Archivo de la etiqueta: intersección

Teoría de los Conjuntos I: Propiedades del producto cartesiano (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta entrada veremos otras de las propiedades del producto cartesiano. Estas propiedades hacen referencia al comportamiento del producto cartesiano con respecto a las operaciones que definimos antes: unión, intersección, diferencia y diferencia simétrica.

Producto cartesiano y unión

Las siguientes dos proposiciones verifican que el producto cartesiano se distribuye sobre la unión.

Proposición. Para $A,B,C$ conjuntos se cumple que $(A\cup B)\times C=(A\times C)\cup (B\times C)$.

Demostración.

Se tiene que $(x,y)\in (A\cup B)\times C$
si y sólo si $x\in A\cup B$ y $y\in C$
si y sólo si $(x\in A$ o $x\in B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ o $(x\in B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ o $(x,y)\in B\times C$
si y sólo si $(x, y)\in (A\times C)\cup (B\times C)$.

$\square$

Proposición. Para $A,B,C$ conjuntos se cumple que $A\times (B\cup C)=(A\times B)\cup (A\times C)$.

Demostración.

Se tiene que $(x,y)\in A\times (B\cup C)$
si y sólo si $x\in A$ y $y\in B\cup C$
si y sólo si $x\in A$ y $(y\in B$ o $y\in C)$
si y sólo si $(x\in A$ y $y\in B)$ o $(x\in A$ y $y\in C)$
si y sólo si $(x,y)\in A\times B$ o $(x,y)\in A\times C$
si y sólo si $(x, y)\in (A\times B)\cup (A\times C)$.

$\square$

Proposición. Para cualesquiera $A, B, C, D$ conjuntos no vacíos ocurre que $(A\times C)\cup (B\times D)\subseteq (A\cup B)\times (C\cup D)$.

Demostración.

Sean $A, B, C, D$ conjuntos no vacíos. Tomemos $(x,y)\in (A\times C)\cup (B\times D)$ arbitrario, entonces $(x,y)\in A\times C$ o $(x,y)\in B\times D$.

Si $(x, y)\in A\times C$, entonces $x\in A$ y $y\in C$. Luego, como $A\subseteq A\cup B$ y $C\subseteq C\cup D$ se sigue que $x\in A\cup B$ y $y\in C\cup D$. Así, $(x,y)\in (A\cup B)\times (C\cup D)$.

Si $(x, y)\in B\times D$, entonces $x\in B$ y $y\in D$. Luego, como $B\subseteq A\cup B$ y $D\subseteq C\cup D$ se sigue que $x\in A\cup B$ y $y\in C\cup D$. Así, $(x,y)\in (A\cup B)\times (C\cup D)$.

$\square$

Producto cartesiano e intersección

Con la siguientes dos demostraciones podremos ver que el producto cartesiano se distribuye sobre la intersección.

Proposición. Para $A,B,C$ conjuntos se cumple que $(A\cap B)\times C=(A\times C)\cap (B\times C)$.

Demostración.

Se tiene que $(x,y)\in (A\cap B)\times C$
si y sólo si $x\in A\cap B$ y $y\in C$
si y sólo si $(x\in A$ y $x\in B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\in B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\in B\times C$
si y sólo si $(x, y)\in (A\times C)\cap (B\times C)$.

$\square$

Proposición. Para $A,B,C$ conjuntos se cumple que $A\times (B\cap C)=(A\times B)\cap (A\times C)$.

Demostración.

Se tiene que $(x,y)\in A\times (B\cap C)$
si y sólo si $x\in A$ y $y\in B\cap C$
si y sólo si $x\in A$ y $(y\in B$ y $y\in C)$
si y sólo si $(x\in A$ y $y\in B)$ y $(x\in A$ y $y\in C)$
si y sólo si $(x,y)\in A\times B$ y $(x,y)\in A\times C$
si y sólo si $(x, y)\in (A\times B)\cap (A\times C)$.

$\square$

Proposición. Para cualesquiera $A, B, C, D$ conjuntos no vacíos ocurre que $(A\times C)\cap (B\times D)= (A\cap B)\times (C\cap D)$.

Demostración.

Sean $A, B, C, D$ conjuntos no vacíos. Tenemos que:
$(x,y)\in (A\times C)\cap (B\times D)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\in B\times D$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\in B$ y $y\in D)$
si y sólo si $(x\in A$ y $x\in B)$ y $(y\in C$ y $y\in D)$
si y sólo si $x\in A\cap B$ y $y\in C\times D$
si y sólo si $(x,y)\in (A\cap B)\times (C\cap D)$.

$\square$

Producto cartesiano y diferencia

Con los siguientes resultados probamos que el producto cartesiano se distribuye sobre la diferencia.

Proposición. Sean $A, B, C$ conjuntos no vacíos. Se tiene que $A\times (B\setminus C)= (A\times B)\setminus (A\times C)$.

Demostración.

Se tiene que $(x,y)\in A\times (B\setminus C)$
si y sólo si $x\in A$ y $y\in B\setminus C$
si y sólo si $x\in A$ y ($y\in B$ y $y\notin C$)
si y sólo si $(x\in A$ y $y\in B)$ y $(x\in A$ y $y\notin C)$
si y sólo si $(x,y)\in A\times B$ y $(x,y)\notin A\times C$
si y sólo si $(x,y)\in (A\times B)\setminus (A\times C)$.

$\square$

Proposición. Para $A,B,C$ conjuntos se cumple que $(A\setminus B)\times C=(A\times C)\setminus (B\times C)$.

Demostración.

Se tiene que $(x,y)\in (A\setminus B)\times C$
si y sólo si $x\in A\setminus B$ y $y\in C$
si y sólo si $(x\in A$ y $x\notin B)$ y $y\in C$
si y sólo si $(x\in A$ y $y\in C)$ y $(x\notin B$ y $y\in C)$
si y sólo si $(x,y)\in A\times C$ y $(x,y)\notin B\times C$
si y sólo si $(x, y)\in (A\times C)\setminus (B\times C)$.

