Archivo de la etiqueta: matrices invertibles

Álgebra Lineal I: Reducción gaussiana en sistemas lineales AX=b

[latexpage]

Introducción

Ya usamos el algoritmo de reducción gaussiana para estudiar sistemas de ecuaciones homogéneos. En esta entrada aplicamos lo que hemos aprendido de este método para resolver sistemas de ecuaciones no homogéneos.

Para hacer esto, adaptaremos la técnica para sistemas homogéneos (que en realidad, no es muy diferente) y la usamos para probar un resultado muy importante, llamado el teorema de existencia y unicidad. Damos unos cuantos ejemplos y concluimos con la prometida demostración de la unicidad de la forma escalonada reducida.

Adaptando el vocabulario

Consideramos un sistema lineal $AX=b$ con $A\in M_{m,n}(F)$ y $b\in F^{m}$, con variables $x_1, \dots, x_n$ que son las coordenadas de $X\in F^{n}$. Para resolver el sistema consideramos la matriz aumentada $\left(A\vert b\right)$ obtenida de $A$ al añadir al vector $b$ como columna hasta la derecha.

Ejemplo. Si

\begin{align*}
A= \begin{pmatrix} 0 & 1 & 2\\
-1 & 0 &1 \end{pmatrix} \text{ y } b= \begin{pmatrix} 12 \\ 14 \end{pmatrix}
\end{align*}

entonces

\begin{align*}
\left(A\vert b\right)= \begin{pmatrix} 0 & 1 & 2 & 12\\ -1 & 0 & 1 & 14\end{pmatrix}\end{align*}

$\square$

Las operaciones elementales del sistema se traducen entonces en operaciones elementales en la matriz aumentada, por lo que para resolver el sistema podemos primero llevar a la matriz aumentada a su forma escalonada y reducida y después resolver el sistema más sencillo. Esto lo podríamos hacer siempre y cuando al realizar operaciones elementales en la matriz aumentada no se modifique el conjunto de soluciones del sistema. Esto lo garantiza la siguiente proposición.

Proposición. Sea el sistema lineal $AX=b$. Supongamos que la matriz $\left(A’\vert b’\right)$ se obtiene a partir de la matriz $\left( A\vert b\right)$ realizando una sucesión finita de operaciones elementales. Entonces los sistemas $AX=b$ y $A’X=b’$ son equivalentes, es decir, tienen el mismo conjunto de soluciones.

Demostración: Como ya hemos visto anteriormente, realizar operaciones elementales en $\left(A \vert b\right)$ es equivalente a realizar operaciones elementales en las ecuaciones del sistema $AX=b$, pero ya sabemos que estas no alteran el conjunto de soluciones, pues son reversibles (es decir, podemos siempre deshacer los cambios).

$\square$

El teorema de existencia y unicidad

Llegamos ahora a otro resultado clave de nuestro estudio de ecuaciones. Es una caracterización que responde a nuestras preguntas: ¿Hay soluciones? ¿Son únicas? Además, nos puede sugerir cómo encontrarlas.

Teorema. (De existencia y unicidad) Supongamos que la matriz $\left(A\vert b\right)$ ha sido llevada a su forma escalonada reducida $\left(A’\vert b’\right)$ por operaciones elementales.

  1. (Existencia de soluciones) El sistema $AX=b$ es consistente si y sólo si $\left(A’\vert b’\right)$ no tiene ningún pivote (de filas) en su última columna.
  2. (Unicidad de soluciones) Si el sistema es consistente, entonces tiene una única solución si y sólo si $A’$ tiene pivotes (de filas) en cada columna.

Demostración:

  1. Supongamos que $\left(A’\vert b’\right)$ tiene un pivote en su última columna. Debemos ver que el sistema $AX=b$ no tiene solución. Para esto, basta ver que el sistema $A’X=b’$ no tiene solución, pues es un sistema equivalente.

    Si el pivote aparece en el $i$-ésimo renglón entonces este es de la forma $(0, \dots, 0, 1)$, pues recordemos que los pivotes son iguales a $1$ en la forma escalonada reducida. Entonces entre las ecuaciones del sistema $A’X=b’$ tenemos una de la forma $0 x_1′ +\dots +0 x_n’=1$, que no tiene solución alguna. Así el sistema $A’X=b’$ no es consistente, y por tanto $AX=b$ tampoco lo es.

    Conversamente, supongamos que $\left(A’ \vert b’\right)$ no tiene un pivote en su última columna. Digamos que $A’$ tiene pivotes en las columnas $j_1<\dots <j_k \leq n$ y sean $x_{j_1}, \dots, x_{j_k}$ las correspondientes variables pivote y todas las demás variables son libres. Dando el valor cero a todas las variables libres obtenemos un sistema en las variables $x_{j_1}, \dots, x_{j_k}$. Este sistema es triangular superior y se puede resolver empezando por la última ecuación, encontrando $x_{j_k}$, luego $x_{j_{k-1}}$ y así sucesivamente. Así encontramos una solución, por lo que el sistema es consistente. Esta solución encontrada también es una solución a $AX=b$, pues es un sistema equivalente.
  2. Como le podemos dar cualquier valor escalar a las variables libres, el argumento del párrafo anterior nos dice que la solución es única si y sólo si no tenemos variables libres, pero esto pasa si y sólo si los pivotes llegan hasta la última columna de $A’$.

$\square$

Ten cuidado. En la primer parte, la condición se verifica con $(A’|b)$. En la segunda parte, la condición se verifica con $A’$.

Encontrando y contando soluciones

Por simplicidad, asumamos que $F=\mathbb{R}$, es decir que nuestro campo de coeficientes del sistema $AX=b$ es el de los números reales. Procedemos como sigue para encontrar el número de soluciones del sistema:

  1. Consideramos la matriz aumentada $\left(A\vert b\right)$.
  2. Llevamos esta matriz a su forma escalonada reducida $\left(A’\vert b’\right)$.
  3. Si esta matriz tiene un renglón de la forma $(0, \dots, 0, 1)$, entonces el sistema es inconsistente.
  4. Si no tiene ningún renglón de esa forma, vemos si todas las columnas de $A’$ tienen al pivote de alguna fila:
    • Si en efecto todas tienen pivote, entonces el sistema tiene una única solución.
    • Si no todas tienen pivote, entonces nuestro sistema tiene una infinidad de soluciones.

En el caso en el que hay una o una infinidad de soluciones, además podemos decir exactamente cómo se ven esas soluciones:

  • Haciendo las variables libres iguales a cero (si es que hay), obtenemos una solución $X’$ al sistema $AX=b$.
  • Usamos reducción gaussiana para encontrar todas las soluciones al sistema homogéneo $AX=0$.
  • Finalmente, usamos el principio de superposición. Todas las soluciones a $AX=b$ son de la forma $X’$ más una solución a $AX=0$.

Problema. Consideremos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 2 & 2\\ 0 & 1 & 1\\ 2 & 4 &4 \end{pmatrix}.
\end{align*}

Dado $b\in \mathbb{R}^3$, encuentra condiciones necesarias y suficientes en términos de las coordenadas de $b$ para que el sistema $AX=b$ sea consistente.

Solución: Dado $b$ con coordenadas $b_1, b_2$ y $b_3$, la matriz aumentada es

\begin{align*}
\left( A\vert b\right) = \begin{pmatrix} 1 & 2 & 2 & b_1 \\ 0 & 1 & 1 & b_2 \\ 2 & 4 & 4 & b_3\end{pmatrix}.
\end{align*}

Para obtener su forma escalonada reducida sustraemos dos veces el primer renglón del tercero y luego dos veces el segundo del primero, obteniendo así:

\begin{align*}
\left( A\vert b\right) \sim \begin{pmatrix} 1 & 0 & 0 &b_1-2b_2\\ 0 & 1 & 1 & b_2\\ 0 & 0 & 0 &b_3-2b_1\end{pmatrix}.
\end{align*}

Por el teorema anterior, el sistema $AX=b$ es consistente si y sólo si esta matriz no tiene pivotes en la última columna, es decir, necesitamos que la entrada de hasta abajo a la derecha sea cero. Así, el sistema es consistente si y sólo si $b_3-2b_1=0$ o, dicho de otra manera, si y sólo si $b_3=2b_1$.

