Álgebra Lineal II: Problemas de isometrías y grupo ortogonal

Introducción

Un ejemplo importante de transformaciones ortogonales

Una clase importante de transformaciones ortogonales es la de las simetrías ortogonales. Sea $V$ un espacio euclidiano y $W$ un subespacio de $V$. Entonces $V=W\oplus W^\bot$, por lo que podemos definir la simetría $s_W$ sobre $W^\bot$ con respecto a $W$. Recuerda que cualquier $v\in V$ se puede escribir como $v=w+w^\bot$, con $(w,w^\bot)\in W\times W^\bot$, entonces $$s_W(v)=w-w^\bot,$$ de manera que $s_W$ fija puntualmente a $W$ y $-s_W$ fija puntualmente a $W^\bot$.

Para garantizar que $s_W$ es una transformación ortogonal, bastará con verificar que $||s_W(v)||=||v||$ para todo $v\in V$, o equivalentemente
$$||w-w^\bot||=||w+w^\bot|| \hspace{1.5mm}\forall (w,w^\bot)\in W\times W^\bot.$$ Pero por el teorema de Pitágoras se tiene que si elevemos ambos lados a cuadrado se obtiene $||w||^2+||w^\bot||^2$ y se sigue el resultado deseado.

Las simetrías ortogonales se pueden distinguir fácilmente entre las transformaciones ortogonales, pues estas son precisamente las transformaciones ortogonales auto-adjuntas.

Caracterización sobre bases ortonormales

Problema. Sea $V$ un espacio euclidiano y $T:V\to V$ una tranformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal.
  2. Para cualquier base ortonormal $e_1,\dots ,e_n$ de $V$, los vectores $T(e_1),\dots ,T(e_n)$ forman una base ortonormal de $V$.
  3. Existe una base ortonormal de $e_1,\dots ,e_n$ de $V$ tal que $T(e_1),\dots ,T(e_n)$ es una base ortonormal de $V$.

Solución. Supongamos que 1. es cierto y sea $e_1,\dots ,e_n$ una base ortonormal de $V$. Entonces para cada $i,j\in[1,n]$ tenemos
$$\langle T(e_i),T(e_j) \rangle =\langle e_i,e_j \rangle.$$
Se sigue que $T(e_1),\dots ,T(e_n)$ es una familia ortonormal, y como $dim V=n$, entonces es una base ortonormal de $V$. Entonces 1. implica 2. y claramente 2. implica 3.
Supongamos que 3. es cierto. Sea $x\in V$ y escribamos $x=x_1e_1+x_2e_2+\dots +x_ne_n$. Como $e_1,\dots ,e_n$ y $T(e_1),\dots ,T(e_n)$ son bases ortonormales de $V$, tenemos
$$||T(x)||^2=||x_1T(e_1)+\dots +x_nT(e_n)||^2=x_1^2+\dots +x_n^2=||x||^2.$$
Por lo tanto $||T(x)||=||x||$ para todo $x\in V$ y $T$ es ortogonal.

$\square$

El grupo de transformaciones ortogonales en el plano

Definición. Diremos que una isometría $T$ es una isometría positiva si $\det T=1$. Por otro lado, diremos que $T$ es una isometría negativa si $\det T=-1$ En términos geométricos, las isometrías positivas preservan la orientación del espacio, mientras que las isometrías negativas la invierten.

Definición. Sea $B=\{e_1,\dots,e_n\}$ una base ortonormal de un espacio euclidiano $V$. Si $B’=\{f_1,\dots,f_n\}$ es otra base ortonormal de $V$, entonces la matriz de cambio de base de $B$ a $B’$ es ortogonal y por lo tanto $\det P\in\{-1,1\}$. Diremos que $B’$ está orientada positivamente con respecto a $B$ si $\det P=1$ y conversamente diremos que $B’$ está orientada negativamente con respecto a $B$ si $\det P=-1$.

Si $V=\mathbb{R}^n$ está equipado con el producto interior usual, entonces siempre tomamos como $B$ a la base canónica y sólo decimos que una base ortonormal es positiva o negativa.

