Archivo de la etiqueta: intersección

Geometría Analítica I: Intersección de rectas

Introducción

En entradas anteriores hemos definido las rectas en formas distintas y hemos realizado algunos ejercicios. El siguiente paso en nuestro curso es buscar el punto de intersección de dos rectas, pues sabemos (por lo que hemos discutido) que si dos rectas no son paralelas, entonces estas se intersectan en algún punto. Buscamos esto ya que no hay que olvidar nuestro objetivo principal, el mostrar todos lo enunciado por Euclides en su geometría.

El procedimiento de esta entrada será un poco particular pues antes de comenzar con el tema principal, discutiremos el paralelismo, sin embargo interrumpiremos momentáneamente este tema para razonar cómo es que se encuentra la intersección de dos rectas $l_1$ y $l_2$. De manera intuitiva, podemos imaginar que el punto de intersección de dos rectas es aquel que cumple con la ecuación de cada una al mismo tiempo ; esta idea será nuestra guía para desarrollar la teoría. Una vez que hayamos razonado este tema, volveremos para concluir la parte de paralelismo.

Paralelismo

Iniciemos entonces hablando de cuando dos rectas no se intersectan, esto es que sean paralelas.

Definición. Dos rectas $l_1$ y $l_2$ $\in \mathbb{R}^2$ son paralelas, si no se intersectan, esto es que

$L_1 \cap l_2 = \emptyset$

donde $\emptyset$ denota al conjunto vacío. Denotaremos dos rectas paralelas como $l_1 \parallel l_2$.

Pero no sólo dos rectas pueden ser paralelas; seguramente mientras leías estas últimas palabras, pensabas en los planos que es análogo a la definición anterior, sin embargo me refiero a los vectores.

Definición. Dados dos vectores $u,v \in \mathbb{R}^2$ distintos de $0$, decimos que $u$ es paralelo a $v$ si existe un número real $t$ tal que

$u=tv$

Denotaremos el paralelismo entre dos vectores como $u \parallel v$.

A partir de estas dos definiciones podemos enunciar el siguiente lema, pero aún no tenemos la experiencia suficiente para demostrarlo de manera completa. Por ahora, enunciémoslo y demostremos la parte que nos es posible.

Lema. Dos rectas diferentes en forma paramétrica

$l=\{ p+rq : r \in \mathbb{R} \}$ y $m= \{ u+sv : r \in \mathbb{R} \}$

son paralelas si y sólo si los vectores directores $q$ y $v$ son paralelos.

Demostración.

«Regreso»: Comencemos suponiendo que los vectores son paralelos por lo que debemos demostrar que $l\cap m =\emptyset$.

Si $q$ y $v$ son paralelos, entonces existe un $t \in \mathbb{R}$ tal que

$q=tv$

Si suponemos que la intersección es no vacía (dem. por contradiccióon), entonces tendríamos un punto perteneciente a las dos rectas, esto es

$u+sv=p+rq$

Para algún $s$ y algún $r$. Recordemos que por hipótesis $q=tv$, por lo que al sustituir este valor en la igualdad anterior tenemos

$u+sv=p+r(tv)$

Utilizando los axiomas de los reales podemos acomodar esta igualdad a nuestra conveniencia

$u-p=rtv-sv$

Al despejar $p$ tenemos que

\begin{align*}
p&=u-rtv+sv \\
&=u-v(rt-s)
\end{align*}

Al sustituir $p$ y $q$ en la definición de la recta $l$ obtenemos que

\begin{align*}
l&=\{ ((u-v(rt-s))+r(tv) : r,s,t \in \mathbb{R} \} \\
&=\{ u-rtv+sv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv-rtv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv : s \in \mathbb{R} \}
\end{align*}

$\Rightarrow l=m$

Pero esto es una contradicción ya que claramente al inicio de este lema se menciona que $l \neq m$.

$\therefore$ si $q$ y $v$ son paralelos, entonces $l \parallel m$ pues al suponer que $l \cap m \neq \emptyset$, llegamos a una contradicción.