$\square$

Unicidad de la forma escalonada reducida

Concluimos esta entrada con una demostración de la unicidad de la forma escalonada reducida, usando que si dos matrices $A$ y $B$ que difieren por una sucesión finita de operaciones elementales entonces los sistemas $AX=0$ y $BX=0$ son equivalentes. La demostración que presentamos (corta y elegante) se debe a Thomas Yuster, publicada en el año 1983.

Teorema. La forma escalonada reducida es única.

Demostración: Procedemos por inducción sobre $n$, el número de columnas de $A\in M_{m,n}(F)$. El resultado es claro para $n=1$, pues solo tenemos una columna cero o una columna con un $1$ hasta arriba. Supongamos pues que el resultado se cumple para $n-1$, y demostremos que se cumple para $n$. Sea $A\in M_{m,n}(F)$ y sea $A’\in M_{m,n-1}(F)$ la matriz que se obtiene al quitarle la $n$-ésima columna.

Supongamos que $B$ y $C$ son ambas matrices distintas en forma escalonada reducida obtenidas de $A$. Dado que una sucesión de operaciones elementales que llevan a $A$ a una forma escalonada reducida también llevan a $A’$ a una forma escalonada reducida (si a una matriz escalonada reducida le cortamos una columna, sigue siendo escalonada reducida), podemos aplicar la hipótesis de inducción y concluir que si $B$ y $C$ son distintas entonces difieren en la columna que quitamos y solo en esa.

Sea $j$ tal que $b_{jn}\neq c_{jn}$ (por nuestra discusión previa, existe esta entrada, ya que asumimos que $B\neq C$). Si $X$ es un vector tal que $BX=0$ entonces $CX=0$, ya que $A,B$ y $C$ son matrices equivalentes. Luego $(B-C)X=0$. Como $B$ y $C$ difieren solo en la última columna, la $j$-ésima ecuación del sistema se lee $(b_{jn}-c_{jn})x_n=0$, pues los coeficientes previos son cero. Así, $x_n=0$ siempre que $BX=0$ o $CX=0$. Se sigue que $x_n$ no es una variable libre para $B$ y $C$, por lo que ambas tienen un pivote en la última columna. Como ambas están en forma escalonada reducida, entonces la última columna tiene necesariamente un $1$ en la entrada de hasta abajo y puros ceros en otras entradas, es decir, $B$ y $C$ tienen la misma última columna, una contradicción a nuestras suposiciones.

Se sigue que entonces $B=C$ y queda probado por contradicción el paso inductivo, lo que prueba el teorema.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Determina cuántas soluciones tiene el sistema $AX=b$ con
    \begin{align*} A=\begin{pmatrix} 0 & 1 &1\\ 2& -4 & 7\\ 0 & 0 & 1 \end{pmatrix}\text{ y } b=\begin{pmatrix} 1 \\ 6 \\-1\end{pmatrix}\end{align*}
  • Si $A$ tiene estrictamente más renglones que columnas y $b$ es un vector que no tiene ninguna entrada cero, ¿puede el sistema $AX=b$ ser consistente?
  • Si $A$ tiene estrictamente más columnas que renglones, ¿puede el sistema $AX=0$ tener una única solución?
  • Si $A\in M_{m,n}(F)$ es una matriz diagonal, ¿que puedes decir de la consistencia y la unicidad de soluciones del sistema $AX=b$?

Más adelante…

El método que describimos en esta entrada es muy flexible y poderoso. Permite resolver sistemas de ecuaciones de la forma $AX=b$ de manera metódica. Esto no quiere decir que ya entendamos todo lo que hay que saber de sistemas lineales. Una vez que hayamos introducido los conceptos de espacio vectorial y subespacio, podremos describir con más precisión cómo son las soluciones a un sistema lineal. Además, más adelante, veremos otras formas en las que se pueden resolver sistemas de ecuaciones usando determinantes. En particular, veremos la regla de Cramer.

Por ahora, nos enfocaremos en una aplicación más de la reducción gaussiana: encontrar inversas de matrices. Veremos esto en la siguiente entrada.

Entradas relacionadas

Álgebra Lineal I: Reducción gaussiana para determinar inversas de matrices

[latexpage]

Introducción

En entradas anteriores hablamos de las matrices en forma escalonada reducida y de cómo cualquier matriz puede ser llevada a esta forma usando el algoritmo de reducción gaussiana. Usamos esto para resolver sistemas de ecuaciones lineales arbitrarios, es decir, de la forma $AX=b$. en esta ocasión estudiaremos cómo ver si una matriz es invertible y cómo determinar inversas de matrices mediante el algoritmo de reducción gaussiana.

Inversas de matrices elementales

Recordemos que una matriz $A\in M_n(F)$ es invertible si existe una matriz $B$ tal que $AB=BA=I_n$. Dicha matriz $B$ es única, se conoce como la matriz inversa de $A$ y se denota por $A^{-1}$.

Es importante observar que las matrices elementales son invertibles, puesto que las operaciones elementales se pueden revertir (esto también nos dice que la inversa de una matriz elemental también es una matriz elemental). Por ejemplo, si la matriz $E$ se obtiene de $I_n$ intercambiando los renglones $i$ y $j$, entonces $E^{-1}$ se obtiene de $I_n$ haciendo la misma operación, por lo que $E^{-1}=E$. Por otro lado, si $E$ se obtiene de sumar $\lambda$ veces el renglón $j$ al renglón $i$ en $I_n$, entonces E^{-1} se obtiene de sumar $-\lambda$ veces el renglón $j$ al renglón $i$ en $I_n$. El argumento para reescalamientos queda como tarea moral.

Debido a su importancia, enunciaremos este resultado como una proposición.

Proposición. Las matrices elementales son invertibles y sus inversas también son matrices elementales. Como consecuencia, cualquier producto de matrices elementales es invertible.

Algunas equivalencias de matrices invertibles

Hasta el momento sólo tenemos la definición de matrices invertibles para verificar si una matriz es invertible o no. Esto es poco práctico, pues dada una matriz, tendríamos que sacar otra «de la nada».

El siguiente resultado empieza a decirnos cómo saber de manera práctica cuándo una matriz cuadrada es invertible. También habla de una propiedad importante que cumplen las matrices invertibles.

Teorema. Para una matriz $A\in M_n(F)$ las siguientes afirmaciones son equivalentes:
(a) $A$ es invertible.
(b) $A_{red}=I_n$.
(c) $A$ es producto de matrices elementales.

Demostración. Para empezar, notemos que el producto de matrices invertibles es invertible , pues cualquier matriz elemental es invertible y las matrices invertibles son estables bajo productos. Esto prueba que (c) implica (a).

Ahora, supongamos que (a) se satisface. Recordemos que para una matriz $A\in M_{m,n}(F)$ podemos encontrar una matriz $B\in M_m(F)$ que es producto de matrices elementales y tal que $A_{red}=BA$. Como $A$ es invertible (por hipótesis) y $B$ es invertible (por la proposición de la sección anterior), entonces $BA$ es invertible y por consiguiente $A_{red}$ también lo es. En particular, todos los renglones de $A_{red}$ son distintos de cero y por lo tanto $A_{red}$ tiene $n$ pivotes, uno en cada columna. Como $A_{red}$ está en forma escalonada reducida, necesariamente $A_{red}=I_n$. Esto prueba que (a) implica (b).

Finalmente, supongamos que $(b)$ se satisface. Entonces existe una matriz $B$, la cual es producto de matrices elementales y tal que $BA=I_n$. Por la proposición anterior $B$ es invertible y $B^{-1}$ es producto de matrices elementales. Como $BA=I_n$, tenemos que $A=B^{-1}BA=B^{-1}$ y así $A$ es producto de matrices elementales, de manera que (b) implica (c).

$\square$

Ya podemos responder de manera práctica la pregunta «¿$A$ es invertible?». Para ello, basta aplicarle reducción gaussiana a $A$. Por el teorema anterior, $A$ es invertible si y sólo si la forma escalonada reducida obtenida es $I_n$. Por supuesto, esto aún no nos dice exactamente quién es la inversa.

Invertibilidad y sistemas de ecuaciones

La siguiente proposición expresa las soluciones del sistema $AX=b$ cuando $A$ es una matriz cuadrada e invertible. Para facilitar las cosas hay que tener un algoritmo para encontrar la inversa de una matriz. Más adelante veremos uno de estos algoritmos basado en reducción gaussiana.