Observación. El polinomio característo de la matriz
$$\begin{pmatrix}
I_p & 0 & 0 & \dots & 0\\
0 & -I_q & 0 & \dots & 0\\
0 & 0 & R_{\theta_1} & \dots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots\\
0 & 0 & 0 &\dots & R_{\theta_k}
\end{pmatrix}$$
es
$$(x-1)^p(x+1)^q\cdot\displaystyle\prod_{i=1}^k (x^2-2\cos\theta_i x+1).$$
Las raíces complejas del polinomio $x^2-2\cos\theta_i x+1$ son $e^{i\theta}$ y $e^{-i\theta}$, y tienen modulo $1$. Por lo tanto, todos los eigenvalores complejos de una matriz ortogonal tienen módulo $1$.

Estudiando el grupo ortogonal en dimensiones pequeñas

Empezamos analizando el caso de dimensión $2$. Sea $A\in M_2(\mathbb{R})$ una matriz dada por
$$A=\begin{pmatrix}
a & b\\
c & d\end{pmatrix}$$ que satisface $A^tA=I_2$. Sabemos que $\det A\in\{-1,1\}$, así que consideramos ambos casos.

Si $\det A=1$, entonces la inversa de $A$ simplemente es
$$A^{-1}=\begin{pmatrix}
d & -b\\
-c & a\end{pmatrix}$$
y como $A$ es ortogonal, entonces $A^{-1}=\hspace{.5mm}^tA$, por lo que $a=d$ y $b=-c$, lo que nos dice que $A$ es de la forma
$$A=\begin{pmatrix}
a & -c\\
c & a\end{pmatrix}.$$
Más aún, tenemos que $a^2+c^2=1$, por lo que existe un único $\theta\in(-\pi,\pi]$ tal que $A=\cos\theta$ y $c=\sin\theta$. Por lo tanto
$$A=R_{\theta}=\begin{pmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta \end{pmatrix}.$$
La transformación lineal correspondiente es
\begin{align*}
T:\mathbb{R}^2&\to\mathbb{R}^2\\
(x,y)&\mapsto (\cos\theta x – \sin\theta y, \sin\theta x+ \cos\theta y)
\end{align*}
y geométricamente corresponde a una rotación de ángulo $\theta$. Además
\begin{equation}\label{rot}
R_{\theta_1}\cdot R_{\theta_2}=R_{\theta_1+\theta_2}=R_{\theta_2}\cdot R_{\theta_1}.
\end{equation}
Una consecuencia importante es que la matriz asociada a $T$ con respecto a cualquier base ortonormal positiva de $\mathbb{R}^2$ aún es $R_\theta$, pues la matriz de cambio de base de la base canónica a la nueva base ortonormal positiva sigue siendo una rotación. Análogamente, si en el argumento anterior tomamos una base ortonormal negativa, entonces la matriz asociada a $T$ es $R_{-\theta}$. La relación \eqref{rot} también muestra que para calcular el ángulo de la composición de dos rotaciones basta con tomar la suma de los ángulos y restar un múltiplo adecuado de $2\pi$ tal que el ángulo obtenido quede en el intervalo $(-\pi,\pi]$.