«Ida»: Aunque parece extraño, aquí es cuando debemos de cortar con el tema de paralelismo e indagar un poco sobre la intersección de rectas pues es necesario lo que trataremos a continuación para poder concluir nuestra demostración.

$\dots$

Intersección de rectas

De manera intuitiva sabemos que dos rectas no paralelas se intersectan en un punto. En esta parte de la entrada, queremos encontrar ese punto.

Antes de estudiar el procedimiento general, realicemos un ejemplo para obtener una visión de lo que nos espera.

Ejemplo:

Tomemos dos rectas en su forma paramétrica dadas por

$l_1=\{ (2,-8)+r(7,-3) : r \in \mathbb{R} \}, \text{ } l_2={ (7,-4)+s(1,2) : s \in \mathbb{R} }$

Nuestro objetivo en este ejemplo es encontrar el punto $p$ en el cual $l_1$ y $l_2$ se intersectan, esto es el punto que cumpla ambas ecuaciones

\begin{align*}
(2,-8)+r(7,-3)&=p=(7,-4)+s(1,2) \\
\Rightarrow 2,-8)+r(7,-3)&=(7,-4)+s(1,2)
\end{align*}

Al juntar los terminos que contienen un parámetro de un lado del igual y aquellos que son puntos definidos del otro y desarrollar obtenemos

\begin{align*}
(2,-8)-(7,-4)&=s(1,2)-r(7,-3) \\
\Leftrightarrow (2-7,-8+4)&=(s-7r,2s+3r) \\
\Leftrightarrow (-5,-4)&=(s-7r,2s+3r)
\end{align*}

Dado que son vectores que queremos sean iguales, entonces deben ser iguales entrada a entrada; por lo que tenemos un sistema de ecuaciones

\begin{cases}
-5=s-7r \dots (a)\\
-4=2s+3r \dots (b)
\end{cases}

Afortunadamente, ya sabemos como resolver sistemas de ecuaciones. En este caso en especial, podemos multiplicar la ecuación $a$ por $-2$ para obtener $10=-2s+14r$ y sumar este resultado a la ecuación $b$:

\begin{align*}
10&=-2s+14r\\
-4&=2s+3r \\
\hline
6&=17r
\end{align*}

$\Rightarrow r=\frac{6}{17}$

Ya que obtuvimos el valor de $r$, podemos sustituirlo en alguna de las ecuaciones principales para obtener $s$ y obtenemos su valor

$s=\frac{-43}{17}$

Usando cualquiera de los dos valores, encontramos que el punto de intersección es

$(2,-8+\frac{6}{17}(7,-3)\approx (4.4705,-9.0588)\approx (7,-4)+\frac{-43}{17}(1,2)$

Procedimiento general

Usemos como base el ejemplo pasado para establecer un procedimiento general para enconrar el punto de intersección de dos rectas.

Comencemos con las rectas

$l_1={ (p_1,p_2)+r(q_1,q_2) : r \in \mathbb{R} }, \text{ } l_2={ (u_1,u_2)+s(v_1,v_2) : s \in \mathbb{R} }$

Con base en el ejemplo, el siguietne paso es establecer un punto digamos $w$ que cumpla ambas ecuaciones

\begin{align*}
(p_1,p_2)+r(q_1,q_2)&=w=(u_1,u_2)+s(v_1,v_2) \\
(p_1,p_2)+r(q_1,q_2)&=(u_1,u_2)+s(v_1,v_2)
\end{align*}

Colocamos de un lado del igual los elementos que se multiplican por un parámetro y lo demás del otro lado y desarrollamos

\begin{align*}
r(q_1,q_2)-s(v_1,v_2)&=(u_1,u_2)-(p_1,p_2) \\
(rq_1-sv_1,rq_2-sv_2)&=(u_1-p_1,u_2-p_2)
\end{align*}

Como tenemos la igualdad de dos vectores, deben ser iguales entrada a entrada, esto es

\begin{cases}
rq_1-sv_1= u_1-p_1 \dots (a)\\
rq_2-sv_2= u_2-p_2 \dots (b)
\end{cases}