$\square$

Producto cartesiano y diferencia simétrica

La siguiente proposición demuestra que el producto cartesiano distribuye a la diferencia simétrica. Como ya demostramos propiedades de cómo interactúa el producto cartesiano con la unión, intersección y diferencia, podremos dar una demostración muy breve usando álgebra de conjuntos.

Proposición. Sean $A, B, C$ conjuntos. Se tiene que $A\times (B\triangle C)= (A\times B)\triangle (A\times C)$.

Demostración. Procedemos por álgebra de conjuntos:

\begin{align*}
A\times (B\triangle C) &= A\times ((B\cup C)\setminus (B\cap C))\\
&=(A\times (B\cup C))\setminus (A\times (B\cap C))\\
&=((A\times B)\cup (A\times C))\setminus (A\times (B\cap C))\\
&=((A\times B)\cup (A\times C) \setminus ((A\times B)\cap (A\times C))\\
&=(A\times B)\triangle (A\times C).
\end{align*}

$\square$

Tarea moral

Los siguientes ejercicios te permitirán aprender otras propiedades del producto cartesiano:

  • Muestra que no siempre se da la igualdad $(A\times C)\cup (B\times D)= (A\cup B)\times (C\cup D)$.
  • Demuestra que $(A\cup B)\times (C\cup D)=(A\times C)\cup (B\times D)\cup (A\times D)\cup (B\times C)$.
  • Muestra que $(X\times Y)\setminus (B\times C)=((X\setminus B)\times Y)\cup(X\times (Y\setminus C))$.
  • Demuestra que $(A\triangle B)\times C=(A\times C)\triangle (B\times C)$.

Más adelante…

En la siguiente entrada definiremos qué es una relación. Para ello utilizaremos el concepto de producto cartesiano y pareja ordenada. Resultará que una relación es un subconjunto de un producto cartesiano, por lo que es importante que comprendas bien el concepto de producto cartesiano que hemos visto en las últimas dos entradas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Álgebra de conjuntos

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada abordaremos a las operaciones entre conjuntos desde una perspectiva diferente: el álgebra. Veremos que existe otra forma de probar la igualdad entre conjuntos sin necesidad de usar la demostración por doble contención.

Algunos recordatorios

En el álgebra de conjuntos lo que se hace es primero probar algunas propiedades fundamentales de las operaciones de conjuntos, y usar estas propiedades repetidamente para demostrar otras, aprovechando que la igualdad de conjuntos es transitiva. Es por ello que nos conviene recopilar varias propiedades de las operaciones que tenemos hasta ahora.

Sean $A$, $B$, $C$ y $X$ conjuntos tales que $A, B,C\subseteq X$. Entonces:

  1. $A\cup \emptyset=A$,
  2. $A\cup A=A$,
  3. $A\cup B=B\cup A$,
  4. $(A\cup B)\cup C = A \cup (B\cup C)$,
  5. $A\cap \emptyset =\emptyset$,
  6. $A\cap A=A$,
  7. $A\cap B = B\cap A$,
  8. $(A\cap B)\cap C =A \cap (B\cap C)$,
  9. $A\cap (B\cup C)= (A\cap B)\cup (A\cap C)$,
  10. $A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$,
  11. $A\setminus \emptyset=A$,
  12. $A\setminus A=\emptyset$,
  13. $A\setminus B= A\cap (X\setminus B)$,
  14. $A\cap (X\setminus A)=\emptyset$,
  15. $A\cup (X\setminus A)=X$,
  16. $X\setminus (A\cap B)= (X\setminus A)\cup (X\setminus B)$,
  17. $X\setminus (A\cup B)= (X\setminus A)\cap (X\setminus B)$,
  18. $X\setminus (X\setminus A)= A$,
  19. Si $A\subseteq B$, entonces $A\cap B=A$.

Hay otras propiedades que ya hemos demostrado, pero no las pusimos aquí. Podríamos ponerlas para ir recopilando más cosas que sabemos que son válidas.

Demostraciones con álgebra de conjuntos

Ahora veremos algunos ejemplos de cómo se trabaja con álgebra de conjuntos. En varias de las siguientes proposiciones enunciamos resultados para cuando $A$ y $B$ son subconjuntos de un conjunto en común $X$. Toma en cuenta que para $A$ y $B$ arbitrarios, siempre podemos tomar $X=A\cup B$.

Proposición. Sean $A, B\subseteq X$ conjuntos. Prueba que $A\setminus B= A\setminus (A\cap B)$.

Demostración.

\begin{align*}
A\setminus (A\cap B)&= A\cap (X\setminus (A\cap B)) \tag{usando 13}\\
&=A\cap((X\setminus A)\cup(X\setminus B)) \tag{usando 16} \\
&=(A\cap (X\setminus A))\cup (A\cap (X\setminus B)) \tag{usando 9} \\
&=\emptyset\cup (A\cap (X\setminus B)) \tag{usando 14} \\
&=A\cap (X\setminus B) \tag{usando 1 y 3} \\
&=A\setminus B \tag{usando 13}.
\end{align*}

$\square$

Proposición. Sean $A$, $B\subseteq X$ son conjuntos, entonces $A\setminus B= (A\cup B)\setminus B$.

Demostración.

\begin{align*}
(A\cup B)\setminus B &= (A\cup B)\cap (X\setminus B) \tag{usando 13}\\
&= (A\cap (X\setminus B))\cup (B\cap (X\setminus B)) \tag{usando 9}\\
&= (A\cap (X\setminus B))\cup \emptyset \tag{usando 14}\\
&=A\cap (X\setminus B) \tag{usando 1}\\
&=A\setminus B \tag{usando 13}.
\end{align*}

$\square$

Proposición. Para $A$, $B$, $X$ conjuntos tales que $A, B\subseteq X$, $(A\cap B)\cup (A\setminus B)= A$.

Demostración.

\begin{align*}
(A\cap B)\cup (A\setminus B)&= (A\cap B)\cup (A\cap (X\setminus B)) \tag{usando 13}\\
&=A\cap (B\cup (X\setminus B)) \tag{usando 9}\\
&=A\cap X \tag{usando 15}\\
&=A \tag{usando 14}.
\end{align*}

$\square$

Proposición. $A\cap (B\setminus C)=(A\cap B)\setminus C$.