Proposición. Si $A\in M_n(F)$ es una matriz invertible, entonces para todo $b\in F^n$ el sistema $AX=b$ tiene una única solución, dada por $X=A^{-1}b$.

Demostración. Sea $X$ una solución del sistema. Multiplicando la igualdad $AX=b$ por la izquierda por $A^{-1}$ obtenemos $A^{-1}(AX)=A^{-1}b$. Como
\begin{align*}
A^{-1}(AX)=(A^{-1}A)X
=I_nX=X,
\end{align*}
concluimos que $X=A^{-1}b$, por lo tanto el sistema tiene a lo más una solución. Para ver que esta es en efecto una solución, calculamos
\begin{align*}
A(A^{-1}b)=(AA^{-1})b=I_nb=b.
\end{align*}

$\square$

A continuación presentamos un resultado más, que relaciona matrices invertibles con que sus sistemas lineales correspondientes tengan soluciones únicas.

Teorema. Sea $A\in M_n(F)$ una matriz. Las siguientes afirmaciones son equivalentes:
(a) $A$ es invertible.
(b) Para toda $b\in F^n$ el sistema $AX=b$ tiene una única solución $X\in F^n$.
(c) Para toda $b\in F^n$ el sistema $AX=b$ es consistente.

Demostración. Ya demostramos que (a) implica (b). Es claro que (b) implica (c) pues si el sistema tiene una única solución, en particular tiene una solución.

Así, supongamos que que (c) se satisface. Sea $A_{red}$ la forma escalonada reducida de $A$. Por una proposición ya antes mencionada en esta entrada sabemos que existe una matriz $B$ la cual es producto de matrices elementales (por lo tanto invertible) y tal que $A_{red}=BA$. Deducimos que el sistema $A_{red}X=Bb$ tiene al menos una solución para todo $b\in F^n$ (pues si $AX=b$, entonces $A_{red}X=BAX=Bb$).

Ahora, para cualquier $b’\in F^n$ podemos encontrar $b$ tal que $b’=Bb$, tomando $b=B^{-1}b’$. Aquí estamos usando que $B$ es invertible por ser producto de matrices elementales. Concluimos que el sistema $A_{red}X=b$ es consistente para cada $b\in F^n$, pero entonces cualquier renglón de $A_{red}$ debe ser distinto de cero (si la fila $i$ es cero, entonces escogiendo cada vector $b$ con la $i-$ésima coordenada igual a $1$ se obtiene un sistema inconsistente) y, como en la demostración del teorema anterior, se tiene que $A_{red}=I_n$. Usando el teorema anterior concluimos que $A$ es invertible.

$\square$

Hasta ahora, al tomar un matriz cuadrada $A$ y proponer una inversa $B$, la definición de invertibilidad nos exige mostrar ambas igualdades $AB=I_n$ y $BA=I_n$. Finalmente tenemos las herramientas necesarias para mostrar que basta mostrar una de estas igualdades para que ambas se cumplan.

Corolario. Sean $A,B\in M_n(F)$ matrices.
(a) Si $AB=I_n$, entonces $A$ es invertible y $B=A^{-1}$.
(b) Si $BA=I_n$, entonces $A$ es invertible y $B=A^{-1}$.

Demostración. (a) Para cada $b\in F^n$ el vector $X=Bb$ satisface
\begin{align*}
AX=A(Bb)
=(AB)b=b,
\end{align*}
por lo tanto el sistema $AX=b$ es consistente para cada $b\in M_n(F)$. Por el teorema anterior, $A$ es invertible. Multiplicando la igualdad $AB=I_n$ por la izquierda por $A^{-1}$ obtenemos $B=A^{-1}AB=A^{-1}$, y así $B=A^{-1}$.
(b) Por el inciso (a), sabemos que $B$ es invertible y $A=B^{-1}$, pero entonces $A$ es invertible y $A^{-1}=B$.

$\square$

Determinar inversas usando reducción gaussiana

El corolario anterior nos da una manera práctica de saber si una matriz es invertible y, en esos casos, determinar inversas de matrices. En efecto, $A$ es invertible si y sólo si podemos encontrar una matriz $X$ tal que $AX=I_n$ y de aquí $X=A^{-1}$.

La ecuación $AX=I_n$ es equivalente a los siguientes sistemas lineales:
\begin{align*}
AX_1=e_1, \hspace{2mm}, AX_2=e_2, \hspace{2mm} \dots , \hspace
{2mm} AX_n=e_n.
\end{align*}
donde $e_i$ es la $i-$ésima columna de $I_n$ y $X_i$ denota la $i-$ésima columna de $X$. Ya sabemos cómo resolver sistemas lineales usando reducción gaussiana. Esto nos da una manera práctica de calcular $X$: si al menos uno de estos sistemas es inconsistente, entonces $A$ no es invertible; si todos son consistentes, entonces las soluciones $X_1,\ldots,X_n$ son las columnas de la inversa.

En la práctica, uno puede evitar resolver $n$ sistemas lineales considerando el siguiente truco:

En lugar de tomar $n$ matrices aumentadas $[A| e_i]$ considera sólo la matriz aumentada $[A|I_n]$, en la cual agregamos la matriz $I_n$ a la derecha de $A$ (de manera que $[A|I_n]$ tiene $2n$ columnas). Finalmente sólo hay que encontrar la forma escalonada reducida $[A’|X]$ de la matriz de $n\times 2n \hspace{2mm} [A|I_n]$. Si $A’$ resulta ser distinto de $I_n$, entonces $A$ no es inverible. Si $A’=I_n$, entonces la inversa de $A$ es simplemente la matriz $X$.

Ejemplo de determinar inversas

Para ilustrar lo anterior resolveremos el siguiente ejemplo práctico.

Ejemplo. Calcula la inversa de la matriz
\begin{align*}
A= \begin{pmatrix}
1 & 5 & 1\\
2 & 11 & 5\\
9 & -3 & 0
\end{pmatrix}.
\end{align*}

Solución. Aplicamos reducción gaussiana a la matriz extendida
\begin{align*}
[A|I_3]= \begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
2 & 11 & 5 & 0 & 1 & 0\\
9 & -3 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_2 -2R_1\begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
9 & -3 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_3 -9R_1\begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & -48 & -9 & -9 & 0 & 1
\end{pmatrix}
\end{align*}

\begin{align*}
R_1 -5R_2\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & -48 & -9 & -9 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_3 +48R_2\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 135 & -105 & 48 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{135}R_3\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
\begin{align*}
R_1+14R_3\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
\begin{align*}
R_2-3R_3\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
0 & 1 & 0 & \frac{1}{3} & -\frac{1}{15} & -\frac{1}{45}\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
De donde
\begin{align*}
A^{-1}=\begin{pmatrix}
\frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
\frac{1}{3} & -\frac{1}{15} & -\frac{1}{45}\\
-\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}.
\end{align*}

$\square$

En el ejemplo anterior hicimos el algoritmo de reducción gaussiana «a mano», pero también pudimos haber usado una herramienta en línea, como la calculadora de forma escalonada reducida de eMathHelp.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • ¿Cuál sería la operación elemental inversa a aplicar un reescalamiento por un factor $c\neq 0$ en el renglón de una matriz?
  • Encuentra la inversa de la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2 & 1\\
    2 & 0 & 2\\
    1 & 2 & 0
    \end{pmatrix}.
    \end{align*}
    mediante reducción gaussiana.
  • Resuelve el sistema de ecuaciones
    \begin{align*}
    \begin{cases}
    x+2y+2z=1\\
    2x+y+2z=4\\
    2x+2y+z=5
    \end{cases}
    \end{align*}
  • Sea $A\in M_n(F)$ una matriz tal que $A_{red}\neq I_n$. Explica por qué $A$ no es invertible.
  • Cuando $A$ no es invertible, la matriz $[A|I_n]$ tiene forma escalonada reducida $[A_{red}|X]$, con $A_{red}\neq I_n$. ¿Qué sucede si en este caso haces la multiplicación $AX$? ¿Y la multiplicación $XA$?
  • Demuestra la primera proposición de esta entrada para operaciones elementales sobre las columnas.