En este punto, debemos solucionar el sistema de ecuaciones de manera general, para lo cual multiplicaremos $(a)$ por $q_2$ y $(b)$ opr $q_1$ y restaremos las expresiones resultantes

\begin{align*}
rq_1q_2-sv_1q_2&=u_1q_2-p_1q_2 \\
rq_2q_1-sv_2q_1&=u_2q_1-p_2q_1\\
\hline
sv_2q_1-sv_1q_2&=u_1q_2-p_1q_2-u_2q_1+p_2q_1
\end{align*}
A partir de esta última expresión podemos despejar el parámetro $s$ para obtener

$s=\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}$

Notemos que $s$ se puede indefinir si $v_2q_1-v_1q_2=0$, esto es que

$v_2q_1=v_1q_2$

pero la única manera de que esto suceda es si $l_1 \parallel l_2$, que no es el caso que estamos tratando. Por lo tanto, el sistema siempre tiene solución. Así, el punto de intersección $w$ está dado por

\begin{align*}
w&=(u_1,u_2)+s(v_1,v_2) \\
&=(u_1,u_2)+\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}(v_1,v_2)
\end{align*}

Es posible encontrar el punto $w$ al encontrar el valor del parámetro $r$ y es de manera análoga a lo que cabamos de realizar.

Recapitulemos ligeramente lo que acaba de pasar, pues acabamos de demostrar la parte faltante del lema enunciado en la sección de paralelismo. Por lo descrito arriba, resulta que si las rectas son paralelas, entonces no hay un punto de intersección, esto es que el sistema de ecuaciones no tiene solución, pero esto pasa solamente si los vectores son paralelos.

$\square$

Podemos enunciar esto último como una proposición.

Proposición. Si los vectores directores de dos rectas en su forma paramétrica no son paralelos, entonces las rectas se intersectan.

Continuación paralelismo

Concluyamos esta entrada con la teoría faltante de paralelismo.

Teorema. Dada una recta $l \in \mathbb{R}^2$ y un punto $p$ fuera de ella, siempre existe una recta $m$ que pasa por $p$ y es paralela a $l$.

Demostración.

Sea la recta $l$ en su forma paramétrica

$l=\{ u+rv : r \in \mathbb{R} \}$

Proponemos a la recta

$m=\{ p+rv : r \in \mathbb{R} \}$

como una recta que pasa por $p$ y es paralela a $l$. Por como $m$ está definida, esta recta cumple que pasa por $p$. Además, sabemos que $1\dot v=v$, por lo que (por definición de vectores paralelos) $v$ es paralelo a $v$ y esto implica que $m$ es paralela a $l$ (por el lema).

$\therefore$ Existe una recta que pasa por $p$ y es paralela a $l$.

El siguiente corolario es lo última de esta entrada y la demostración se deja como tarea moral ya que hemos desarrolado las herramientas suficientas para probarlo.

Corolario. Dada una recta $l$ y $p$ un punto fuera de ella, la recta que pasa por $p$ y es paralela a $l$ es única.

Tarea moral

  • En el desarrollo general para encontrar la intersección de dos rectas, existe un caso en el que el sistema de ecuaciones no tiene solución, esto es cuando $v_2q_1=v_1q_2$. Justifica porqué este caso no es posible si dos rectas se intersectan.
  • Encuentra el parámetro $r$ en esta la sección antes mencionada, para encontrar a $w$ en términos de la otra recta.
  • Demuestra el corolario.
  • Encuentra las intersecciones de las rectas
    • $l_1=\{ (3,2)+t(2,0) : t \in \mathbb{R} \}$
    • $l_2=\{ (5,1)+s(-4,3) : s \in \mathbb{R} \}$
    • $l_3=\{ (-6,-1)+r(0,-7) : r \in \mathbb{R} \}$
  • Prueba que las rectas $l=\{(-1,5)+t(4,-2) : t \in \mathbb{R}\}$ y $m=\{ (0,2)+s(-20,10) : s \in \mathbb{R} \}$

Más adelante…

En esta entrada tratamos la intersección de rectas en su forma paramétrica, conforme avancemos en el curso, hablaremos de la recta en otras formas a partir de las cuales también nos será posible encontrar la intersección entre rectas.