Demostración.

\begin{align*}
(A\cap B)\setminus C &=(A\cap B)\cap (X\setminus C) \tag{usando 13}\\
&=A\cap (B\cap X\setminus C) \tag{usando 8}\\
&= A\cap (B\setminus C) \tag{usando 13}.
\end{align*}

$\square$

Proposición. $(A\cap B)\setminus C=(A\setminus C)\cap (B\setminus C)$.

Demostración.

\begin{align*}
(A\cap B)\setminus C&= (A\cap B)\cap (X\setminus C) \tag{usando 13}\\
&=(A\cap X\setminus C)\cap (B\cap X\setminus C) \tag{usando 6 ,7 y 8}\\
&= (A\setminus C)\cap (B\setminus C) \tag{usando 13}.
\end{align*}

$\square$

Proposición. $(A\cup B)\setminus C=(A\setminus C)\cup (B\setminus C)$.

Demostración.

\begin{align*}
(A\cup B)\setminus C&= (A\cup B)\cap (X\setminus C) \tag{usando 13}\\
&=(A\cap X\setminus C)\cup (B\cap X\setminus C) \tag{usando 9}\\
&= (A\setminus C)\cup (B\setminus C) \tag{usando 13}.
\end{align*}

$\square$

Proposición. $(A\setminus B)\setminus C=(A\setminus C)\setminus (B\setminus C)$.

Demostración.

\begin{align*}
(A\setminus C)\setminus (B\setminus C)&= (A\setminus C)\cap (X\setminus (B\setminus C)) \tag{usando 13}\\
&=(A\setminus C)\cap (X\setminus (B\cap (X\setminus C)) \tag{usando 13}\\
&=(A\setminus C)\cap ((X\setminus B)\cup (X\setminus (X\setminus C))) \tag{usando 16}\\
&=(A\setminus C)\cap ((X\setminus B)\cup C) \tag{usando 18}\\
&=(A\setminus C\cap (X\setminus B))\cup ((A\setminus C)\cap C) \tag{usando 9}\\
&=((A\cap(X\setminus C))\cap (X\setminus B))\cup ((A\cap(X\setminus C))\cap C) \tag{usando 13}\\
&=((A\cap(X\setminus B))\cap (X\setminus C))\cup (A\cap((X\setminus C)\cap C)) \tag{usando 8}\\
&=((A\cap(X\setminus B))\cap (X\setminus C))\cup (A\cap\emptyset) \tag{usando 14}\\
&=((A\setminus B)\setminus C)\cup \emptyset \tag{usando 13 y 5}\\
&=(A\setminus B)\setminus C \tag{usando 1}.
\end{align*}

$\square$

Proposición. Sean $A$, $B$, $C$ subconjuntos de $X$. Tenemos que $A\setminus (B\setminus C)=(A\setminus B)\cup (A\cap C)$.

Demostración.

\begin{align*}
A\setminus (B\setminus C)&= A\cap (X\setminus (B\setminus C)) \tag{usando 13}\\
&=A\cap (X\setminus (B\cap (X\setminus C))) \tag{usando 13}\\
&=A\cap((X\setminus B)\cup (X\setminus(X\setminus C))) \tag{usando 16}\\
&=A\cap((X\setminus B)\cup C) \tag{usando 18}\\
&=(A\cap (X\setminus B))\cup (A\cap C) \tag{usando 9}\\
&=(A\setminus B)\cup (A\cap C) \tag{usando 13}.
\end{align*}

$\square$

Tras realizar estas demostraciones es importante notar que muchas veces hacer el uso del álgebra nos ayuda a ahorrar tiempo. Sin embargo, para poder lograr esto es necesario utilizar muchas de las propiedades que sí hemos demostrado previamente por doble contención.

Tarea moral

Realiza las siguientes demostraciones haciendo uso del álgebra de conjuntos:

  • Prueba que para $A, B, C, X$ conjuntos tales que $A, B, C\subseteq X$ se cumple que: $(A\setminus B)\setminus (A\setminus C)= (A\cap C)\setminus B$.
  • Prueba que $(A\setminus B)\setminus (A\setminus C)=A\cap (C\setminus B)$.
  • Si $A, B\subseteq X$, entonces $(X\setminus A)\setminus (X\setminus B)=B\setminus A$.
  • Sean $A$ y $B$ conjuntos. Entonces $A\setminus (B\cap C)=(A\setminus B)\cap (A\setminus C)$.

Más adelante…

En la siguiente entrada definiremos una nueva operación entre conjuntos: la diferencia simétrica. Retomaremos los resultados que hemos visto hasta ahora y seguiremos haciendo uso del álgebra de conjuntos para demostrar algunas propiedades de esta nueva operación.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: El axioma de buena fundación

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca del axioma de buena fundación. Este axioma nos permitirá decir cuándo un conjunto esta bien fundado, es decir, bien construido. Además daremos otro argumento para probar que la colección de todos los conjuntos no es un conjunto.

Acerca del axioma

Axioma de buena fundación. Para cualquier conjunto $X$ no vacío, existe $u\in X$ tal que $u\cap X=\emptyset$.

En los siguiente ejemplos no será necesario invocar al axioma de buena fundación pues tendremos a todos sus elementos escritos de manera explícita. Sin embargo, ayudarán a entender qué es lo que el axioma de buena fundación siempre garantiza que existe.

Ejemplos.