Más adelante…

En esta entrada vimos cómo el algoritmo de reducción gaussiana nos permite saber si una matriz es invertible o no. También nos da una forma práctica de determinar inversas. Hay otras formas de hacer esto mediante determinantes. Sin embargo, el método que describimos es bastante rápido y flexible.

Ya que entendemos un poco mejor a las matrices invertibles, el siguiente paso es usarlas para desarrollar nuestra teoría de álgebra lineal. Las matrices invertibles se corresponden con transformaciones lineales que se llaman isomorfismos, las cuales detectan cuándo dos espacios vectoriales son «el mismo».

También más adelante refinaremos el concepto de ser invertible y no. Esta es una clasificación en sólo dos posibilidades. Cuando definamos y estudiamos el rango de matrices y transformaciones lineales tendremos una forma más precisa de decir «qué tanta información guarda una transformación».

Entradas relacionadas

Álgebra Lineal I: Teorema de reducción gaussiana

[latexpage]

Introducción

Llegamos a uno de los resultados más importantes del álgebra lineal: el teorema de reducción gaussiana. Como mencionamos en una entrada previa, el teorema nos proporcionará un algoritmo que nos permitirá resolver muchos problemas prácticos: resolver sistemas lineales, invertir matrices, así como temas que veremos más adelante, como determinar la independencia lineal de vectores.

El teorema nos dice que cualquier matriz puede llevarse a una en forma escalonada reducida con solo una cantidad finita de operaciones elementales. La prueba además nos dice cómo hacerlo de una manera más o menos sencilla. Aparte de la demostración, damos una receta un poco más coloquial de cómo trabajar con el algoritmo y finalmente damos un ejemplo, muy importante para aclarar el procedimiento.

Sugerencia antes de empezar

El algoritmo que veremos es uno de esos resultados que es fácil de seguir para una matriz en concreto, pero que requiere de un buen grado de abstracción para entender cómo se demuestra en general. Una fuerte recomendación es que mientras estes leyendo la demostración del siguiente teorema, tengas en mente alguna matriz muy específica, y que vayas realizando los pasos sobre ella. Puedes usar, por ejemplo, a la matriz $$A=\begin{pmatrix} 0 & 0 & 4 & -2 \\ 0 & 3 & -1 & 0 \\ 0& -3 & 5 & -2 \end{pmatrix}.$$

El teorema de reducción gaussiana

Teorema. Cualquier matriz $A\in M_{m,n}(F)$ puede llevarse a una en forma escalonada reducida realizando una cantidad finita de operaciones elementales en sus filas.

Demostración: Daremos una demostración algorítmica. Sea $A\in M_{m,n}(F)$ cualquier matriz. Para auxiliarnos en el algoritmo, vamos a tener registro todo el tiempo de las siguientes dos variables:

  • $X$ es la columna que «nos toca revisar»
  • $Y$ es la cantidad de «filas no triviales» que hemos encontrado

La variable $X$ empieza siendo $1$ y la variable $Y$ empieza siendo $0$.

Haremos los siguientes pasos:

Paso 1. Revisaremos la columna $X$ a partir de la fila $Y+1$ (osea, al inicio $Y=0$, así que revisamos toda la columna). Si todas estas entradas son iguales a $0$, entonces le sumamos $1$ a $X$ (avanzamos hacia la derecha) y si $X<n$, volvemos a hacer este Paso 1. Si $X=n$, vamos al paso 7.

Paso 2. En otro caso, existe alguna entrada distinta de cero en la columna $X$, a partir de la fila $Y+1$. Tomemos la primera de estas entradas. Supongamos que sucede en la fila $i$, es decir, que es la entrada $a_{iX}$. Al número en esta entrada $a_{iX}$ le llamamos $x$.

Paso 3. Hacemos un intercambio entre la fila $i$ y la fila $Y+1$. Puede pasar que $i=Y+1$, en cuyo caso no estamos haciendo nada. Independientemente del caso, ahora el número en la entrada $(X,Y+1)$ es $x\neq 0$.

Paso 4. Tomamos la fila $Y+1$ y la multiplicamos por el escalar $1/x$. Esto hace que ahora sea la primer entrada en su fila distinta de cero, y además que sea igual a $1$.

Paso 5. De ser necesario, hacemos transvecciones para hacer el resto de las entradas de la columna $X$ iguales a $0$. Esto lo podemos hacer pues, si por ejemplo la entrada $a_{iX}\neq 0$, entonces la transvección que a la $i$-ésima fila le resta $a_{iX}$ veces la $(Y+1)$-ésima fila hace que la entrada $(i,X)$ se anule.

Paso 6. Le sumamos $1$ a $Y$ (para registrar que encontramos una nueva fila no trivial) y le sumamos $1$ a $X$ (para avanzar a la columna de la derecha). Si $X<n$, vamos al Paso 1. Si $X=n$, vamos al Paso 7.

Paso 7. Reportamos la matriz obtenida como $A_{red}$, la forma escalonada reducida de $A$.

Mostremos que en efecto obtenemos una matriz escalonada reducida. El Paso 3 garantiza que las únicas filas cero están hasta abajo. El Paso 4 garantiza que todos los pivotes son iguales a 1. El ir recorriendo las columnas de izquierda a derecha garantiza que los pivotes quedan «escalonados», es decir de abajo hacia arriba quedan de izquierda a derecha. El Paso 5 garantiza que cada pivote es la única entrada no cero de su columna.

$\square$

El procedimiento descrito en el teorema se llama reducción gaussiana.

Como vimos en la entrada anterior realizar una operación elemental es sinónimo de multiplicar por una matriz elemental. Como el teorema nos dice que podemos obtener una matriz en forma escalonada reducida realizando una cantidad finita de operaciones elementales, se sigue que podemos obtener una matriz en forma escalonada reducida multiplicando por la izquierda por un número finito de matrices elementales. Al asociar todas estas matrices elementales en un único producto, obtenemos la demostración del siguiente corolario.

Corolario. Para cualquier matriz $A\in M_{m,n}(F)$ podemos encontrar una matriz $B\in M_{m}(F)$ que es un producto finito de matrices elementales y que satisface qu $A_{red}=BA$.

Un tutorial de reducción gaussiana más relajado

Si bien el teorema nos da la manera formal de hacer el algoritmo, el proceso es en realidad bastante intuitivo una vez que se entiende. Para esto explicamos en unos cuantos pasos en términos más sencillos como hacer la reducción:

  1. Buscamos la primer columna de la matriz que no tenga puros ceros.
  2. Una vez encontrada, buscamos la primer entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos el renglón con esa entrada hasta arriba haciendo un cambio de renglones.
  4. Multiplicamos por el inverso de esa entrada a todo el renglón, para quedarnos así con un $1$ hasta arriba.
  5. Sustraemos múltiplos del primer renglón a todos los otros renglones para que todo lo que esté abajo del $1$ sea cero.
  6. Buscamos la siguiente columna tal que no sea cero abajo del primer renglón.
  7. Repetimos los pasos anteriores, solo que en lugar de pasar nuestro renglón «hasta arriba» solo lo colocamos en el segundo lugar, y así sucesivamente.

Un ejemplo de reducción gaussiana

La mejor manera de entender el algoritmo de reducción gaussiana es con un ejemplo. Usemos el algoritmo para reducir la matriz

\begin{align*}
A=\begin{pmatrix} 0 & 1 & 2 & 3 &4\\ -1 & 0 &1 & 2 &3 \\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}\in M_{4,5}(\mathbb{R}).
\end{align*}

Aplicando los pasos en orden: Primero identificamos la primer columna que no sea idénticamente cero, y vemos que la primera columna no tiene puros ceros. La primer entrada que no es cero está en el segundo renglón. Así cambiamos el primer y segundo renglón de lugar para subir esa entrada y obtener

\begin{align*}
A_1=\begin{pmatrix} -1 & 0 &1 & 2 &3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}.
\end{align*}

Ahora que la primer entrada del primer renglón es distinta de cero, multiplicamos el primer renglón por $\frac{1}{-1}=-1$ y obtenemos

\begin{align*}
A_2=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}.
\end{align*}

Ahora queremos quitar el $3$ del último renglón. Para esto, multiplicamos por $-3$ el primer renglón y lo sumamos al último y nos queda

\begin{align*}
A_3&=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3-3 & 1-3\cdot 0 &-1-3\cdot (-1) & 0-3\cdot (-2) & 2-3\cdot (-3)\end{pmatrix}\\ &=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 0 & 1&2 & 6 & 11\end{pmatrix}.
\end{align*}

