Álgebra lineal II: Teorema espectral real

Introducción

Hasta ahora ya sabemos, en general, como determinar cuando una matriz arbitraria es diagonalizable. En esta entrada nos dedicaremos a estudiar y demostrar un teorema que nos dice cuándo que cierto tipo de transformaciones siempre son diagnoalizables. Más adelante usaremos este teorema para demostrar la famosa descomposición polar.

Resultados preliminares

Teorema. Sea $A\in M_n({\mathbb{R}})$ una matriz simétrica. Entonces todas las raíces del polinomio característico de $A$ son reales.

Demostración. Sea $t$ una raíz del polinomio caractereístico de $A$. Pensemos a $A$ como un elemento de $M_n(\mathbb{C})$. Como $\det (tI_n-A)=0$, entonces existe $X\in\mathbb{C}^n$ no nulo tal que $AX=tX$. Escribimos $X=Y+iZ$ para dos vectores $X,Y\in \mathbb{R}^n$ y $t=a+ib$ con $a$ y $b$ números reales. Entonces de la igualdad $AX=tX$ se sigue que
$$AY+iAZ=(a+ib)(Y+iZ)=Ay-bZ+i(aZ+bY)$$ y separando las partes imaginarias y las partes reales obtenemos que
\begin{equation}\label{1}
AY=aY-bZ, \hspace{4mm} AZ=aZ+bY.
\end{equation}

Como $A$ es simétrica, tenemos que
\begin{equation}\label{2}
\langle AY,Z \rangle=\langle Y, AZ \rangle.
\end{equation}
Sustituyendo \eqref{1} en el lado izquierdo de \eqref{2} obtenemos que \eqref{2} es igual a $a\langle Y,Z \rangle -b||Z||^2,$ mientras que el lado derecho de \eqref{2} es igual a $a\langle Y,Z \rangle -b||Y||^2$. Se sigue que
$$b(||Y||^2+||Z||^2)=0$$ y como $Y$ o $Z$ es distinto de cero (de lo contrario tendríamos que $X=0$), entonces concluimos que $b=0$ y con ellos que $t$ es un número real.

$\square$

Lema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica sobre $V$. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces

  1. $W^\bot$ también es estable bajo $T$.
  2. Las restricciones de $T$ a $W$ y $W^\bot$ son transformaciones lineales simétricas sobre estos espacios.

Demostración. 1. Sea $x\in W^\bot$ y $y\in W$. Entonces
$$\langle T(x),y \rangle = \langle x,T(y) \rangle . $$
Ahora $x\in W^\bot$ y $T(y)\in T(W)\subseteq W$, por lo que $\langle x,T(y) \rangle =0$ y así $T(W^\bot)\subseteq W^\bot$, que es lo que queríamos probar.

2. Sea $T_1$ la restricción de $T$ a$W$. Para $x,y\in W$ tenemos que
$$\langle T_1(x),y \rangle=\langle T(x),y \rangle=\langle x,T(y) \rangle =\langle x,T_1(y) \rangle ,$$ por lo tanto $T_1$ es simétrica sobres $W$. Análogamente vemos que el resultado se satisface para $W^\bot$.

$\square$

Teorema principal

Con todo lo visto hasta ahora, ya estamos listos para probar el teorema principal de esta entrada.

Teorema. (Teorema Espectral) Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal simétrica. Entonces existe una base ortonormal de $V$ conformada por eigenvectores de $T$.

Demostración. Procederemos a la prueba mediante inducción fuerte sobre $n=\dim V$. Si $n=1$, entonces el polinomio característico de $T$ es de grado $1$ y tiene coeficientes reales, por lo que tiene una raíz real $t$. Si $v$ es un eigenvector de $T$ con eigenvalor $t$, entonces $\frac{v}{||v||}$ también es eigenvector de $T$ y forma una base ortonormal de $V$. Ahora supongamos que el resultado se satisface hasta $n-1$ y demostremoslo para el caso $n$. Sea $B=\{e_1,e_2,\dots e_n\}$ una base ortonormal de $V$. Sea $A$ la matriz asociada a $T$ con respecto a $B$. Como $T$ es simétrica, entonces $A$ también lo es, por lo que tiene un eigenvalor real $t$ por el primer teorema de esta entrada y el teorema fundamental del álgebra.

Sea $W=\ker (tid- T)$ un $t$-eigenespacio de $T$. Si $W=V$, entonces $T=tid$ y así $B$ es una base ortonormal de $V$ compuesta por eigenvectores de $T$. Supongamos que $\dim W<n$. Tenemos que $V=W\oplus W^\bot$ y $W^\bot$ es estable bajo $T$, induciendo una transformación lineal simétrica sobre este subespacio. Aplicando la hipótesis inductiva a $T_{W^\bot}$ podemos encontrar una base ortonormal $C=\{f_1^\bot,f_2^\bot\dots,f_n^\bot\}$ de $W^\bot$ compuesta por eigenvectores de $T$. Escogiendo una base ortonormal $D=\{f_1,f_2,\dots,f_n\}$ de $W$ (que automaticamente está formada por eigenvectores de $T$), podemos obtener una base $\{f_1,\dots ,f_s,f_1^\bot, \dots ,f_k^\bot\}$ de $V=W\oplus W^\bot$ formada por eigenvectores de $T$.