  • Sea $A=\set{\emptyset}$, el único elemento que tiene $A$ es $\emptyset$ y en efecto, $A\cap \emptyset=\emptyset$. Esto último ocurre pues no existe ningún conjunto $x$ tal que $x\in \set{\emptyset}$ y $x\in \emptyset$.
  • Consideremos al conjunto $B=\set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}$. Veamos que existe $u\in B$ tal que $u\cap B=\emptyset$. Dado que $B$ es un conjunto pequeño podemos explorar qué ocurre con cada uno de sus elementos:
    – Para $\emptyset\in B$ tenemos que $\emptyset\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\emptyset$.
    – Ahora, para $\set{\emptyset}\in B$ ocurre que $\set{\emptyset}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\emptyset}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
    – Si consideramos $\set{\set{\emptyset}}\in B$ ocurre que $\set{\set{\emptyset}}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\set{\emptyset}}$ tampoco funciona.
    Por lo tanto, existe $u=\emptyset\in B$ tal que $u$ y $B$ no tienen elementos en común. Por el análisis de casos, este $u$ es único.
  • Tomemos $C=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$. Haciendo un análisis de los elementos del conjunto $C$ tenemos lo siguiente:
    – Para $\set{\emptyset}\in C$ tenemos que $\set{\emptyset}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}=\emptyset$ pues $\emptyset\in\set{\emptyset}$ pero $\emptyset\notin \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$.
    – Ahora, para $\set{\emptyset,\set{\emptyset}}\in C$ ocurre que $\set{\emptyset,\set{\emptyset}}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}= \set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
    Por lo tanto, existe $u=\emptyset\in C$ tal que $u$ y $C$ no tienen elementos en común. Una vez más, este elemento es único.

$\square$

Conjuntos que no existen

El axioma de buena fundación juega un papel importante para decir qué conjuntos no pueden existir. Veamos los siguientes resultados:

Teorema. Para cualquier conjunto $x$, no es cierto que $x\in x$. Es decir, ningún conjunto puede pertenecer a sí mismo.

Demostración.
Supongamos que sí existe un conjunto $x$ tal que $x\in x$. Luego, $\set{x}$ es un conjunto por el axioma de par y es tal que $x\in \set{x}$.
De lo anterior, tenemos que $x\cap \set{x}\not=\emptyset$ pues $x\in x\cap\set{x}$. Esto último contradice al axioma de buena fundación, pues $x$ podría ser el único elemento en $\{x\}$ dado por dicho axioma. Dado que la contradicción vino de suponer que existe $x$ tal que $x\in x$, resulta que no existe un conjunto que haga tal cosa.

$\square$

Teorema. Sean $a$ y $b$ conjuntos no vacíos. No existen ciclos de la forma $a\in b\in a$.

Demostración.
Supongamos que sí existe algún ciclo de la forma $a\in b\in a$. Luego, por el axioma de par podemos considerar al conjunto $\set{a,b}$. Dado que $\set{a,b}$ es un conjunto pequeño podemos analizar qué pasa con cada uno de sus elementos:
– Para $a\in\set{a,b}$ tenemos que $a\cap\set{a,b}\not=\emptyset$ pues $b\in a$ y $b\in \set{a,b}$,
– Si tomamos a $b\in\set{a,b}$ tenemos que $b\cap\set{a,b}\not=\emptyset$ pues $a\in b$ y $a\in \set{a,b}$.

Sin embargo, en todas las posibilidades obtenemos una contradicción al axioma de buena fundación. Así, no existen ciclos de la forma $a\in b\in a$.

$\square$

Diferencias entre la pertencia y contención

Vistos estos teoremas, nos tomaremos el tiempo para establecer las diferencias que hay entre la contención y la pertenencia.

Por un lado, $a\subseteq a$ siempre ocurre para cualquier conjunto $a$, mientras que $a\in a$ ya vimos que es imposible.

Vimos que la contención es transitiva (ver Teoría de los Conjuntos I: Axioma de conjunto potencia), es decir, si $a\subseteq b$ y $b\subseteq c$, entonces $a\subseteq c$. Resulta que si $a\in b$ y $b\in c$, entonces $a\in c$ no siempre ocurre, es decir, la pertenencia no es transitiva.

Ejemplo.

Consideremos $a=\set{\emptyset}$,$b= \set{\set{\emptyset}}$ y $c=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $a\in b$ y $b\in c$, sin embargo, $a\notin c$.

$\square$

La colección de todos los conjuntos

Anteriormente, probamos con ayuda de la paradoja de Rusell que la colección que tiene como elementos a todos los conjuntos no es un conjunto. En esta sección, reforzaremos esta afirmación utilizando el axioma de buena fundación para demostrar una vez más que está colección no es un conjunto.

Proposición. Para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

Demostración.

Supongamos que $\mathcal{P}(x)\subseteq x$, entonces para cualquier $y\in \mathcal{P}(x)$, $y\in x$. Dado que $x\subseteq x$, entonces $x\in \mathcal{P}(x)$. Así, $x\in x$ y lo cual contradice el primer teorema de la sección anterior. Por lo tanto, para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.

$\square$

Teorema. La colección de todos los conjuntos no es conjunto.

Demostración.

Supongamos que sí existe. Sea $V$ el conjunto de todos los conjuntos. Por axioma de conjunto potencia tenemos que $\mathcal{P}(V)$ es un conjunto y es tal que $\mathcal{P}(V)\not\subseteq V$. Así, existe $x\in \mathcal{P}(V)$ tal que $x\notin V$ lo que contradice que $V$ tiene a todos los conjuntos.

Por lo tanto, el conjunto de todos los conjuntos no existe.

$\square$

La intersección del conjunto vacío

Así como existen diversas formas de escribir al conjunto vacío, también hay varias formas de escribir a la colección de todos los conjuntos. Resulta que si queremos intersecar al conjunto vacío no obtenemos al vacío, sino que obtenemos a la colección de todos los conjuntos.

Afirmación. $\bigcap \emptyset$ no es un conjunto.

Demostración. Supongamos que $\bigcap\emptyset$ sí es un conjunto. Sea $x\in \bigcap\emptyset$, entonces para cualquier $y$ tal que $y\in \emptyset$ implica que $x\in y$. Sin embargo, $y\in \emptyset$ es falso para cualquier conjunto $y$ y por lo tanto, para cualquier $y$ tal que $y\in \emptyset$ implica que $x\in y$ es verdadero. (Ver tabla de verdad del conectivo implicación: Teoría de los Conjuntos I: Repaso sobre lenguaje de la Teoría de los Conjuntos)

Esto significa que cualquier conjunto que demos va a pertenecer a $\bigcap \emptyset$, es decir, este conjunto tiene como elementos a todos los conjuntos. Esto, como vimos arriba, es imposible.