Álgebra Lineal I: Ortogonalidad, hiperplanos y ecuaciones lineales

Introducción

En entradas anteriores hablamos de formas lineales, del espacio dual y de ortogonalidad. Con la teoría que hemos desarrollado en esas entradas, podemos cosechar uno de los hechos más importantes para espacios vectoriales de dimensión finita $n$: todos los subespacios se pueden obtener a partir de intersectar hiperplanos, es decir, subespacios de dimensión $n-1$. El objetivo de esta entrada es dar las definiciones necesarias para enunciar y demostrar este resultado formalmente.

Hiperplanos

Antes de demostrar el resultado mencionado en la introducción, tomaremos un poco de intuición geométrica de $\mathbb{R}^3$.

En $\mathbb{R}^3$ tenemos sólo un subespacio de dimensión $0$, que es $\{(0,0,0)\}$, un punto. Para obtener un subespacio de dimensión $1$, tenemos que tomar un vector $v\neq 0$ y considerar todos los vectores $rv$ con $r$ en $\mathbb{R}$. Esto corresponde geométricamente a una línea por el origen, con la misma dirección que $v$. En otras palabras, los subespacios de dimensión $1$ son líneas por el origen.

¿Quiénes son los subespacios de dimensión $2$? Debemos tomar dos vectores linealmente independientes $u$ y $v$ y considerar todas las combinaciones lineales $au+bv$ de ellos. Es más o menos fácil convencerse de que obtendremos al plano que pasa por $u$, $v$ y el $(0,0,0)$. Es decir, los subespacios de dimensión $2$ de $\mathbb{R}^3$ son planos por el origen.

Esto motiva la siguiente definición.

Definición 1. Sea $V$ un espacio vectorial de dimensión finita $n$. Un hiperplano de $V$ es un subespacio de dimensión $n-1$.

Ejemplo. El subespacio $U=\mathbb{R}_5[x]$ de $V=\mathbb{R}_6[x]$ es un hiperplano. Esto es ya que $U$ es de dimesión $6$ y $V$ es de dimensión $7$. Sin embargo, aunque $U$ también es un subespacio de $W=\mathbb{R}_7[x]$, no se cumple que $U$ sea hiperplano de $W$ pues $W$ es de dimensión $8$ y $6\neq 8-1$.

Las matrices simétricas de $M_2(\mathbb{R})$ forman un subespacio $S$ de dimensión $3$ de $M_2(\mathbb{R})$, pues son de la forma $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. De esta forma, $S$ es un hiperplano de $M_2(\mathbb{R})$. Sin embargo, el conjunto de matrices simétricas de $M_n(\mathbb{R})$ no es un hiperplano ni para $n=1$, ni para $n\geq 3$.

$\square$

Los hiperplanos nos pueden ayudar a obtener subespacios. De hecho, veremos que en el caso de dimensión finita nos ayudan a obtener a todos los subespacios. Para continuar construyendo la intuición, notemos que en $\mathbb{R}^3$ los hiperplanos son simplemente los planos por el origen y que:

  • Podemos obtener a cualquier plano por el origen como intersección de planos por el origen: simplemente lo tomamos a él mismo.
  • Podemos obtener a cualquier línea por el origen como la intersección de dos planos distintos por el origen que la contengan. Por ejemplo, el eje $z$ es la intersección de los planos $xz$ y $yz$. En otras palabras: todo subespacio de dimensión $1$ de $\mathbb{R}^3$ se puede obtener como la intersección de dos hiperplanos de $\mathbb{R}^3$.
  • A $\{0\}$ lo podemos expresar como la intersección de los planos $xy$, $yz$ y $xz$, osea, al único espacio de dimensión cero lo podemos expresar como intersección de $3$ hiperplanos.

