=3$.

Como $\{(1,0,0),(0,1,0)\}$ es base de $U$, entonces $dim_KU=2$
Como $\{(0,1,0),(0,0,1)\}$ es base de $W$, entonces $dim_KW=2$
Como $\{(0,1,0)\}$ es base de $U\cap W$, entonces $dim_K(U\cap W)=1$
Así, \begin{align*}dim_K(U+W)&=dim_KU+dim_KW-dim_K(U\cap W)\\&=2+2-dim_K(U\cap W)=4-1=3,\end{align*} de donde $dim_K(U+W)=3=dim_KV$.

$\therefore U+W=V$.

SUMA DIRECTA

Definición: Sean $V$ un $K$ – espacio vetorial y $U,W$ subespacios de $V$. Decimos que $U+W$ es una suma directa si cada $v\in U+W$ se escribe como $v=u+w$ (con $u\in U,w\in W$) de forma única. En ese caso, escribiremos a $U+W$ como $U\oplus W$.

Nota: La generalización para $U_1,U_2,…,U_m$ ($m$ subespacios de $V$) es:
$U_1+U_2+…+U_m$ es suma directa si cada $v\in U_1+U_2+…+U_m$ se escribe como $v=u_1+u_2+…+u_m$ (con $u_1\in U_1,u_2\in U_2,…,u_m\in U_m\}$) de forma única. Se denotará como $U_1\oplus U_2\oplus …\oplus U_m$.

Ejemplo

Justificación. Es claro que $U,W\leqslant V$.
Sea $(a,b)\in\mathbb{R}^2$.
Entonces $a,b\in\mathbb{R}$.

Tenemos que $$(a,b)=\left( \frac{a+b}{2}+\frac{a-b}{2} ,\frac{a+b}{2}-\frac{a-b}{2}\right)=\left( \frac{a+b}{2} ,\frac{a+b}{2}\right)+\left( \frac{a-b}{2} ,-\frac{a-b}{2}\right)\in U+W,$$
de donde $\mathbb{R}^2\subseteq U+W$. Sabemos que $U+W\subseteq V$ y demostramos que $V\subseteq U+W$
$\therefore U+ W=V$

Veamos ahora que dicha suma es directa, es decir que si $u\in U, w\in W$ son tales que $(a,b)=u+w$, entonces $u,w$ son únicos. Bastará para ello verificar que la descomposición anterior de $(a,b)$ como suma de un elemento en $U$ y uno en $W$ es la única posible.

Sean $u\in U, w\in W$ son tales que $(a,b)=u+w$.
Entonces $u=(x,x)$ para algún $x\in\mathbb{R}$ y $w=(y,-y)$ para algún $y\in\mathbb{R}$, donde $(a,b)=(x,x)+(y,-y)=(x+y,x-y)$.

De aquí se deduce que $a=x+y$ y $b=x-y$. Así, $a+b=2x$ y por lo tanto $x=\frac{a+b}{2}$, mientras que $a-b=2y$ y por lo tanto $y=\frac{a-b}{2}$.

$\therefore U+W$ es suma directa.
$\therefore U\oplus W=V$

Proposición: Sean $V$ un $K$ – espacio vectorial y $U,W$ subespacios de $V$. Entonces $U+W$ es suma directa si y sólo si $U\cap W=\{\theta_V\}$

Demostración: Veamos ambas implicaciones.

$\Rightarrow )$ Supongamos que $U+W$ es suma directa.

Como $U,W\leqslant V$, entonces $\theta_V\in U,W$. Por lo que $\{\theta_V\}\subseteq U\cap W$.

Sea $v\in U\cap W$.
Sabemos que $\theta_V+v,v+\theta_V\in U\oplus W$ y son formas de escribir a $v$.
Como $U+W$ es suma directa, entonces la forma de escribir a $v$ debe ser única.
Por lo tanto, $v=\theta_V$

$\therefore U\cap W=\{\theta_V\}$

$\Leftarrow )$ Supongamos que $U\cap W=\theta_V$

Sea $v\in U+W$ tal que $u_1+w_1=v=u_2+w_2$ con $u_1,u_2\in U$ y $w_1,w_2\in W$

Como $U,W\leqslant V$, entonces $u_1-u_2\in U$ y $w_2-w_1\in W$.
Como $u_1+w_1=u_2+w_2$, entonces $u_1-u_2=w_2-w_1$.
Por lo tanto, $u_1-u_2,w_2-w_1\in U\cap W=\{\theta_V\}$

Así, $u_1-u_2=\theta_V$ lo que implica que $ u_1=u_2$T ambién $w_2-w_1=\theta_V$ lo que implica que $w_2=w_1$.
Es decir, cada elementos en $U+W$ se escribe de forma única.