$\square$

Tarea moral

  • Prueba que para $A_0,A_1, A_2,\cdots A_n$ conjuntos, el ciclo $A_0\in A_1\in A_2\in\cdots\in A_n\in A_0$ no existe (Estrictamente hablando, esta demostración requerirá que formalicemos estos «puntos suspensivos». De cualquier forma, intenta dar una demostración inductiva con lo que sabes de este tipo de demostraciones.)
  • Sea $A=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in A$ tal que $u\cap A=\emptyset$.
  • Sea $B=\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in B$ tal que $u\cap B=\emptyset$.
  • Da otro ejemplo de una propiedad que describa a la clase de todos los conjuntos.
  • Prueba que para cualquier conjunto $X$, se tiene que $X\cap \emptyset=\emptyset$.

Más adelante…

En la siguiente entrada hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Así mismo veremos cómo dichos axiomas junto con el esquema de comprensión implican los axiomas que hemos visto hasta ahora. De modo que la siguiente entrada nos servirá para hacer un recordatorio sobre todo lo que hemos visto hasta este momento.

Entradas relacionadas


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Operaciones entre conjuntos

Por Gabriela Hernández Aguilar

Introducción

A continuación definiremos algunas de las operaciones que hay entre conjuntos como lo son la unión, intersección y diferencia. Retomaremos algunos axiomas como el de unión y el esquema de comprensión, para ver que estas operaciones definen nuevos conjuntos.

Unión

Recordemos la definición de la unión de dos conjuntos.

Definición. Si $A$ y $B$ son conjuntos, entonces definimos la unión de $A$ y $B$ como:


$A\cup B=\bigcup\set{A,B}$

o bien,

$A\cup B= \set{x: x\in A\ o\ x\in B}$.

Ejemplos.

  1. Consideremos los conjuntos $A= \set{\emptyset}$ y $B= \set{\emptyset, \set{\emptyset}}$. Luego, $A\cup B=\bigcup\set{A,B} = \bigcup\set{\emptyset, \set{\emptyset, \set{\emptyset}}}=\set{\emptyset,\set{\emptyset}}=B$.
  2. Ahora, consideremos $A=\set{\set{\emptyset}}$ y $B=\set{\set{\set{\emptyset}}}$. Tendremos que $A\cup B=\set{\set{\emptyset}}\cup \set{\set{\set{\emptyset}}}=\set{\set{\emptyset},\set{\set{\emptyset}}}$.

$\square$

Propiedades de la unión

Proposición. Para cualquier conjunto $A$ se tiene que $A\subseteq A\cup B$. Además, $A\cup B= B\cup A$.

Demostración.
Primero veamos que $A\subseteq A\cup B$. Supongamos que $x\in A$, entonces existe $A\in \set{A, B}$ tal que $x\in A$. Esto es, por definición de unión que $x\in \bigcup \set{A,B}=A\cup B$.

La unión es conmutativa

Para ver que $A\cup B=B\cup A$, notemos que $A\cup B=\bigcup\set{A,B}$ y $B\cup A=\bigcup \set{B, A}$. Sabemos que $\set{A, B}=\set{B, A}$ por axioma de extensión. Así, $A\cup B=B\cup A$.

$\square$

Intersección

Definición. Sean $A$ y $B$ conjuntos. La intersección de dos conjuntos estará definida como sigue:

$A\cap B=\set{x: x\in A\land x\in B}$.

La intersección de dos conjuntos nos permite obtener un conjunto cuyos elementos son aquellos que se encuentran en ambos conjuntos. En la imagen que proporcionamos arriba podemos ver que la intersección nos deja solamente a la manzana y la pera, pues están en ambos conjuntos y descarta al plátano y la naranja pues solo viven en el primer conjunto. Lo mismo hace con la fresa y la sandía que solo viven en el segundo conjunto.

Proposición. Se tiene que $A\cap B$ es un conjunto.

Demostración. Sean $A$ y $B$ conjuntos.

Definamos la propiedad $P(x): x\in B$. Por el esquema de comprensión se tiene que

$\set{x\in A:x\in B}$

es un conjunto.

Luego, $\set{x\in A:x\in B}=A\cap B$. En efecto, $z\in A\cap B$ si y sólo si $z\in A$ y $z\in B$ si y sólo si $z\in \set{x\in A:x\in B}$.

Por lo tanto, $A\cap B$ es conjunto.

$\square$

Ejemplos.

  1. Consideremos $A=\set{\emptyset}$ y $B=\set{\set{\emptyset}}$, tenemos que $A\cap B=\emptyset$ esto último debido a que no existe ningún elemento $x$ tal que $x\in \set{\emptyset}$ y $x\in\set{\set{\emptyset}}$ al mismo tiempo. De ocurrir, tendriamos que $x=\emptyset$ y $x=\set{\emptyset}$ y por lo tanto, $\emptyset=\set{\emptyset}$ lo cual sabemos que no ocurre. Por lo tanto, $A\cap B=\emptyset$.
  2. Sean $A=\set{\emptyset,\set{\emptyset}}$ y $B=\set{\emptyset}$ conjuntos. Notemos que en este ejemplo el único elemento que está tanto en el conjunto $A$ como en el conjunto $B$ es $x=\emptyset$. De este modo, $A\cap B=\set{\emptyset}$.

$\square$

También podemos definir intersecciones arbitrarias, no sólo de dos conjuntos.

Definición. Sea $A$ un conjunto no vacío, definimos a la intersección de $A$ como la colección:

$\set{x: \forall y\in A(x\in y)}$.

Ejemplo.

Sea $A=\set{\set{\emptyset}, \set{\set{\emptyset}}, \set{\emptyset, \set{\emptyset}}}$, tenemos que la intersección de $A$ es $\emptyset$. En efecto, esto pasa ya que no existe ningún elemento $x$ que pertenezca a todos los elementos de $A$.

$\square$

El hecho de que la unión arbitraria es conjunto es resultado del axioma de la unión. No hay un axioma de la intersección, por lo que demostraremos que la intersección de un conjunto $A$ es un conjunto, siempre que $A$ no sea vacío.