Ya tenemos entonces nuestra primera columna en forma escalonada reducida, pasemos a la segunda. Ya tenemos un $1$ en la segunda entrada de la segunda columna, por lo que no hace falta hacer un cambio de renglón o multiplicar por un inverso. Basta entonces con cancelar las otras entradas de la columna, para eso sustraemos el segundo renglón del tercero y cuarto, para obtener

\begin{align*}
A_4&= \begin{pmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 &4 \\ 0-0 & 1-1 & 1-2 & 1-3 & 1-4\\ 0 -0 & 1-1& 2-2 & 6-3 & 11-4\end{pmatrix}\\
&= \begin{pmatrix}
1 & 0 &-1 & -2 &-3\\ 0 & 1 & 2 & 3 &4 \\ 0 & 0 & -1 & -2 & -3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.
\end{align*}

Seguimos entonces con la tercera columna, y observamos que la entrada $(3,3)$ es $-1$, entonces la transformamos en un $1$ multiplicando el tercer renglón por $\frac{1}{-1}=-1$.

\begin{align*}
A_5=\begin{pmatrix}
1 & 0 &-1 & -2 &-3\\ 0 & 1 & 2 & 3 &4 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.
\end{align*}

Ahora tenemos que cancelar las entradas de la tercer columna, para eso sumamos $-2$ veces el tercer renglón al segundo y una vez el tercer renglón al primero:

\begin{align*}
A_6&=\begin{pmatrix}
1+0 & 0+0 &-1+1 & -2+2 &-3+3\\ 0-2\cdot 0 & 1-2\cdot 0 & 2-2\cdot 1 & 3-2\cdot2 &4-2\cdot3 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}\\
&= \begin{pmatrix}
1 & 0 &0 & 0 &0\\ 0 & 1 & 0 & -1 &-2 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.
\end{align*}

Ahora pasamos a la siguiente columna. En la entrada $(4,4)$ tenemos un $3$, pero queremos un $1$, entonces multiplicamos el último renglón por $\frac{1}{3}$:

\begin{align*}
A_7= \begin{pmatrix}
1 & 0 &0 & 0 &0\\ 0 & 1 & 0 & -1 &-2 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &1 & \frac{7}{3}\end{pmatrix}.\end{align*}

Finalmente, cancelamos las entradas restantes de los otros renglones sustrayendo dos veces el último renglón del penúltimo y sumándolo una vez al segundo para obtener

\begin{align*}
A_8=\begin{pmatrix}1 & 0 &0 &0 &0 \\ 0 & 1& 0 & 0 & \frac{1}{3}\\ 0 & 0 &1 & 0 &-\frac{5}{3}\\ 0 & 0 & 0 & 1 & \frac{7}{3} \end{pmatrix}.
\end{align*}

Y así termina nuestro algoritmo, y nuestra matriz está en forma escalonada reducida. Las dos cosas más importantes de $A_8$ son que

  • Está en forma escalonada reducida y
  • es equivalente a $A$, es decir, el sistema de ecuaciones $AX=0$ y el sistema de ecuaciones $A_8 X =0$ tienen exactamente las mismas soluciones.

De hecho, todas las matrices $A,A_1, A_2, \ldots, A_8$ son equivalentes entre sí, pues difieren únicamente en operaciones elementales. Esta propiedad es muy importante, y precisamente es la que nos permite aplicar el algoritmo de reducción gaussiana a la resolución de sistemas lineales.

Una aplicación a un sistema de ecuaciones

Usemos el ejemplo anterior para resolver un sistema de ecuaciones:

Problema. Resolver en los reales el sistema lineal homogéneo $AX=0$ donde $A$ es la matriz ejemplo de la sección anterior.

Solución: Los sistemas $AX=0$ y $A_{red}X=0$ son equivalentes, por lo que basta resolver $A_{red}X=0$ con $A_{red}$ la matriz en forma escalonada reducida que encontramos (es decir, $A_8$). Este sistema queda planteado por las siguientes ecuaciones lineales:

\begin{align*}
\begin{cases}
x_1=0\\
x_2+\frac{x_5}{3}=0\\
x_{3}-\frac{5}{3}x_5=0\\
x_4+\frac{7}{3}x_5=0.
\end{cases}.
\end{align*}

Ya hemos resuelto sistemas de este estilo. Aquí $x_5$ es la variable libre y $x_1,x_2,x_3,x_4$ son variables pivote. Fijando $x_5$ igual a cualquier número real $t$, obtenemos que las soluciones son de la forma

\begin{align*}
\left(0, -\frac{1}{3}t, \frac{5}{3} t, – \frac{7}{3}t, t\right), \hspace{2mm} t\in \mathbb{R}.
\end{align*}

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Aplica el algoritmo de reducción gaussiana a la matriz $$\begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 \\ 0 & 0 & 4 & 4 & 5 & 5 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{pmatrix}.$$ Para su sistema lineal asociado, encuentra todas las variables pivote y libres y resuélvelo por completo.
  • Aplica el algoritmo de reducción gaussiana a la matriz $$\begin{pmatrix} 0 & 8 \\ 0 & 2 \\ -1 & 5 \\ 2 & 3 \\ 5 & 0 \\ 3 & 1\end{pmatrix}.$$
  • Considera las matrices $A_1$, $A_4$ y $A_8$ de la sección con el ejemplo del algoritmo de reducción gaussiana. Toma una solución no trivial de $A_8X=0$ y verifica manualmente que también es solución de los sistemas lineales $A_1X=0$ y de $A_4X=0$.
  • Encuentra la matriz $B$, producto de matrices elementales tal que $BA=A_{red}$ con $A$ la matriz que usamos en el ejemplo. Para ello, tendrás que multiplicar todas las matrices correspondientes a las operaciones elementales que usamos.
  • Explica qué es lo que garantiza que el algoritmo de reducción gaussiana en efecto hace una cantidad finita de operaciones elementales.
  • Aplica el algoritmo de reducción gaussiana a la matriz $$A=\begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1\end{pmatrix}.$$ Si haces los pasos correctamente, llegarás a una matriz del estilo $$A_{red}=\begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix}.$$ Toma el bloque $B$ de $2\times 2$ de la izquierda de $A$, es decir $B=\begin{pmatrix} 0 & 2 \\ 1 & 1\end{pmatrix}$. Toma el bloque $C$ de $2\times 2$ de la derecha de $A_{red}$, es decir, $C=\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$ ¿Qué matriz obtienes al hacer el producto $BC$? ¿Y el producto $CB$? ¿Por qué crees que pasa esto?

Más adelante…

El algoritmo de reducción gaussiana es crucial para muchos de los problemas que nos encontramos en álgebra lineal. Por ahora, las aplicaciones principales que veremos es cómo nos permite resolver sistemas de ecuaciones lineales de la forma $AX=b$ y cómo nos permite encontrar inversas de matrices. Sin embargo, más adelante usaremos reducción gaussiana para determinar la dimensión de espacios vectoriales, conjuntos generados, para determinar si ciertos vectores son linealmente independientes, para determinar el rango de una matriz y varias otras cosas más.

Entradas relacionadas

Álgebra Lineal I: Problemas de producto de matrices y matrices invertibles

[latexpage]

Introducción

Esta sección consta de puros problemas para practicar los conceptos vistos en entradas previas. Las entradas anteriores correspondientes son la de producto de matrices y la de matrices invertibles.

Problemas resueltos

Problema. Encuentra todas las matrices $B\in M_3(\mathbb{C})$ que conmutan con la matriz

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 &2
\end{pmatrix}.
\end{align*}

Solución. Sea

\begin{align*}
B=\begin{pmatrix} a & b & c\\ d & e & f \\ g & h & i \end{pmatrix}\in M_3(\mathbb{C}).
\end{align*}

Calculamos usando la regla del producto:

\begin{align*}
AB=\begin{pmatrix}
a & b & c\\ 0 & 0 & 0\\ 2 g & 2h & 2i \end{pmatrix}
\end{align*}

y

\begin{align*}
BA= \begin{pmatrix} a & 0 & 2c\\ d & 0 & 2f\\ g & 0 & 2i\end{pmatrix}.
\end{align*}

Igualando ambas matrices obtenemos que $A$ y $B$ conmutan si y sólo si se satisfacen las condiciones

\begin{align*}
\begin{cases}
b=d=f=h=0\\
2c=c\\
2g=g\end{cases}.
\end{align*}

Las últimas dos condiciones son equivalentes a que $c=g=0$. Cualquier matriz que conmuta con $A$ satisface estas condiciones y conversamente (por nuestro cálculo) si satisface estas ecuaciones conmuta con $A$. Esto nos deja como parámetros libres a $a,e,i$, es decir $B$ puede ser cualquier matriz diagonal.