Ya obtenida la intuición, lo que veremos a continuación es que el resultado anterior en realidad es un fenómeno que sucede en cualquier espacio vectorial de dimensión finita. Así, nos enfocaremos en entender las definiciones del siguiente teorema, y demostrarlo.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$.

  • Todo subespacio $W$ de $V$ de dimensión $m$ es la intersección de $n-m$ hiperplanos de $V$ linealmente independientes.
  • Toda intersección de $n-m$ hiperplanos de $V$ linealmente independientes es un subespacio vectorial de dimensión $m$.

Los hiperplanos son subespacio y la definición de independencia lineal que tenemos es para vectores. Pero el teorema anterior habla de «hiperplanos linealmente independientes». ¿A qué se refiere esto? Como veremos más adelante, a cada hiperplano se le puede asignar de manera natural un elemento del espacio dual de $V$.

Recordatorio de espacio ortogonal

En la entrada anterior mostramos el siguiente resultado:

Teorema (teorema de dualidad). Sea $V$ un espacio vectorial de dimensión finita sobre $F$ y $W$ un subespacio de $V$ (o de $V^\ast)$. Entonces $$\dim W + \dim W^\bot = \dim V.$$

Además, obtuvimos como corolario lo siguiente:

Corolario. Si $V$ es un espacio vectorial de dimensión finita sobre un campo $F$ y $W$ un subespacio de $V$ (o de $V^\ast$), entonces $(W^\bot)^\bot=W$.

Usaremos estos resultados para dar una definición alternativa de hiperplanos, para entender a los subespacios de dimensión $n-1$ y para mostrar el teorema principal de esta entrada.

Subespacios de dimensión $n-1$ y definición alternativa de hiperplanos

Tomemos un espacio vectorial $V$ de dimensión finita $n$. Un caso especial, pero muy importante, del teorema de dualidad es cuando $W$ es un subespacio de $V^\ast$ de dimensión $1$, es decir, cuando $W$ está generado por una forma lineal $l\neq 0$. En este caso, $W^\bot$ es un subespacio de $V$ y por el teorema de dualidad, es de dimensión $n-1$.

De manera inversa, si $W$ es un subespacio de $V$ de dimensión $n-1$, por el teorema de dualidad tenemos que $W^\bot$ es de dimensión $1$, así que hay una forma lineal $l\neq 0$ que lo genera. Por el corolario, $W=(W^\bot)^\bot$, que en otras palabras quiere decir que $W=\{v\in V: l(v)=0\}.$ En resumen:

Proposición. Un subespacio $W$ de un espacio de dimensión finita $d$ tiene dimensión $d-1$ si y sólo si es el kernel de una forma lineal $l\neq 0$ de $V$.

Ejemplo. Considera la forma lineal $\text{ev}_0$ en el espacio vectorial $V=\mathbb{C}_n[x]$ de polinomios con coeficientes complejos y grado a lo más $n$. Los polinomios $p$ tales que $\text{ev}_0(p)=0$ son exactamente aquellos cuyo término libre es $0$. Este es un subespacio vectorial de $V$ de dimensión $n=\dim V – 1$, pues una base para él son los polinomios $x, x^2, \ldots, x^n$.

$\square$

Problema. Considera el espacio vectorial $V=M_{2,3}(\mathbb{R})$. Considera $W$ el subconjunto de matrices cuya suma de entradas en la primer columna es igual a la suma de entradas de la segunda columna. Muestra que $W$ es un subespacio de dimensión $5$ y escríbelo como el kernel de una forma lineal.

Solución. Mostrar que $W$ es un subespacio de $V$ es sencillo y se queda como tarea moral. Se tiene que $W$ no puede ser igual a todo $V$ pues, por ejemplo, la matriz $\begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$ no está en $W$, así que $\dim W\leq 5$.

Las matrices $\begin{pmatrix} 1 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1\\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$ son linealmente independientes y están en $W$, así que $\dim W\geq 5$, y junto con el párrafo anterior concluimos que $\dim W = 5$.