Proposición. Para todo $A\not=\emptyset$, la intersección de $A$ es un conjunto.

Demostración:

Sea $A$ conjunto no vacío, entonces $A$ tiene al menos un elemento. Sea $z\in A$, tenemos que $\set{x\in z: \forall y\in A(x\in y)}$ es conjunto por esquema de comprensión.

Resulta que $a\in \set{x\in z: \forall y\in A(x\in y)}$ si y sólo si $a\in y$ para todo $y\in A$. En efecto, si $a\in \set{x\in z: \forall y\in A(x\in y)}$, entonces $a\in z$ y $\forall y\in A$, $a\in y$. Entonces $a\in y$ para todo $y\in A$.

Ahora, si $a\in y$ para todo $y\in A$, en particular $a\in z$ pues $z\in A$. Por tanto, $a\in \set{x\in z: \forall y\in A(x\in y)}$.

$\square$

Si observamos, para realizar la demostración anterior usamos el hecho de que $A\not=\emptyset$, por lo que podríamos preguntarnos qué pasa si $A$ es vacío. Veremos esto con detalle en la siguiente entrada.

Ahora que hemos probado que la intersección de $A$ es un conjunto cuando $A$ es no vacío, le asignaremos una notación la cual estará dada por $\bigcap A$.

Propiedades de la intersección

Teorema. Para cualesquiera $A$, $B$ conjuntos, tenemos que:

  1. $A\cap B\subseteq A$,
  2. $A\cap A=A$,
  3. $A\cap B=B\cap A$.

Demostración.

  1. Sea $x\in A\cap B$. Veamos que $x\in A$.
    Como $x\in A\cap B$ tenemos por definición de intersección que $x\in A$ y $x\in B$. En particular, $x\in A$. Por lo tanto, $A\cap B\subseteq A$.
  2. Tomemos $x\in A\cap A$. Veamos que $x\in A$.
    Que $x\in A\cap A$ es equivalente a decir que $x\in A$ y $x\in A$, lo cual pasa si y sólo si $x\in A$. Por lo tanto, $A\cap A=A$.
  3. $A\cap B=B\cap A$ pues $x\in A\cap B$ arbitrario si y sólo si $x\in A$ y $x\in B$, si y sólo si $x\in B$ y $x\in A$, si y sólo si $x\in B\cap A$.

$\square$

Diferencia

Definición. Sean $A$ y $B$ conjuntos. La diferencia de $A$ con $B$ estará definida como sigue:

$A\setminus B=\set{x\in A: x\notin B}$.

Por esquema de comprensión $A\setminus B$ es conjunto.

La diferencia entre dos conjuntos nos permite obtener un conjunto cuyos elementos se encuentra en el primero pero no el segundo conjunto. En la imagen anterior podemos ver que la diferencia nos deja solamente al plátano y la naranja, pues el plátano y la naranja se encuentran en el primer conjunto, pero no en el segundo. La manzana y la pera no forma parte del conjunto final pues vive en ambos conjuntos. La fresa no es elemento de la diferencia pues ni siquiera es elemento del primer conjunto.

Ejemplos.

  1. Consideremos $A=\set{\emptyset}$ y $B=\set{\set{\emptyset}}$, tenemos que $A\setminus B=\set{\emptyset}$ pues el único elemento que cumple estar en $A$ y no pertenecer al conjunto $B$ es $\emptyset$.
  2. Sea $A=\set{\emptyset, \set{\emptyset}}$ y $B=\set{\emptyset}$. Luego,
    $A\setminus B=\set{x\in A:x\notin B}=\set{x\in \set{\emptyset, \set{\emptyset}}: x\notin\set{\emptyset}}= \{\set{\emptyset}\}$.

Propiedades de la diferencia

Teorema. Para cualesquiera $A$, $B$ conjuntos, tenemos que:

  1. $A\setminus \emptyset= A$,
  2. $A\setminus A=\emptyset$,
  3. $A\setminus B=A\setminus (A \cap B)$.

Demostración.

  1. Sea $x\in A\setminus \emptyset$. Entonces $x\in A$ y $x\notin \emptyset$. En particular $x\in A$, por lo tanto $A\setminus \emptyset\subseteq A$.
    Luego, supongamos que $x\in A$. Como $x\notin \emptyset$ es verdadero para cualquier conjunto $x$, tenemos que $x\in A$ y $x\notin \emptyset$ es verdadero. Por lo tanto, $x\in A\setminus \emptyset$ y así $A\subseteq A\setminus \emptyset$.
    De lo anterior tenemos que $A=A\setminus \emptyset$.
  2. Supongamos que $A\setminus A\not=\emptyset$, es decir, existe al menos un elemento $x\in A\setminus A$. Entonces $x\in A$ y $x\notin A$, lo cual no puede ocurrir. Dado que la contradicción provino de suponer que $A\setminus A\not=\emptyset$, concluimos que $A\setminus A=\emptyset$.
  3. Veamos que $A\setminus B=A\setminus (A \cap B)$.
    $\subseteq$] Sea $x\in A\setminus B$, entonces $x\in A$ y $x\notin B$. Luego, como $x\notin B$ entonces $x\notin A$ o $x\notin B$ es verdadero. Lo que equivale a decir que $x\notin (A\cap B)$. Por lo tanto, $x\in A$ y $x\notin (A \cap B)$ y así, $A\setminus B\subseteq A\setminus(A\cap B)$.
    $\supseteq$] Sea $x\in A\setminus (A\cap B)$, entonces $x\in A$ y $x\notin (A\cap B)$. Lo que equivale a decir que $x\in A$ y ($x\notin A$ o $x\notin B$). Dado que $x\notin A$ no puede ocurrir pues $x\in A$, entonces $x\notin B$. Por lo tanto, $x\in A$ y $x\notin B$ y así, $A\setminus(A\cap B)\subseteq A\setminus B$.
    Por lo tanto, $A\setminus(A\cap B)= A\setminus B$.

$\square$

Tarea moral

Los siguientes ejercicios te servirán para poner en práctica los conocimientos que has adquirido en este sección, en la siguiente lista podrás probar las siguientes propiedades de la unión, intersección y diferencia de conjuntos:

Prueba que para cualesquiera $A$, $B$ y $C$ conjuntos, $A\cup(B\cup C)=(A\cup B)\cup C$.