$\square$

Problema. Considerando las matrices

\begin{align*}
A=\begin{pmatrix} 1 & 1 & 1\\ 0& 4 &-1\\ 9& 6 & 0 \end{pmatrix}, \hspace{2mm} B= \begin{pmatrix} -1 & 1\\ 0 & -2 \\ 1 &0 \end{pmatrix},
\end{align*}

¿cuáles de los productos $A^2, AB, BA, B^2$ tienen sentido? Calcula los que si lo tienen.

Solución. Recordamos que los productos tienen sentido si el número de columnas de la matriz de la izquierda sea el mismo que el número de filas de la matriz de la derecha. Entonces no podemos realizar los productos $BA$ o $B^2$ pues esta condición no se cumple (por ejemplo, $B$ tiene $3$ columnas, $A$ tiene $2$ filas, y estos números difieren). Calculamos entonces usando la regla del producto:

\begin{align*}
A^2 = \begin{pmatrix}
10 & 11 & 0\\
-9 & 10 & -4\\
9 & 33 & 3\end{pmatrix}, \hspace{2mm} AB= \begin{pmatrix} 0 & -1\\ -1 & -8\\ -9 &-3\end{pmatrix}.
\end{align*}

$\square$

Problema. Considera la matriz \begin{align*}
A=\begin{pmatrix} 1 & 1& 0 \\ 0 & 1 &1\\ 0 &0 & 1 \end{pmatrix}
\end{align*}

  • Demuestra que $A$ satisface que $(A-I_3)^3=O_3$
  • Calcula $A^{n}$ para cualquier entero positivo $n$.

Solución.

  • Hacemos el cálculo directamente:
    \begin{align*}
    (A-I_3)^3&= \begin{pmatrix} 0 & 1 & 0\\0 & 0 &1\\ 0 & 0 &0 \end{pmatrix}^{2} \cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix} \\&= \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 &0 &0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix}\\&=O_3. \end{align*}
  • Para este tipo de problemas, una estrategia que funciona es hacer casos pequeños para hacer una conjetura, y luego demostrarla por inducción. Probando para algunos valores de $n$ conjeturamos que
    \begin{align*}
    A^{n}=\begin{pmatrix} 1 & n & \frac{n(n-1)}{2}\\ 0 & 1 & n\\ 0 & 0 &1 \end{pmatrix}.
    \end{align*}
    Lo demostramos por inducción sobre $n$, dando por cierto el caso base con $n=1$.
    Hagamos ahora el paso inductivo. Para esto usamos que $1+\dots + (n-1)= \frac{n(n-1)}{2}$.
    Nuestra hipótesis de inducción nos dice entonces que para cierto $n$ se tiene que $A^{n}=\begin{pmatrix} 1 & n & 1+\dots +(n-1) \\ 0 & 1 & n\\ 0 & 0 & 1\end{pmatrix}$. Usando que $A^{n+1}=A^{n}\cdot A$ con nuestra hipótesis de inducción se sigue:
    \begin{align*}
    A^{n+1}= A^{n}\cdot A&= \begin{pmatrix} 1 & n & 1+\dots +(n-1)\\ 0 & 1 &n\\ 0 & 0 &1\end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\end{pmatrix}\\ &= \begin{pmatrix} 1 & 1+n & 1+\dots + (n-1)+n\\ 0 & 1 & n+1\\ 0 & 0 &1\end{pmatrix}.\end{align*}
    Luego el resultado es cierto para $n+1$ y así queda demostrado el resultado.

$\square$

El siguiente problema combina temas de números complejos y de matrices invertibles. Para que lo entiendas a profundidad, es útil recordar la teoría de raíces $n$-ésimas de la unidad. Puedes revisar esta entrada del blog. El ejemplo puede parecer un poco artificial. Sin embargo, las matrices que se definen en él tienen muchas aplicaciones, por ejemplo, en procesamiento de señales.

Problema. Sea $n>1$ un natural y sea

\begin{align*}
\zeta= e^{\frac{2\pi i}{n}}= \cos \left( \frac{2\pi}{n}\right)+i\sin \left( \frac{2\pi}{n}\right).
\end{align*}

Este número puede parecer muy feo, pero es simplemente la raíz $n$-ésima de la unidad de menor argumento.

Definimos la matriz de Fourier de orden $n$, denotada por $\mathcal{F}_n$ como la matriz tal que su $(j,k)-$ésima entrada es $\zeta^{(j-1)(k-1)}$ para $1\leq j,k\leq n$.

  • a) Sea $\overline{\mathcal{F}_n}$ la matriz cuya $(j,k)-$ésima entrada es el conjugado complejo de la $(j,k)-$ésima entrada de $\mathcal{F}_n$. Demuestra que
    \begin{align*}
    \mathcal{F}_n\cdot \overline{\mathcal{F}_n} = \overline{\mathcal{F}_n}\cdot \mathcal{F}_n= nI_n.
    \end{align*}
  • b) Deduce que $\mathcal{F}_n$ es invertible y calcule su inversa.

Solución.

  • a) Sean $1\leq j,k\leq n$. Usando la regla del producto, podemos encontrar la entrada $(j,k)$ como sigue:
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n} \right)_{jk} &= \sum_{l=1}^{n} \left(\mathcal{F}_n\right)_{jl} \cdot \left(\overline{\mathcal{F}_n}\right)_{lk}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)} \cdot \overline{\zeta^{(l-1)(k-1)}}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)-(l-1)(k-1)},
    \end{align*}
    la última igualdad se debe a que $\overline{\zeta}= \zeta^{-1}$. Así
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}=\sum_{l=1}^{n}\zeta^{(l-1)(j-k)}=\sum_{l=0}^{n-1}\left( \zeta^{j-k}\right)^{l}.
    \end{align*}
    Y la suma de la derecha es la suma de una sucesión geométrica con razón $\zeta^{j-k}$. Si $j=k$, entonces $\zeta^{j-k}=1$, así que la suma es igual a $n$ ya que cada termino es $1$ y lo sumamos $n$ veces. Si $j\neq k$ entonces $\zeta^{j-k}\neq 1$ y usamos la fórmula para una suma geométrica:
    \begin{align*}
    \sum_{l=0}^{n-1} \left( \zeta^{j-k}\right)^{l}= \frac{1-\left(\zeta^{j-k}\right)^{n}}{1-\zeta^{j-k}}=\frac{1-(\zeta^{n})^{j-k}}{1-\zeta^{j-k}}=0.\end{align*}
    Usamos en la última igualdad que $\zeta^{n}=1$. Se sigue que $\left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}$ es $n$ si $j=k$ y $0$ de otra manera, es decir
    \begin{align*}
    \mathcal{F}_n\cdot\overline{\mathcal{F}_n}=n\cdot I_n.
    \end{align*}
    La igualdad simétrica $\overline{\mathcal{F}_n}\cdot \mathcal{F}_n=n \cdot I_n$ se prueba de la misma manera y omitimos los detalles.
  • b) Por el inciso anterior, sugerimos $\frac{1}{n} \overline{\mathcal{F}_n}$, y esta satisface

    \begin{align*}
    \mathcal{F}_n \cdot \frac{1}{n} \overline{\mathcal{F}_n} = \frac{1}{n} \cdot n I_n= I_n
    \end{align*}
    y la otra igualdad se verifica de la misma manera. Por lo tanto, $\mathcal{F}_n$ es invertible y su inversa es $\frac{1}{n} \overline{\mathcal{F}_n}$.