$\therefore U+W$ es una suma directa.

Tarea Moral

Más adelante…

A partir de la siguiente entrada, analizaremos un tipo de funciones muy especial y útil que va de espacios vectoriales a espacios vectoriales y aunque la definición sólo le pide abrir dos operaciones, esto implica muchas propiedades que otorgan a este tipo de funciones un papel central en el Álgebra lineal.

Entradas relacionadas

1.10. BASE DE ESPACIOS VECTORIALES: obtención a partir de un conjunto linealmente independiente o generador

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

De cualquier subconjunto finito de nuestro espacio, podemos obtener un generador o un l.i. y cuando lo obtengamos podremos reducirlo o completarlo para obtener una base.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita.
a) Todo conjunto generador finito o es una base o se puede reducir a una base.
b) Todo conjunto linealmente independiente o es una base o se puede completar a una base.

Demostración:

a) En la demostración de la proposición que se encuentra en la entrada anterior tomamos un conjunto generador finito $S$ de un espacio vectorial arbitrario y o bien es base o es linealmente dependiente y en ese caso recursivamente tomamos subconjuntos propios de $S$ hasta que uno de esos subconjuntos fuera base. Este método prueba que podemos reducir cualquier conjunto generador de $V$ para obtener una base.

b) Sea $S\subseteq V$ un conjunto l.i.
Ya sabemos que $S$ es finito por ser un subconjunto l.i. de un espacio $V$ de dimensión finita (ver la observación en la entrada anterior).

Caso 1. Si $\langle S \rangle = V$, entonces $S$ es base de $V$ por definición.

Caso 2. Si $\langle S \rangle \subsetneq V$, entonces existe $v_1\in V$ tal que $v_1\notin \langle S \rangle$. Por lo tanto, $ S \cup \{ v_1 \}$ es l.i.

Subaso 1. Si $\langle S \cup \{ v_1 \} \rangle = V$, entonces $S \cup \{ v_1 \}$ es base de $V$ por definición.

Subcaso 2. Si $\langle S \cup \{ v_1 \} \rangle \subsetneq V$, entonces existe $v_2\in V$ tal que $v_2\notin \langle S \cup \{ v_1 \} \rangle$ Por lo tanto, $ S \cup \{ v_1 \} \cup \{ v_2 \} $ es l.i.

Este proceso no es infinito porque los subconjuntos l.i de $V$ deben ser finitos, así que se detiene después de digamos $m$ pasos, en el momento en que obtenemos un conjunto que genera. El número $m$ es la cantidad de elementos de $V$ que tuvimos que agregar a $S$, entonces $\langle S \cup \{ v_1 \} \cup \{ v_2 \} \cup … \{ v_m \} \rangle$ es una base de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial tal que $dim_K V=n$.
a) Cualquier conjunto generador con $n$ elementos es una base de $V$.
b) Cualquier conjunto linealmente independiente con $n$ elementos es una base de $V$.

Demostración: Por definición de base tenemos que toda base $B$ de $V$ cumple que $|B|=dim_K V=n$. Es decir, toda base de $V$ tiene $n$ elementos.

a) Sea $S\subseteq V$ generador con $n$ elementos.
Por el teorema anterior $S$ es una base o se puede reducir a una base.
Pero reducir $S$ significaría quitar elementos y obtendríamos una base de $V$ con menos de $n$ elementos, lo que es una contradicción porque toda base de $V$ tiene $n$ elementos.
Por lo tanto $S$ es base.

b) Sea $S\subseteq V$ linealmente independiente.
Por el teorema anterior $S$ es una base o podemos completarlo a una base.
Pero completar $S$ significaría agregar elementos y obtendríamos una base de $V$ con más de $n$ elementos, lo que es una contradicción porque toda base de $V$ tiene $n$ elementos.
Por lo tanto $S$ es base.

Ejemplo

Sea $K=\mathbb{R}, V=\mathcal{M}_{2\times 2}(\mathbb{R})$.
Sea $W=\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle$

Por construcción, $W$ es el subespacio generado por $X=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$
Encontremos un subconjunto de $X$ que sea base de $W$.

Observemos que $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $X$ es l.d. y como $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, entonces $W=\langle X\rangle = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\rangle$

Veamos que $B=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$ es l.i.

Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}+\lambda_2\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$

Esto implica que $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\lambda_1= \lambda_1+\lambda_2= \lambda_3=\lambda_2+\lambda_3=0$.
Por lo tanto, $\lambda_1=\lambda_2=\lambda_3=0$ y $B$ es l.i.