$A\cap (B\cap C)= (A\cap B)\cap C$.

Prueba que para cualesquiera $A$, $B$ y $C$ conjuntos:
– $A\cup (B\cap C)= (A\cup B)\cap(A\cup C)$,
– $A\cap (B\cup C)= (A\cap B)\cup(A\cap C)$.

Si $A\subseteq C$ y $B\subseteq C$ entonces $A\cap B\subseteq C\cap D$.

Demuestra que $A\setminus B=A$ si y sólo si $A\cap B=\emptyset$.

Demuestra a partir de los axiomas que en efecto si $A$ es un conjunto no vacío, entonces $\cap A$ es conjunto.

Más adelante…

En la siguiente entrada retomaremos la definición de intersección de conjuntos y mencionaremos el axioma de buena fundación. Además abordaremos el tema de la colección de todos los conjuntos apoyados de este último axioma. Finalmente, veremos que la intersección del conjunto vacío resulta ser la colección de todos los conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Propiedades del producto cartesiano

Por Guillermo Oswaldo Cota Martínez

Introducción

La vez pasada dimos la definición de parejas ordenadas y el producto cartesiano. Estas ideas tenían que ver con «relacionar» dos conjuntos mediante las parejas ordenadas, ahora exploraremos más sobre el producto cartesiano. En esta entrada revisaremos algunas propiedades interesantes e importantes sobre el producto cartesiano entre dos conjuntos, viendo cómo se comporta con el conjunto vacío y algunos operadores de conjuntos.

Propiedades del producto cartesiano

Algunas de las preguntas que nos pueden surgir al momento de trabajar con los productos cartesianos es cómo estos se comportan con algunos operadores. Por ejemplo la unión y la intersección o la relación de contención. En esta entrada revisaremos algunos resultados útiles a la hora de trabajar con el producto cartesiano.

Trabajando con el vacío

Considera a un conjunto $X$. ¿Cómo será su producto cartesiano con el conjunto vacío?. Pues recuerda que:

$$ X \times \emptyset = \{(x,y): x\in X \land y \in \emptyset\}$$

Pareciera ser que este conjunto no tendría ningún elemento, ¿no? Pues al observar alguna pareja ordenada $(x,y)$ de este conjunto, resultaría que $y \in \emptyset$. Lo cuál es una contradicción, pues recordemos que el conjunto vacío no tiene elementos.

Proposición. Sea $X$ un conjunto, entonces $X \times \emptyset = \emptyset$.

Demostración. Para demostrar la igualdad de conjuntos, deberíamos demostrar que el conjunto de la izquierda está contenido en la derecha, pero notemos que el conjunto de la derecha es el conjunto vacío, y como recordarás, el conjunto vacío, siempre será subconjunto de cualquier conjunto. Esto nos ahorra una contención, y solo habrá que demostrar la contención que falta.

$\subset$. Para demostrar que cada elemento $(x,y) \in X \times \emptyset$ está contenido en el conjunto vacío, será suficiente demostrar que no podemos tomar ningún elemento de dicho conjunto, pues no tiene elementos, ya que ningún elemento cumplirá la definición del conjunto: $x\in X \land y \in \emptyset$. Cuando queremos demostrar que un conjunto es vacío, lo que haremos es hacerlo por reducción al absurdo, suponiendo que sí tiene elementos para llegar a una contradicción.

Para ello, supón $(x,y) \in X \times \emptyset$ (existe algún elemento en el conjunto). Entonces $x \in X$ y $y \in \emptyset$, pero esto es una contradicción, pues el conjunto vacío no tiene elementos por definición. Así, concluímos que $X \times \emptyset \subset \emptyset$.

Más aún, hemos demostrado la igualdad entre conjuntos, pues como dijimos al principio, todo conjunto tiene como subconjunto al vacío. De esta manera $X \times \emptyset = \emptyset$.

$\square$

El mismo argumento puede ser usado para demostrar que $\emptyset \times X = \emptyset$, pues no existen elementos que cumplan la definición de pertenencia del lado derecho.

Contención entre productos cartesianos

Para la siguiente propiedad, veremos cómo es que se comporta el producto cartesiano con la contención de conjuntos. Consideraremos ahora dos conjuntos $X,Y$. Notemos que un elemento del producto cartesiano de $X \times Y$ es de la forma $(x,y)$ donde $x \in X \land y \in Y$. Ahora nota que si $X \subset W \land Y \subset Z$, entonces $(x,y)$ también serán parte del producto cartesiano entre $W$ y $Z$, pues $x \in W \land y \in Z$. Esto es lo que nos dice la siguiente proposición:

Proposición. Sean $W,Z$ dos conjuntos y $X \subset W$, $Y \subset Z$. Entonces: $$X \times Y \subset W \times Z$$

Demostración. Para la demostración, consideremos $(x,y) \in X \times Y$. Lo que habrá que demostrar es que $(x,y) \in W \times Z$. Para ello, nota que si $(x,y) \in X \times Y$ entonces $x \in X$ y al tener la hipótesis $X \subset W$, concluímos que $x \in W$. De manera análoga, $y \in Z$. de esta manera $(x,y) \in W \times Z$

$\square$

Corolario. Sean $X,Y$ dos conjuntos, entonces $X \times X = Y \times Y$ si y solo si $X=Y$.

Esta última demostración no se va a resolver aquí, pero es sencillo notar que la igualdad entre productos cartesianos implica que $X \times X$ es subconjunto de $Y \times Y$ y viceversa, lo cual se puede utilizar para demostrar la contención entre conjuntos.