$\square$

Problema. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que

\begin{align*}
A+B=I_n \hspace{5mm} A^2+B^2=O_n
\end{align*}

Demuestra que $A$ y $B$ son invertibles y que satisfacen

\begin{align*}
(A^{-1}+B^{-1})^{n}=2^{n} I_n
\end{align*}

Solución. Observamos que las propiedades dadas nos permiten calcular

\begin{align*}
A(I_n+B-A)&= (I_n-B) (I_n+B-A)\\&=I_n+B-A-B-B^2+BA\\
&= I_n -A-B^2+BA \\&=I_n+(B-I_n)A-B^2\\ &=I_n-A^2-B^2\\&= I_n.
\end{align*}

Es decir $A^{-1}=I_n+B-A$ (falta demostrar que con esta propuesta, también se cumple $A^{-1}A=I_n$, omitimos los cálculos). Similarmente $B^{-1}= I_n+A-B$ y por tanto $A^{-1}+B^{-1}= 2\cdot I_n$ y de esta igualdad se sigue la segunda parte del problema, pues

\begin{align*}
\left(A^{-1}+B^{-1}\right)^{n}= \left( 2\cdot I_n\right)^{n}=2^{n} \cdot I_n.\end{align*}

$\square$

Entradas relacionadas

Álgebra Lineal I: Matrices invertibles

[latexpage]

Introducción

Siguiendo el hilo de la entrada pasada, por la correspondencia entre transformaciones lineales y matrices así como la composición y su producto, podemos traducir el problema de invertibilidad de transformaciones lineales en términos de matrices, a las que llamaremos matrices invertibles. Es decir, si tenemos $\varphi: F^n\to F^n$, $\psi: F^n\to F^n$ transformaciones lineales tales que

\begin{align*}
\varphi\circ \psi= Id_{F^n}, \hspace{2mm} \psi \circ \varphi=Id_{F^n}
\end{align*}

¿cómo se traduce esto en términos de sus matrices asociadas?

Veremos que la respuesta yace en matrices que tienen inverso multiplicativo, a diferencia de un campo $F$, donde todo $x$ tiene un $x^{-1}$, cuando trabajamos con matrices no todas tienen una matriz inversa y las que si son de especial importancia.

Definición de matrices invertibles

Definición. Decimos que una matriz $A\in M_n (F)$ es invertible o bien no singular si existe una matriz $B\in M_n(F)$ tal que

\begin{align*}
AB=BA=I_n
\end{align*}

Ejemplo. Veamos que la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ es invertible. Para ello, tenemos que exhibir una matriz $B$ tal que $AB=I_2=BA$. Proponemos a la matriz $B=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Haciendo la multiplicación con la regla del producto, tenemos que

\begin{align*}
AB&=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 1\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot (-1)+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

¡Aún no hemos terminado! Para satisfacer la definición, también tenemos que mostrar que $BA=I_2$:

\begin{align*}
BA&=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + (-1) \cdot 0 & 1 \cdot 1 + (-1)\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot 1+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

Ahora sí, podemos concluir que la matriz $A$ es invertible.

$\square$

Observación. Una primera cosa que hay que notar es que en la definición se pide que tanto $AB$ como $BA$ sean la matriz identidad $I_n$. Es importante verificar ambas, pues como sabemos, el producto de matrices no siempre conmuta.

Otra observación importante es que si la matriz $B$ como en la definición existe, entonces es necesariamente única: En efecto, si $C\in M_n(F)$ es otra matriz tal que

\begin{align*}
AC=CA=I_n,
\end{align*}

entonces manipulando las expresiones en juego:

\begin{align*}
C&= I_n C \\&= (BA)C\\
&=B(AC)\\&= B I_n \\&=B.
\end{align*}

Entonces no hay ambigüedad al hablar de la matriz inversa de $A$. Ya no tiene mucho sentido usar una letra diferente para ella. Simplemente la denotaremos por $A^{-1}$.

Primeras propiedades de matrices invertibles

Resumimos algunas propiedades de las matrices invertibles en la siguiente proposición.

Proposición.

  1. Para $c\in F$ es un escalar distinto de cero, se tiene que $c I_n$ es invertible.
  2. Si $A$ es invertible, entonces $A^{-1}$ también lo es, y $\left(A^{-1}\right)^{-1}=A$
  3. Si $A,B\in M_n(F)$ son invertibles, entonces $AB$ también lo es y

    \begin{align*}
    \left(AB\right)^{-1}= B^{-1}A^{-1}.
    \end{align*}

Demostración:

  1. Como $c\neq 0$ y $F$ es un campo, entonces existe $c^{-1}$ en $F$ y así $c^{-1} I_n$ satisface (por la compatibilidad del producto por escalares de esta entrada)

    \begin{align*}
    (cI_n)\cdot (c^{-1}I_n)&= (cc^{-1})\cdot (I_n I_n)\\&= I_n\\
    &= (c^{-1} c) \cdot(I_n)\\&= (c^{-1} I_n) \cdot (c I_n).
    \end{align*}
    Luego $c^{-1}I_n$ es la matriz inversa de $c I_n$.
  2. Para evitar alguna confusión con la notación, denotemos a $A^{-1}$ por $B$. Así

    \begin{align*}
    AB=BA=I_n.
    \end{align*}
    Luego $B$ es invertible y su inversa es $A$.
  3. Si $A,B\in M_n(F)$ son invertibles entonces existen $A^{-1}$ y $B^{-1}$. Sea $C= B^{-1} A^{-1}$. Así

    \begin{align*}
    (AB)C=ABB^{-1}A^{-1}= A I_n A^{-1}= AA^{-1} =I_n.
    \end{align*}
    Y análogamente

    \begin{align*}
    C(AB)= B^{-1}A^{-1} A B= B^{-1} I_n B= B^{-1} B=I_n.
    \end{align*}
    Mostrando así que $AB$ es invertible con inversa $C$.

$\square$

Observación. Es importante notar que el ‘sacar inverso’ invierte el orden de los productos. Es decir, en el producto $AB$ aparece primero $A$ y luego $B$, mientras que el inverso $(AB)^{-1}$ es $B^{-1}A^{-1}$, en donde aparece primero $B^{-1}$ y luego $A^{-1}$. Esto es muy importante en vista de que la multiplicación de matrices no es conmutativa y por lo tanto en general

\begin{align*}
(AB)^{-1}\neq A^{-1} B^{-1}.
\end{align*}

También es importante notar que si bien la invertibilidad se preserva bajo productos (el producto de matrices invertibles es invertible) ésta no se preserva bajo sumas. Por ejemplo, tanto $I_n$ como $-I_n$ son invertibles en virtud del teorema, sin embargo su suma es $I_n+(-I_n)=O_n$, que no es invertible.

Ya hablamos de cuándo una matriz $A$ en $M_n(F)$ es invertible. ¿Qué sucede si consideramos a todas las matrices invertibles en $M_n(F)$? Introducimos el siguiente objeto de importancia fundamental en muchas áreas de las matemáticas:

Definición. El conjunto de matrices invertibles $A\in M_n(F)$ es llamado el grupo lineal general y es denotado por $GL_n(F)$.

En la tarea moral hay un ejercicio en el que se pide mostrar que $GL_n(F)$ es un grupo bajo la operación de producto de matrices. En realidad en este curso no hablaremos mucho de $GL_n(F)$ como grupo. Pero es importante que sepas de su existencia y que conozcas su notación, pues será importante en tu preparación matemática futura.

Invirtiendo matrices

Si bien el concepto de invertibilidad es sencillo de introducir, gran parte de la herramienta para determinar (irónicamente, a través de los determinantes) la invertibilidad de una matriz o propiedades relacionadas (por ejemplo, una computación efectiva de matrices inversas) todavía no está a nuestra disposición. Por tanto, lo único que podemos hacer es uso de ‘fuerza bruta’ para encontrar las inversas de matrices invertibles, y eso haremos en los siguientes ejemplos para al menos familiarizarnos con los cálculos.

Problema. Sea la matriz $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}$. ¿Es $A$ invertible? De serlo, calcula su inversa.