$\square$

Observación. Si $A\in M_n(\mathbb{R})$ es una matriz simétrica, entonces la transformación lineal $T:X\mapsto AX$ sobre $\mathbb{R}^n$ es simétrica. Aplicando el teorema anterior, podemos encontrar una base ortonormal de $V$ con respecto a la cual la matriz asociada a $T$ es diagonal. Como la base canónica de $V$ es ortonormal, y como la matriz de cambio de pase entre dos bases ortonormlaes es ortogonal, obtenemos el siguiente resultado fundamental:

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz simétrica . Entonces existe una matriz ortogonal $P\in M_n(\mathbb{R})$ tal que $PAP^{-1}$ es diagonal (en particular $A$ es diagonalizable). En otra palabras, existe una base ortonormal de $\mathbb{R}^n$ formada por eigenvectores de $A$.

Caracterizando las matrices simétricas positivas

Teorema Sea $A\in M_n(\mathbb{R})$ una matriz simétrica. Entonces las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B\in M_n(\mathbb{R})$.
  4. $A=\hspace{.5mm}^tBB$ para alguna matriz $B\in M_n(\mathbb{R})$.

Demostración. Supongamos que $A$ es positiva y que $t$ es un eigenvalor de $A$ con eigenvector $v$. Como $Av=tv$, obtenemos que
$$t||v||^2=\langle v,Av \rangle= \hspace{.5mm}^tvAv\geq 0,$$
por lo tanto $t\geq 0$ y así hemos probado que 1. implica 2.

Supongamos ahora que 2. se satisface y sean $t_1,\dots, t_n$ todos los eigenvalores de $A$, contados con multiplicidad. Por hipótesis $t_i\geq 0$ para cualquier $i\in[1,n]$. Más aún, gracias al teorema espectral podemos encontrar una matrix $P$ tal que $PAP^{-1}=D$, donde $D$ es una matriz diagonal con entradas $t_1,t_2,\dots,t_n$. Sea $D_1$ la matriz diagonal con entradas $c_i=\sqrt{t_i}$ y sea $B=P^{-1}D_1P$. Entonces $B$ es simétrica, como $P$ s ortogonal y $D_1$ es simétrica:
$$^tB=\hspace{.5mm}^tPD_1P^{-1}=P^{-1}D_1P.$$

Más aún, por construcción $B^2=P^{-1}D_1^2P=P^{-1}DP=A$, lo que muestra 3.

Para probar que 3. implica 4. bastará con tomar $C=B$ y usar que $B$ es simétrica.

Si 4. es cierto, entonces para todo $X\in \mathbb{R}^n$ tenemos que
$$^tXAX=||BX||^2\geq 0$$ y por lo tanto $A$ es positiva.

$\square$

Aplicación

Problema. Sea $V$ un espacio euclidiano y $T$ una transformación lineal simétrica sobre $V$. Sean $t_1,\dots,t_n$ los eigenvalores de $T$. Entonces
$$\displaystyle\sup_{x\in V\backslash \{0\}}\frac{||T(x)||}{||x||}=\max_{1\leq i\leq n}|t_i|.$$

Solución. Consideremos una base ortonormal de $V$ $\{e_1,\dots, e_n\}$ tal que $T(e_i)=t_ie_i$. Dado $x\in V\backslash\{0\}$, podemos escribir
$$x=x_1e_1+x_2e_2+\dots+x_ne_n$$
para algunos números reales $x_i$. Entonces
$$T(x)=\displaystyle\sum_{i=1}^nt_ix_ie_i.$$
Por lo tanto,
$$\frac{||T(x)||}{||x||}=\sqrt{\frac{\displaystyle\sum_{i=1}^n t_i^2x_i^2}{\displaystyle\sum_{i=1}^n x_i^2}}\leq |t_n|,$$
pues $t_i^2x_i^2\leq t_n^2x_i^2$ para $1\leq i\leq n$.
Se sigue que
$$\displaystyle\sup_{x\in V\backslash \{0\}}\frac{||T(x)||}{||x||}\leq |t_n|.$$
Como $\frac{||T(e_n)||}{||e_n||}=|t_n|$, entonces la desigualdad anterior en realidad es una igualdad y con ello concluimos el resultado deseado.

$\square$

Tarea moral

  • Da un ejemplo de una matriz simétrica con coeficientes complejos que no sea diagonalizable.
  • Sea $T$ una transformación lineal sobre un espacio euclidiano $V$, y supón que $V$ tiene una base ortonormal conformada por eigenvectores de $T$. Demuestra que $T$ es simétrica (por lo que el recíproco del teorema espectral se satisface).
  • Considera la matriz $$A=\begin{pmatrix}
    1 & -2 & -2\\
    -2 & 1 & -2\\
    -2 & -2 &1\end{pmatrix}.$$
    Explica por qué $A$ es diagonalizable en $M_n(\mathbb{R})$ y encuentra una matriz $P$ tal que $P^{-1}AP$ es diagonal.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.