Propiedades con la unión e intersección

Las siguientes propiedades que vamos a probar serán las referentes a la unión y a la intersección. Para la primera idea de la unión, consideremos al conjunto $$X = \{1,2\}$$ y a los conjuntos $$Y_1 = \{a\}, Y_2 = \{b\}. $$

Entonces el conjunto $$X \times Y_1 = \{(1,a),(2,a)\}.$$ Y el conjunto $$X \times Y_2 = \{(1,b),(2,b)\}. $$De tal manera que si juntamos estos productos cartesianos, nos queda el siguiente conjunto:

$$X \times Y_1 \cup X \times Y_2 = \{(1,a),(2,a),(1,b),(2,b)\}.$$

Nota ahora que si hacemos el producto cartesiano de $X$ con $Y_1 \cup Y_2$, resulta que:

$$X \times (Y_1 \cup Y_2) = \{1,2\} \times \{a,b\}= \{(1,a),(2,a),(1,b),(2,b)\}.$$

De esta manera, $$X \times (Y_1 \cup Y_2)= X \times Y_1 \cup X \times Y_2 .$$

Esto es lo que nos dice la siguiente proposición:

Proposción. Sean $X,Y,Z$ tres conjuntos, entonces $$X \times (Y \cup Z) = X \times Y \cup X \times Z.$$

Demostración.

$\subset.$ Considera $(x,y) \in X \times (Y \cup Z)$. Entonces $x \in X$ y $y \in Y \cup Z$. Nota entonces que tenemos dos casos para $y$.

Caso 1. $y \in Y$

En este caso, $(x,y) \in X \times Y \subset X \times Y \cup X \times Z$, al tener esta última contención, concluimos que se cumple que $X \times (Y \cup Z) \subset X \times Y \cup X \times Z.$

Caso 2. $y \in Z$

Esta demostración es análoga al caso anterior, esto quiere decir que seguimos un razonamiento muy similar que no requiere de pasos muy distintos a los que hicimos. Podemos dejarlo así, pero pondremos el razonamiento análogo para que veas por qué decimos que es análogo.
En este caso, $(x,y) \in X \times Z \subset X \times Y \cup X \times Z$, al tener esta última contención, concluimos que se cumple que $X \times (Y \cup Z) \subset X \times Y \cup X \times Z.$

En cualquiera de los casos, es cierto que $X \times (Y \cup Z) \subset X \times Y \cup X \times Z.$

$\supset.$ Para demostrar la otra contención, simplemente notemos que tanto $X \times Y$ como $X \times Z$ están contenidos en $X \times (Y \cup Z)$. (Recuerda que si dos conjuntos están contenidos en otro conjunto, entonces su unión queda contenida en el conjunto). Para ello, nota que:

$$\begin{align*}
X \times Y &= \{(x,y):x \in X \land y \in Y\}\\
&\subset\{(x,y):x \in X \land y \in (Y \cup Z)\}\\
&= X \times (Y \cup Z)
\end{align*} $$

De igual manera:

$$\begin{align*}
X \times Z &= \{(x,y):x \in X \land y \in Z\}\\
&\subset\{(x,y):x \in X \land y \in (Z \cup Y)\}\\
&=\{(x,y):x \in X \land y \in (Y \cup Z)\}\\
&= X \times (Y \cup Z)
\end{align*} $$

De esta manera $X \times Y \subset X \times (Y \cup Z)$ y $X \times Z \subset X \times (Y \cup Z)$ de manera que $X \times Y \cup X \times Z\subset X \times (Y \cup Z)$

Por lo tanto $X \times Y \cup X \times Z = X \times (Y \cup Z)$

$\square$

Otra propiedad interesante es con la intersección, pues de manera similar si $$X = \{1,2\}$$ y los conjuntos $$Y_1 = \{a,b,c,d,e,1,f\}, Y_2 = \{1,2,3,4,5,a,6\} $$ entonces se cumple que $$X \times Y_1 \cap X \times Y_2 = \{(1,a),(2,a),(1,1),(2,1)\}.$$
Y $$X \times (Y_1 \cap Y_2) = \{(1,a),(2,a),(1,1),(2,1)\}.$$ De esta manera, $X \times Y_1 \cap X \times Y_2 = X \times (Y_1 \cap Y_2)$. Esto es otra proposición:

Proposición. Sean $X,Y,Z$ tres conjuntos, entonces $$X \times Y \cap X \times Z = X \times (Y \cap Z)$$

Demostración. Podemos hacer la demostración como en la proposición anterior, pero vamos a demostrarlo ahora por la definición de los conjuntos. Para esto, nota que:

$$\begin{align*}
X \times (Y \cap Z) &= \{(x,y):x \in X \land y \in (Y \cap Z)\} \\
&= \{(x,y):(x \in X \land y \in Y) \land (x \in X \land y \in Z)\}\\
&= \{(x,y):x \in X \land y \in Y\} \cap \{(x,y):x \in X \land y \in Z\}\\
&= X \times Y \cap X \times Z
\end{align*}$$

$\square$

Es con esto que tenemos algunas de las propiedades del producto cartesiano. Más aún, también hemos continuado con algunas distintas formas de demostrar conjuntos. Ambas formas de demostración de las proposiciones son válidas y son diferentes formas de demostrar.

Como pudiste observar, en general el producto cartesiano se comporta bien con los operadores entre conjuntos, siendo el producto cartesiano de la intersección, la intersección de los productos cartesianos y lo mismo sucede con la unión.

Más adelante…

Ahora que hemos visto algunas propiedades del producto cartesiano, procederemos a definir el siguiente concepto: las relaciones binarias entre conjuntos. Como pudiste observar con el producto cartesiano, este nos permite «unir» elementos de un conjunto con otro. Pues las relaciones serán un subconjunto del producto cartesiano y estudiaremos las distintas formas de relaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $X$ es un conjunto, entonces $\emptyset \times X = \emptyset$.
  2. Demuestra que si $X,Y$ son dos conjuntos, entonces $X \times X = Y \times Y$ si y solo si $X=Y.$
  3. Sean $X,Y,Z$ tres conjuntos. Demuestra que:
    • $(X \cup Y) \times Z = X \times Z \cup Y \times Z$
    • $(X \cap Y) \times Z = X \times Z \cap Y \times Z$
  4. Demuestra que si $X,Y,Z$ son tres conjuntos, entonces:
    • $X \times (Y \triangle Z) = X \times Y \triangle X \times Z$
    • $(X \triangle Y) \times Z = X \times Z \triangle Y \times Z$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»