Finalmente, tomemos la forma lineal $$l\begin{pmatrix} a & b & c\\ d& e& f\end{pmatrix}=a+d-b-e.$$ Tenemos que una matriz está en el kernel de $l$ si y sólo si $a+d-b-e=0$, si y sólo si $a+d=b+e$, es decir, si y sólo si las entradas de la primer columna tienen la misma suma que las de la segunda. Así, $W=\ker l$.

$\square$

La proposición anterior nos permite dar una definición alternativa de hiperplano y hablar de hiperplanos linealmente independientes.

Definición 2. Sea $V$ un espacio vectorial. Un hiperplano es el kernel de una forma lineal $l\neq 0$ en $V^\ast$. Una familia de hiperplanos es linealmente independiente si sus formas lineales correspondientes son linealmente independientes en $V^\ast$.

Observa además que la definición anterior también sirve para espacios vectoriales de dimensión infinita, pues nunca hace referencia a la dimensión que debe tener un hiperplano.

Ejemplo. El conjunto de funciones continuas $f$ en el intervalo $[0,1]$ tales que $$\int_0^1 f(x) \, dx = 0$$ son un subespacio $W$ de $\mathcal{C}[0,1]$. Este subespacio es un hiperplano pues es el kernel de la forma lineal $I$ tal que $$I(f)=\int_0^1 f(x)\, dx.$$

$\square$

No mencionaremos más de espacios de dimensión infinita en esta entrada.

Escribiendo subespacios como intersección de hiperplanos

Ya podemos entender el teorema principal de esta entrada y demostrarlo. Lo enunciamos nuevamente por conveniencia.

Teorema 2. Sea $V$ un espacio vectorial de dimensión finita $n$.

  • Todo subespacio $W$ de $V$ de dimensión $m$ es la intersección de $n-m$ hiperplanos de $V$ linealmente independientes.
  • Toda intersección de $n-m$ hiperplanos de $V$ linealmente independientes es un subespacio vectorial de dimensión $m$.

Demostración. Tomemos un espacio vectorial $V$ de dimensión finita $n$ y un subespacio $W$ de dimensión $m$. Por el teorema de dualidad, la dimensión de $\dim W^\bot$ es $n-m$. Tomemos una base $B=\{l_1,l_2,\ldots,l_{n-m}\}$ de $W^\bot$. Por el corolario al teorema de dualidad, podemos expresar a $W$ como $$W=(W^\bot)^\bot=\{v\in V: l_1(v)=\ldots=l_{n-m}(v)=0\}.$$

Si definimos $L_i=\{v\in V: l_i(v)=0\}$, por la proposición de la sección anterior tenemos que cada $L_i$ es un hiperplano de $V$. Además, $$W=L_1\cap \ldots\cap L_{n-m}.$$ Como los $l_i$ son linealmente independientes, con esto logramos expresar a $W$ como intersección de $n-m$ hiperplanos linealmente independientes.

Probemos ahora la segunda parte de la proposición. Tomemos el conjunto $S=\{l_1,\ldots,l_{n-m}\}$ de formas linealmente independientes que definen a los hiperplanos. Un vector $v$ está en la intersección de todos estos hiperplanos si y sólo si $l_1(v)=\ldots=l_{n-m}(v)=0$, si y sólo si está en $S^\bot=\text{span}(S)^\bot$. Es decir, la intersección de los hiperplanos es precisamente el subespacio $\text{span}(S)^\bot$. Como $S$ es linealmente independiente, tenemos que $ \text{span}(S)$ es de dimensión $n-m$, de modo que por el teorema de dualidad, $\dim \text{span}(S)^\bot = n-(n-m)=m$. Esto muestra lo que queremos.

$\square$

Algunos problemas prácticos

Si tenemos un espacio $V$ de dimensión finita $n$, un subespacio $W$ de dimensión finita $m$ y queremos encontrar de manera práctica la expresión de $W$ como intersección de hiperplanos de $V$, podemos hacer el siguiente procedimiento:

  • Determinamos una base $l_1,\ldots,l_{n-m}$ para $W^\bot$ (la cual consiste de formas lineales de $V^\ast$). Esto lo podemos hacer con los pasos que mencionamos en la entrada anterior.
  • Definimos $L_i=\{v\in V: l_i(v)=0\}$.
  • Tendremos que $W$ es la intersección de los $L_i$.