Si $\det A=-1$. Entonces
$$A^{-1}=\begin{pmatrix}
-d & b\\
c & -a\end{pmatrix}$$ y como $A$ es ortogonal, entonces $d=-a$ y $b=c$. También tenemos que $a^2+b^2=1$, por lo que existe un único número real $\theta\in(-\pi,\pi]$ tal que $a=\cos\theta$ y $b=\sin\theta$. Entonces
$$A=S_\theta:=\begin{pmatrix}
\cos\theta & \sin\theta\\
\sin\theta & -\cos\theta \end{pmatrix}.$$
Notemos que $S_\theta$ es simétrica y ortogonal, por lo tanto $S_\theta^2=I_2$ y que la transformación correspondiente es
\begin{align*}
T:\mathbb{R}^2&\to\mathbb{R}^2\\
(x,y)&\mapsto (cos\theta x+\sin\theta y, \sin \theta x-\cos\theta y)
\end{align*}
es una simetría ortogonal. Para encontrar la recta con respecto a la cual $T$ es una simetría ortogonal, bastará con resolver el sistema $AX=X$. El sistema es equivalente a
$$\sin\left(\frac{\theta}{2}\right)\cdot x=\cos \left(\frac{\theta}{2}\right)\cdot y$$ y por lo tanto la recta $AX=X$ está generada por el vector
$$e_1=\left( \cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \right)$$ y la correspondiente recta ortogonal está generada por el vector
$$e_2=\left(-\sin\left(\frac{\theta}{2}\right),\cos\left(\frac{\theta}{2}\right)\right),$$
y los vectores $e_1,e_2$ forman una base ortonormal de $\mathbb{R}^2$ para la cual la matriz asociada a $T$ es
$$\begin{pmatrix}
1 & 0\\
0 & -1\end{pmatrix}$$
y además $$S_{\theta_1}\cdot S_{\theta_2}=R_{\theta_1-\theta_2}$$
lo que significa que la composición de dos simetrías ortogonales es una rotación. Similarmente tenemos que
$$S_{\theta_1}R_{\theta_2}\hspace{3mm} R_{\theta_1}S_{\theta_2}=S_{\theta_1+\theta_2},$$
por lo que la composición de una rotación y una simetría ortogonal es una simetría ortogonal.

Gracias a todo lo anterior, estamos listos para enunciar el siguiente teorema:

Teorema. Sea $A\in M_2(\mathbb{R})$ una matriz ortogonal.

  1. Si $\det A=1$, entonces
    $$A=R_\theta=\begin{pmatrix}
    \cos\theta & -\sin\theta\\
    \sin\theta &\cos\theta\end{pmatrix}$$
    para único número real $\theta\in(-\pi,\pi]$, y la correspondiente transformación lineal $T$ sobre $\mathbb{R}^2$ es una rotación de ángulo $\theta$. Cualesquiera dos matrices de esa forma conmutan y la matriz asociada a $T$ con respecto a cualquier base ortonormal positiva de $\mathbb{R}^2$ es $R_\theta$.
  2. Si $\det A=-1$, entonces
    $$A=S_\theta=\begin{pmatrix}
    \cos\theta & \sin\theta\\
    \sin\theta &-\cos\theta\end{pmatrix}$$
    para un único número real $\theta\in(-\pi,\pi]$. La matriz $A$ es simétrica y la correspondiente transformación lineal sobre $\mathbb{R}^2$ es la simetría ortogonal con respecto a la recta generada por el vector $\left(\cos\left(\frac{\theta}{2}\right),\sin\left(\frac{\theta}{2}\right)\right)$.

El grupo de transformaciones ortogonales en el espacio

En la entrada anterior estudiamos el grupo de transformaciones ortogonales en dimensión $2$.

Ahora estudiaremos el caso $\dim V=3$, para esto haremos uso del teorema de clasificación de la entrada anterior, así como el estudio que hicimos para el caso de dimensión $2$. Siguendo la misma idea que desarrollamos en el teorema de clasificiación, consideramos enteros $p,q,k$ tales que $$p+q+2k=3,$$ por lo que necesariamente $p\neq 0$ o $q\neq 0$. También podemos probar esto de manera máss directa, observando que el polinomio caracterísitico de $T$ es de grado $3$, por lo que debe tener una raíz real, y por ende un eigenvalor real, el cual será igual a $1$ o $-1$, pues tiene módulo $1$.

Intercambiando $T$ con $-T$ se tiene que simplemente se intercambian los papeles de $p$ y $q$. Supongamos que $p\geq 1$, esto significa que $T$ tiene al menos un punto fijo $v$. Entonces $T$ fija la recta $D=span (v)$ e induce una isometría sobre el plano ortogonal a $D$. Esta isometría se puede clasificar con el último teorema de la entrada anterior. Por lor tanto, hemos reducido el caso de dimensión $3$ al caso de dimensión $2$. Podemos ser más explicitos si consideramos los siguientes casos.