Como $\langle B\rangle=W$ y $B$ es l.i., entonces $B$ es una base y obtenemos que $dim_\mathbb{R}W=|B|=3.$

Teorema: Sean $V$ un $K$ – espacio vectorial de dimensión finita y $W$ un subespacio de $V$. Entonces se cumple lo siguiente:

a) $W$ es de dimensión finita.
b) Toda base de $W$ o es una base de $V$ o se puede completar a una base de $V$.
c) $dim_KW\leq dim_KV$.
d) Si $dim_KW=dim_KV$, entonces $W=V$.

Demostración: Analicemos cada inciso por separado:

a) Veamos que $W$ es de dimensión finita probando que tiene una base finita.

Si $W=\{\theta_V\}$ entonces $\emptyset$ es una base finita de $V$.

Supongamos que $\{\theta_V\}\subsetneq W$, consideremos $w_1\in W\setminus \{\theta_V\} $, notemos que $\{w_1\}$ es l.i. ya que $w_1\neq \theta_V$. Si $\{w_1\}$ genera a $W$, entonces es una base finita de $W$. Si por el contrario $\{w_1\}$ no genera a $W$ tendríamos que $\langle w_1\rangle\subsetneq W$ y podemos considerar $w_2\in W\setminus \langle w_1\rangle$. Debido a la elección de $w_2$ sabemos que $\{w_1, w_2\}$ es l.i. Así, si $\{w_1, w_2\}$ genera a $W$, entonces es una base finita de $W$ y si no elegimos $w_3\in W\setminus \langle w_1,w_2\rangle$.

Continuando de este modo obtenemos subconjuntos de $W$, y por lo tanto de $V$, linealmente independientes. El proceso se detiene después de un número finito de pasos ya que al ser $V$ de dimensión finita no existen conjuntos en $V$ linealmente independientes infinitos y se detiene en el momento en que el subconjunto obtenido genera a $W$. Entonces el proceso acaba después de digamos $t$ pasos obteniendo un subconjunto $\{w_1, \dots ,w_t\}$ de $W$ linealmente independiente que genera a $W$, siendo así una base finita de $W$.

b) Sea $B$ una base de $W$.
Entonces $B$ es un subconjunto l.i. en $V$ y por el teorema anterior o es una base de $V$ o se puede completar a una base de $V$.

c) Sea $B$ una base de $W$.
Por el inciso anterior tenemos $B$ es una base de $V$ o se puede completar para obtener una base de $V$, es decir, existe $A\subseteq V$ tal que $B\cup A$ es una base de $V$. Así,
$$dim_KW=|B|\leq|B\cup A|=dim_KV.$$
Por lo tanto, $dim_KW\leq\dim_KV$.

d) Supongamos que $dim_KW=\dim_KV=n$
Sea $B$ una base de $W$.
Entonces $B$ es un l.i. en $V$ con $n$ elementos. Por el corolario anterior tenemos que $B$ es una base de $V$.
Así, $W=\langle B\rangle =V$ y por lo tanto, $W=V$

Tarea Moral

Más adelante…

Veremos un nuevo concepto: Suma y suma directa de subespacios vectoriales.
¿Qué es? ¿Qué estructura tiene? ¿Dónde vive? ¿Qué relación tiene la suma de dos subespacios con sus uniones?

Entradas relacionadas

1.9. BASE, DIMENSIÓN Y ESPACIO DE DIMENSIÓN (IN)FINITA: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

Hemos estudiado a los conjuntos generadores ya los conjuntos linealmente independientes. Los conjuntos generadores son útiles porque nos permiten describir a todo vector del espacio en términos sólo de los vectores del conjunto generador. Por otro lado los conjuntos linealmente independientes son importante porque no tienen vectores que se escriban como combinación lineal de los demás por lo que intuitivamente no contienen información redundante. Será conveniente entonces considerar conjuntos de vectores que sean generadores y linealmente independientes al mismo tiempo y a éstos les llamaremos bases. Además la cardinalidad de un conjunto que cumpla ambas características se vuelve relevante.

De acuerdo a lo que hemos observado en $\mathbb{R}^3$ sabemos que sucede lo siguiente:
1) De todo subconjunto linealmente dependiente que genere podemos encontrar un subconjunto propio linealmente independiente que siga generando.
2) A todo subconjunto de $V$ linealmente independiente podemos agregarle elementos de $V$ hasta crear un conjunto generador de $V$ que siga siendo linealmente independiente.