Una última observación es que cada $L_i$ está definido por una ecuación lineal. Esto nos permite poner a cualquier subespacio como el conjunto solución a un sistema linela. Esto lo cual podemos ver de forma práctica de la siguiente manera:

  • Tomamos una base $e_1,\ldots,e_n$ de $V$.
  • Tomemos un vector $v=a_1e_1+\ldots+a_ne_n$ que queremos determinar si está en $W$. Para ello, debe estar en cada $L_i$.
  • Cada $L_i$ está definido mediante la ecuación $l_i(v)=0$ de modo que si $v$ está en $L_i$ sus coordenadas $a_1,\ldots,a_n$ en la base $e_1,\ldots,e_n$ deben satisfacer la ecuación lineal $$l_i(e_1)a_1+\ldots+l_i(e_n)a_n=0.$$
  • De esta forma, los vectores $v$ en $W$ son aquellos cuyas coordenadas en la base $e_1,\ldots, e_n$ satisfacen el sistema de ecuaciones obtenido de las ecuaciones lineales para cada $i$ del punto anterior.

Veremos algunos ejemplos de estos procedimientos en la siguiente entrada.

La receta anterior nos permite concluir la siguiente variante del teorema de esta entrada, escrito en términos de ecuaciones lineales.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B$ una base de $V$.

  • Un subespacio $W$ de dimensión $m$ se puede definir mediante un sistema de ecuaciones lineales independientes que deben satisfacer las coordenadas de los vectores de $W$ escritos en la base $B$.
  • Aquellos vectores cuyas coordenadas en la base $B$ satisfacen un sistema de ecuaciones lineales independientes homogéneo, forman un subespacio de $V$ de dimensión $n-m$.

La moraleja de esta entrada es que podemos pensar que los sistemas de ecuaciones, las intersecciones de hiperplanos y los subespacios de un espacio vectorial de dimensión finita son «prácticamente lo mismo».

Tarea moral

  • Considera el plano $P$ en $\mathbb{R}^3$ que pasa por el origen y por los vectores $(1,1,1)$, $(0,2,0)$. Encuentra reales $a,b,c$ tales que $$P=\{(x,y,z): ax+by+cz = 0 \}.$$
  • En todos los ejemplos en los que se menciona que algo es subespacio, verifica que en efecto lo sea. En los que se menciona que un conjunto es base, también verifica esto.
  • Encuentra una base para el espacio de polinomios $p$ en $M_n(\mathbb{C})$ tales que $\text{ev}(1)(p)=0$.
  • Sea $W$ el subconjunto de matrices de $V:=M_n(\mathbb{R})$ tal que la sumas de las entradas de todas las filas son iguales. Muestra que $W$ es un subespacio de $V$. Determina la dimensión de $W$ y exprésalo como intersección de hiperplanos linealmente independientes.
  • ¿Qué sucede cuando intersectas hiperplanos que no corresponden a formas linealmente independientes? Más concretamente, supongamos que tienes formas lineales $l_1,\ldots,l_m$ de $F^n$. Toma $B=\{e_1,\ldots,e_n\}$ la base canónica de $F^n$. Considera la matriz $A=[l_i(e_j)]$. ¿Qué puedes decir de la dimensión de la intersección de los hiperplanos correspondientes a los $l_i$ en términos del rango de la matriz $A$?

Más adelante…

A lo largo de esta entrada enunciamos las definiciones necesarias para llegar al teorema que mencionamos al inicio: para un espacio vectorial de dimension finita $n$, todos los subespacios se pueden obtener a partir de intersectar hiperplanos, es decir, subespacios de dimensión $n-1$.

En la siguiente entrada utilizaremos este resultado para resolver algunos ejercicios y veremos en acción este importante teorema.

Entradas relacionadas