  • $id\in\{T,-T\}$.
  • Tenemos que $\dim \ker (T-id)=2$. Si $e_2,e_1$ es una base ortonormal del plano $\ker (T-id)=2$ y completamos a una base ortonormal de $V$ $\{e_1,e_2,e_3\}$, entonces $T$ fija puntualmente al subespacio generado por $e_2,e_3$ y deja invariante a la recta generada por $e_1$. Por lo tanto la matriz asociada a $T$ con respecto a la base ortonormal es
    $$ \begin{pmatrix}
    t & 0 & 0\\
    0 & 1 & 0\\
    0 & 0 & 1
    \end{pmatrix}$$
    para algun número real $t$, el cual forzosamente es $-1$, pues sabemos que debe ser $1$ o $-1$, pero si fuera $1$, entonces $T$ sería la indentidad. Por lo tanto $T$ es una simetría ortogonal con respecto al plano $\ker (T-id)$. Además, $\det T=-1$, por lo que $T$ es una isometría negativa.
  • Tenemos que $\dim\ker (T-id)$ es la recta generado por algún vector $e_1$ de norma $1$. Completamos $e_1$ a una base ortonormal $\{e_1,e_2,e_3\}$ . Entonces la isometría $T$ inducida sobre es subespacio generado por $\{e_2,e_3\}$ no tiene puntos fijos, ya que todos los puntos fijos de $T$ están sobre $span(e_1)$, por lo tanto $T$ es una rotación de ángulo $\theta$, para un único $\theta\in(-\pi,\pi]$. Además, la matriz asociada a $T$ con respecto a la base ortonormal es
    $$ \begin{pmatrix}
    1 & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}.$$
    Diremos que $T$ es la rotación de ángulo $\theta$ alrededor del eje $\mathbb{R}e_1$. Notemos que $\det T=1$, por lo que $T$ es una isometría positiva. Además, el ángulo $\theta$ satisface $$1+2\cos\theta=Tr(A),$$,aunque, al ser el coseno una función par, $-\theta$ también satisface la ecuación anterior. Para encontrar a $\theta$ necesitamos hallar a $\sin\theta$. Para ello verificamos que
    $$\det_{(e_1,e_2,e_3)}(e_1,e_2,T(e_2))=\begin{vmatrix}
    1 & 0 & 0\\
    0 & 1 & \cos\theta\\
    0 & 0 & \sin\theta
    \end{vmatrix}=\sin\theta.$$
  • Supongamos que $\ker(T-id)=\{0\}$. Una posibilidad es que $T=-id$. Supongamos que $T\neq id $. Como $T$ o $-T$ tienen un punto fijo y $T$ tiene puntos fijos, entonces necesariamente $-T$ tiene un punto fijo. Sea $e_1$ un vector de norma $1$ fijado por $-T$, por lo tanto $T(e_1)=-e_1$. Completando $e_1$ a una base ortonormal de $V$ dando un argumento similar al del caso anterior, obtenemos que la matriz asociada a $T$ con respecto a la base ortonormal es
    $$\begin{pmatrix}1- & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}=R_\theta \cdot \begin{pmatrix}
    1 & 0 & 0\\
    0 & \cos\theta & -\sin\theta\\
    0 & \sin\theta & \cos\theta
    \end{pmatrix}$$
    para algún $\theta \in (-\pi,\pi]$. Por lo tanto $T$ es la composición de una rotación de ángulo $\theta$ y una simetría ortogonal con respecto al eje de rotación. También notemos que $\det T=-1$, por lo que $T$ es una isometría negativa.