Para conseguir un conjunto l.i. necesitamos en ocasiones hacer el original «más pequeño» y para conseguir un generador necesitamos a veces hacer el original «más grande».

Esta situación ocurre de manera más general y nos permite justificar la existencia de una base para espacios de dimensión finita.
Estudiaremos a continuación lo que es una base: un conjunto lo «suficientemente grande» para generar al espacio y lo «suficientemente pequeño» para ser linealmente independiente.

BASE DE UN ESPACIO VECTORIAL

Definición: Sean $V$ un $K$ – espacio vectorial, $B\subseteq V$. Decimos que $B$ es una base de $V$ si genera a $V$ y es linealmente independiente. Además, decimos que $V$ es de dimensión finita si tiene una base finita.

Ejemplos

  • Sea $K$ un campo.
    Consideremos las $n$-adas $e_1=(1_K,0_K,0_K,0_K,…,0_K,0_K), e_2=(0_K,1_K,0_K,0_K,…,0_K,0_K),$ $…,e_n=(0_K,0_K,0_K,0_K,…,0_K,1_K)$. El conjunto $\{ e_1,e_2,…,e_n\}$ es una base de $K^n$.

Justificación. Como $B =\{e_1,e_2,…,e_n\}$ es l.i., sólo falta ver que $\langle B\rangle =K^n$.
Sabemos que $K^n$ es un espacio vectorial y cada $e_i\in K^n$, entonces $\langle B\rangle\subseteq K^n$.
Ahora bien, sea $(x_1,x_2,…,x_n)\in K^n$.
Es claro que $(x_1,x_2,…,x_n)=x_1e_1+x_2e_2+…+x_ne_n\in\langle B\rangle$.
De donde $K^n\subseteq\langle B\rangle$.
$\therefore\langle B\rangle =K^n.$

  • Sea $W=\{(x,y,z)\in\mathbb{R}^3|x-y+2z=0\}$ que es un subespacio de $\mathbb{R}^3$.
    Tenemos que $1-1+2(0)=0$ y $-2-0+2(1)=0$, entonces $(1,1,0),(-2,0,1)\in W$.
    Resulta que $\{(1,1,0),(-2,0,1)\}$ es una base de $W$.

Justificación. Primero veamos que $B =\{(1,1,0),(-2,0,1)\}$ es l.i.
Sean $\lambda_1,\lambda_2\in\mathbb{R}$ tales que $\lambda_1(1,1,0)+\lambda_2(-2,0,1)=(0,0,0)$.
Entonces, $(\lambda_1-2\lambda_2,\lambda_1,\lambda_2)=(0,0,0)$.
Inmediatamente se concluye de lo anterior que $\lambda_1=\lambda_2=0$.
$\therefore B$ es l.i.
Como $W$ es un subespacio y $(1,1,0),(-2,0,1)\in W$, entonces $\langle B\rangle\subseteq W$.
Ahora bien, sea $(x,y,z)\in W$.
Por definición de $W$ tenemos que $x=y-2z$, y en consecuencia $(x,y,z)=(y-2z,y,z)$.
Es claro que $(x,y,z)=(y-2z,y,z)=y(1,1,0)+z(-2,0,1)\in\langle B\rangle$.
Así, $W\subseteq\langle B\rangle$.
$\therefore\langle B\rangle.$

Proposición: Sea $V$ un $K$ – espacio vectorial. Si $V$ tiene un conjunto generador finito, entonces $V$ tiene una base finita.

Demostración: Sea $S=\{v_1,v_2,…,v_n\}$ un conjunto generador finito de $V$.

Caso 1. $S$ es l.i.
Entonces $S$ es una base finita de $V$.

Caso 2. $S$ es l.d.
Por el lema de dependencia lineal existe $v_{j_1}\in S$ tal que $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle $. Así, podemos definir el siguiente conjunto:
$S_1=S\setminus\{v_{j_1}\}$ donde $j_1\in\{1,2,…,n\}$ y $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle =V.$
Si $S_1$ es l.i., entonces $S_1$ es una base finita de $V$.
Si $S_1$ es l.d., entonces repetimos el proceso. Observemos que de esta forma vamos encontrando $S_1, S_2, \dots$ subconjuntos de $S$ con $n-1,n-2,\dots$ elementos respectivamente, tales que $\langle S_i \rangle =\langle S\rangle =V$ para toda $i=1,2,\dots$. Este proceso es finito ya que $S$ lo es y termina después de a lo más $n$ pasos. El proceso termina en el momento en que encontramos un $S_t$ con $t\in\{1,\dots ,n\}$ subconjunto de $S$ tal que $S_t$ es l.i. y por la forma en que se construyeron los subconjuntos de $S$ en este proceso se tiene además que $\langle S_t \rangle =\langle S\rangle =V$.
Tenemos entonces que $S_t$ es una base finita de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial. $V$ tiene un conjunto generador finito si y sólo si $V$ es de dimensión finita.