    También podemos mirarlo desde el punto de vista de las matrices. Consideremos una matriz ortogonal $A\in M_3(\mathbb{R})$ y la transformación lineal asociada
    \begin{align*}
    T:V&\to V\\
    X&\mapsto AX
    \end{align*}, donde $V=\mathbb{R}^3$ está equipado con el producto interior usual. Excluiremos los casos triviales $A=\pm I_3$. Para estudiar la isometría $T$, primero revisamos si esta es positiva o negativa, calculando el determinante.
    Supongamos que $T$ es positiva. Ahora veremos si $A$ es simétrica. Para ellos consideremos los siguentes dos casos:
  • Si $A$ es simétrica, entonces $A^2=I_3$ (pues $A$ es ortogonal y simétrica) y por lo tanto $T$ es una simetría ortogonal. Afirmamos que $T$ es una simetría ortogonal con respecto a una recta. En efecto, como $A^2=I_3$, todos los eigenvalores de $A$ son $1$ o $-1$. Más aún, los eigenvalores no son iguales, ya que estamos excluendo los casos $A=\pm I_3$, y el producto de ellos es 1, pues $\det A=1$. Por lo tanto, un eigenvalor es igual a $1$ y los otros dos son iguales a $-1$. Se sigue que la matriz asociada a $T$ con respecto a la base ortonormal $\{e_1,e_2,e_3\}$ es
    $$\begin{pmatrix}
    1 & 0 & 0\\
    0 & -1 & 0\\
    0 & 0 & -1
    \end{pmatrix}$$ y $T$ es la simetría ortogonal con respecto a la recta generado por $e_1$. Para encontrar esta recta de manera explícita, necesitamos calcular $\ker(A-I_3)$ resolviendo el sistema $AX=X$.
  • Si $A$ no es simétrica, entonces $A$ es una rotación de ángulo $\theta$ ara un único $\theta\in(-\pi,\pi]$. Podemos encontrar el eje de rotación resolviendo el sistema $AX=X$: si $Ae_1=e_1$ para algún vector $e_1$, entonces el eje de rotación está generado por $e_1$. Para encontrar el ángulo de rotación usamos la siguiente ecuación
    \begin{equation}\label{angulo}
    1+2\cos\theta=Tr(A),
    \end{equation}
    la cual determina a $\theta$ en valor absoluto (pues $\theta$ y $-\theta$ son soluciones por la paridad del coseno). Ahora escogemos un vector $e_2$ ortogonal a $e_1$ y de norma $1$ y definimos $e_3=(u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1)$, donde $e_1=(u_1,u_2,u_3)$ y $e_2=(v_1,v_2,v_3)$. Entonces $e_1,e_2,e_3$ es una base ortonormal positiva de $\mathbb{R}^3$ y $\det_{(e_1,e_2,e_3)}(e_1,e_2,Ae_2)$ nos da el valor de $\sin\theta$, con lo cual podremos determinar a $\theta$ de manera única. En la práctica bastará con encontrar el signo de $\det_{(e_1,e_2,e_3)}(e_1,e_2,Ae_2)$, ya que esto nos dará el signo de $\sin\theta$, lo cual determina $\theta$ de manera única gracias a la ecuación \eqref{angulo}.