Demostración: $\Rightarrow )$ Se cumple por el teorema anterior y la definición de espacio vectorial de dimensión finita.

$\Leftarrow )$ Por definición de espacio vectorial de dimensión finita, existe una base finita, es decir, un conjunto l.i. generador de cardinalidad finita, en particular esta base es un conjunto generador finito.

Obs. Si un $V$ espacio vectorial es de dimensión finita, entonces todo conjunto l.i. es finito.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Todas las bases de $V$ son finitas y tienen el mismo número de elementos.

Demostración: Por la observación previa tenemos que todas las bases de $V$ son finitas, pues en particular son conjuntos l.i. Veamos que todas tienen la misma cardinalidad.

Sean $B_1$ y $B_2$ bases de $V$, que son finitas por lo antes mencionado.

Por definición de bases tenemos:
a) $B_1$ es l.i., b) $B_1$ es generador de $V$, c) $B_2$ es l.i., d) $B_2$ es generador de $V$.

Recordando la relación entre conjuntos linealmente independientes y conjuntos generadores tenemos que:
a) y d) implican que $|B_1|\leq |B_2|$,
b) y c) implican que $|B_2|\leq |B_1|$.
$\therefore |B_1|=|B_2|.$

A lo largo de esta entrada hemos logrado concluir que, si bien las bases no son únicas, su cardinalidad (en el caso de espacios de dimensión finita) sí es única.

DIMENSIÓN DE UN ESPACIO VECTORIAL

Definición: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Decimos que la dimensión de $V$ es la cardinalidad de cualquiera de sus bases. Se denota como $dim_K V$.

Ejemplos

  • Sea $W=\langle 2-x+5x^2,3-2x^2,7-2x+8x^2\rangle\leq\mathcal{P}_2[\mathbb{R}]$.
    Tenemos que $dim_{\mathbb{R}}W=2$.

Justificación. Primero describamos los elementos de $V$ como combinaciones lineales de los vectores del conjunto generador.
Sea $a+bx+cx^2 \in V$. Entonces existen $\lambda,\mu,\nu\in\mathbb{R}$ tales que $\lambda (2-x+5x^2) + \mu (3-2x^2) + \nu (7-2x+8x^2)=a+bx+cx^2$
Entonces $(2\lambda + 3\mu +7\nu) + (-\lambda – 2\nu)x + (5\lambda – 2\mu + 8\nu)x^2=a+bx+cx^2$. Por lo tanto:
\begin{align*}2\lambda + 3\mu +7\nu&=a\\
-\lambda – 2\nu&=b\\
5\lambda – 2\mu + 8\nu&=c.\end{align*}

Tenemos entonces:

$\left( \begin{array}{rrr|r} 2 & 3 & 7 & a \\ -1 & 0 & -2 & b\\
5 & -2 & 8 & c \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 3 & 3 & a+2b\\ 0 & -2 & -2 & c+5b \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 1 & 1 & -\frac{1}{2}(c+5b) \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 0 & 0 & -\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b) \end{array} \right)$

Así, $0=-\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b)$.
Y esto ocurre si y sólo si $0=2a+19b+3c$.
Por lo tanto, $a=-\frac{19}{2}b-\frac{3}{2}c$.

$W=\{ a+bx+cx^2 \in \mathcal{P}_2(\mathbb{R})| a=-\frac{19}{2}b-\frac{3}{2}c \}$$=\{ (-\frac{19}{2}b-\frac{3}{2}c)+bx+cx^2\in \mathcal{P}_2(\mathbb{R})| b,c\in\mathbb{R} \}$$=\{ b(-19+x)+c(-1+x^2)|b,c\in\mathbb{R} \}$$=\langle -19+x,-1+x^2 \rangle$.

Se puede verificar que $\{ -19+x,-1+x^2 \}$ es linealmente independiente y claramente genera a $W$, entonces es una base de $W$. Por lo tanto, $dim_{\mathbb{R}}W=2$.

Tarea Moral

Más adelante…

Partiendo de cualquier espacio vectorial de dimensión finita $V$, veremos cómo obtener bases. Además analizaremos qué relación hay entre: a) la dimensión de $V$ y las dimensiones de sus subespacios y b) la base de $V$ y las bases de sus subespacios.

Entradas relacionadas