Finalmente, si se supone que $T$ es negativa, entoces $-T$ es positiva y por lo tanto todo el estudio que acabamos de hacer se puede aplicar a $-T$.

Para finalizar, veremos un ejemplo concreto.

Ejemplo. Demuestra que a matriz
$$A=\frac{1}{3}\begin{pmatrix}
2 & 2 & 1\\
-2 & 1 & 2\\
1 & -2 & 2
\end{pmatrix}$$ es ortogonal y estudia su isometría correspondiente en $\mathbb{R}^3$.

Solución. El cálculo para verificar que $A$ es ortogonal es muy sencillo y se deja como tarea moral. Luego vemos que $\det A=1$, por lo que la isometría asociada es positiva. Como $A$ no es simétrica, se sigue que $T$ es una rotación. Para encontrar el eje necesitamos resolver el sistema $AX=X$, el cual es equivalente a
\begin{align*}
\begin{cases}
2x+2y+z &= 3x\\
-2x+y+2z &=3y\\
x-2y+2z &=3z
\end{cases}
\end{align*} y entonces $x=z$ y $y=0$. Por lo tanto, el eje de rotación está generado por el vector $(1,0,1)$. Normalizandolo obtenemos el vector
$$e_1=\frac{1}{\sqrt{2}}(1,0,1),$$ que genera al eje de $T$.
sea $\theta$ el ángulo de rotación, tal que
$$1+2\cos\theta=Tr(A)=\frac{5}{3},$$ y por lo tanto
$$cos\theta=\frac{1}{3}.$$
Falta determinar el signo de $\sin \theta$. Para ello, escogemos un vector ortogonal a $e_1$, digamos $$e_2=(0,1,0)$$ y calculamos el signo de
$$\det (e_1,e_2,Ae_2)=\frac{1}{3\sqrt{2}}\begin{vmatrix}
1 & 0 & 2\\
0 & 1 & 0\\
1 & 0 & -2
\end{vmatrix}=-\frac{4}{3\sqrt{2}}<0,$$ por lo que $\sin\theta<0$ y finalmente $\theta=-\arccos\frac{1}{3}$.

$\square$

Más adelante…

Tarea moral

  1. Verifica que la matriz $A$ del ejemplo anterior es ortogonal.
  2. Encuentra la matriz asociada a la simetría ortogonal en $\mathbb{R}^3$ con respecto a la recta generada por el vector $(1,2,3)$.
  3. Encuentra la matriz asociada a la simetría ortogonal en $\mathbb{R}^3$ con respecto al plano generad por los vectores $(1,1,1)$ y $(0,1,0)$.
  4. Sea $V=\mathbb{R}^3$.¿En qué casos una rotación sobre $V$ conmuta con una simetríai ortogonal?

Entradas relacionadas

4 comentarios en “Álgebra Lineal II: Problemas de isometrías y grupo ortogonal

  1. Rodrigo Seels

    Buen día:

    Al principio de esta entrada se dice: “Intercambiando T con -T se tiene que simplemente se intercambian los papeles de p y q.” ¿Por qué esto es así?

    Gracias.

    Responder
    1. Diego Ligani Rodríguez Trejo

      Por que por la entrada anterior sabemos que $T$ se puede escribir como una matriz de la forma \begin{pmatrix} I_p & 0 & 0 & \cdots & 0 \\
      0 & – I_q & 0 & \cdots & 0 \\
      0 & 0 & R_{\theta_1} & \cdots & 0 \\
      \vdots & \vdots & \vdots & \ddots & 0 \\
      0 & 0 & 0 & 0 & R_{\theta_k} \end{pmatrix}
      De donde el discriminante de $T$ depende únicamente de $q$ (a saber, el discriminante es $(-1)^q$ como decía también en la entrada anterior) ya que el discriminante de $I_p$ es 1 y el discriminante de todas las rotaciones es 1 también, por otro lado, si trabajáramos con $-T$ llegamos a que el discriminante dependería únicamente de $p$ por lo que “intercambian papeles”

      Responder
    1. Diego Ligani Rodríguez Trejo

      Para analizar mejor a $T$ estamos viendo todos los casos posibles de $dim(Ker(T-Id))$, en el primer caso estamos suponiendo que $dim(Ker(T-Id))=3$, esto quiere decir que $Ker(T-Id)$ tiene una base con $3$ elementos, por otro lado, sabemos que $Ker(T-Id)$ es un subespacio de $V$, por lo que la su base es un subconjunto de $V$, pero esto es importante ya que tenemos un conjunto linealmente independiente con $3$ elementos en un espacio vectorial de dimensión $3$, es decir la base de $Ker(T-Id)$ también es base de $V$, por lo que $Ker(T-Id)=V$ esto quiere decir que para cualquier $v \in V$ $(T-Id)(v)=0$ pero esto pasa si y solo si $T=id$, ahora, esto pasó al trabajar con $T$ si hiciéramos el mismo proceso trabajando ahora con $-T$ llegaríamos a que $-T=Id$, lo que es la otra posibilidad que se ve en ese punto.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.