Solución. Como mencionamos, con la teoría que hemos desarrollado hasta ahora solo podemos atacar el problema directamente. Buscamos una matriz

\begin{align*}
B= \begin{pmatrix} a & b & c\\ x & y & z\\ u & v & w\end{pmatrix}
\end{align*}

tal que $AB=I_3=BA$. Usando la regla del producto, calculamos

\begin{align*}
AB=\begin{pmatrix} x & y & z\\ a & b &c \\ u & v & w \end{pmatrix}.
\end{align*}

Igualando esta matriz a $I_3$ obtenemos las condiciones

\begin{align*}
\begin{cases} x=b=w=1\\ y=z=a=c=u=v=0. \end{cases}
\end{align*}

Esto muestra que una buena candidata a ser la inversa de $A$ es la matriz

\begin{align*}
A^{-1}= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Falta un paso más: hay que verificar que $BA=I_3$. Afortunadamente esto es cierto. Su verificación queda como tarea moral.

$\square$

Resaltamos que el método usado no es eficiente, y tampoco es general (pues funcionó solo por la particularidad de la matriz $A$). Dicho esto, exhibimos un método que puede ser útil cuando la matriz por invertir es suficientemente ‘bonita’ (por ejemplo si tiene muchos ceros).

Sea $A\in M_n(F)$ una matriz y $b\in F^n$ un vector. Supongamos que el sistema $AX=b$ en el vector variable $X$ tiene una única solución $X\in F^n$. Un resultado que probaremos más adelante nos dice que entonces $A$ es invertible y que la solución es $X=A^{-1}b$ (es decir, que podemos ‘despejar’ $X$ multiplicando por $A^{-1}$ del lado izquierdo ambos lados). Así, si el sistema resulta fácil de resolver, podemos obtener una expresión de $A^{-1}$ en términos de cualquier vector $b$, y ésto basta para determinar a $A^{-1}$. En la práctica, la resolución del sistema mostrará que

\begin{align*}
A^{-1} b = \begin{pmatrix}
c_{11}b_1 + c_{12} b_2 +\dots + c_{1n}b_n\\
c_{21}b_1+c_{22}b_2 + \dots + c_{2n} b_n\\
\vdots\\
c_{n1} b_1 + c_{n2} b_2 +\dots + c_{nn}b_n
\end{pmatrix}
\end{align*}

para algunos escalares $c_{ij}$ independientes de $b$. Escogiendo $b=e_i$ el $i-$ésimo vector de la base canónica, el lado izquierdo es simplemente la $i-$ésima columna de $A^{-1}$ y el lado derecho es la $i-$ésima columna de $[c_{ij}]$. Como ambas matrices son iguales columna a columna, deducimos que

\begin{align*}
A^{-1}=[c_{ij}]
\end{align*}

Subrayamos que, una vez el sistema resuelto, el resto es relativamente sencillo pues solo es fijarnos en los coeficientes. La dificultad reside entonces en resolver el sistema $AX=b$, y la dificultad de este sistema depende fuertemente de la matriz $A$, por lo que nos limitaremos por lo pronto a ejemplos sencillos.

Retomemos el problema anterior para ver cómo funciona este método recién expuesto.

Problema. Resuelve el problema anterior usando el método que acabamos de describir.

Solución. Sea $b=\begin{pmatrix} b_1 \\ b_2 \\ b3 \end{pmatrix}\in F^3$, tratemos de resolver $AX=b$ para $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. El sistema se escribe entonces

\begin{align*}
\begin{pmatrix} b_1 \\ b_2 \\ b_3\end{pmatrix}=AX= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} x_2 \\ x_1 \\ x_3\end{pmatrix}.
\end{align*}

O equivalentemente

\begin{align*}
\begin{cases} x_1=b_2\\ x_2= b_1 \\ x_3=b_3.\end{cases}
\end{align*}

Como el sistema siempre se puede resolver dado $b\in F^3$, podemos afirmar que $A$ es invertible, y tenemos que

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1\\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} b_2\\ b_1 \\ b_3\end{pmatrix}= \begin{pmatrix} 0\cdot b_1 + 1\cdot b_2 + 0 \cdot b_3\\ 1\cdot b_1 +0\cdot b_2 +0\cdot b_3\\ 0\cdot b_1 + 0\cdot b_2 +1\cdot b_3\end{pmatrix}. \end{align*}

Fijándonos en los coeficientes del lado derecho, vemos que la primera fila de $A^{-1}$ es $(0 \ 1 \ 0)$, la segunda $(1\ 0 \ 0)$ y la tercera $(0\ 0\ 1)$. Luego

\begin{align*}
A^{-1}=\begin{pmatrix}
0 & 1& 0\\
1 & 0&0\\
0 & 0 & 1\end{pmatrix}\end{align*}

$\square$

Problema. Sea la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 1 &1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix} \end{align*}

Demuestre que $A$ es invertible y encuentre su inversa.

Solución. Usamos el mismo método. Sea $b= \begin{pmatrix} b_1\\ b_2 \\ b_3 \\ b_4 \end{pmatrix}\in F^4$ y resolvemos $AX=b$ con $X=\begin{pmatrix} x_1\\ x_2 \\ x_3 \\ x_4\end{pmatrix}$. Esta vez el sistema asociado es el siguiente (omitimos los cálculos de la regla del producto):

\begin{align*}
\begin{cases}
x_1+x_2+x_3+x_4=b_1\\
x_2+x_3+x_4=b_2\\
x_3+x_4=b_3\\
x_4=b_4
\end{cases}.
\end{align*}

Este sistema lo podemos resolver de manera más o menos sencilla: De la última ecuación tenemos que $x_4=b_4$, luego sustituyendo en la penúltima obtenemos $x_3+b_4=b_3$ o bien $x_3=b_3-b_4$. Sustituyendo esto a su vez en la segunda ecuación obtenemos que $x_2+b_3=b_2$, es decir $x_2=b_2-b_3$ y finalmente $x_1= b_1-b_2$. Así el sistema siempre tiene solución y estas están dadas por

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{pmatrix} = \begin{pmatrix} b_1-b_2\\ b_2-b_3\\ b_3-b_4\\ b_4 \end{pmatrix}.
\end{align*}

De esto se sigue que (fijándonos en los coeficientes) la primera fila de $A^{-1}$ es $(1\ -1 \ 0 \ 0)$, y análogamente obtenemos las demás, de manera que

\begin{align*}
A^{-1}=\begin{pmatrix}
1 & -1 & 0 &0\\
0 & 1 & -1 & 0\\
0&0 &1 &-1\\
0 & 0 & 0 &1
\end{pmatrix}.
\end{align*}

Un buen ejercicio es verificar que en efecto con esta inversa propuesta se cumple que $AA^{-1}=I_4=A^{-1}A$.

$\square$

Matrices invertibles diagonales

Concluimos esta sección con un último problema de matrices invertibles. Para resolverlo no usamos el método expuesto, sino un argumento particular para las matrices diagonales.

Problema. Demuestre que una matriz diagonal $A\in M_n(F)$ es invertible si y sólo si todas sus entradas en la diagonal son distintas de cero. Más aún, de ser el caso, $A^{-1}$ también es diagonal.

Solución. Sea $A=[a_{ij}]\in M_n(F)$ una matriz diagonal y $B=[b_{ij}]\in M_n(F)$ cualquier matriz. Usando la regla del producto tenemos que

\begin{align*}
(AB)_{ij}= \sum_{k=1}^{n} a_{ik} b_{kj}.
\end{align*}

Como $a_{ik}=0$ para $k\neq i$ (por ser $A$ diagonal) muchos de los términos en la suma desaparecen y nos quedamos con

\begin{align*}
(AB)_{ij}= a_{ii} b_{ij}
\end{align*}

y de manera similar se puede verificar que

\begin{align*}
(BA)_{ij}=a_{jj}b_{ij}.
\end{align*}

Aprovechemos estas observaciones para proponer a la inversa de $A$.

Si $a_{ii}\neq 0$ para todo $i\in \{1,\dots, n\}$ entonces podemos considerar a $B$ como la matriz diagonal con entradas $b_{ii}=\frac{1}{a_{ii}}$. Las fórmulas que acabamos de calcular nos dan que $AB=BA=I_n$ y así $A$ es invertible y su inversa $B$ es diagonal.

Conversamente, supongamos que $A$ es invertible y diagonal. Así, existe una matriz $B$ tal que $AB=BA=I_n$. Luego para toda $i\in \{1, \dots, n\}$ se cumple

\begin{align*}
1= (I_n)_{ii}= (AB)_{ii}= a_{ii}b_{ii}
\end{align*}

Así $a_{ii}\neq 0$ para $i\in \{1, \dots, n\}$ y así todas las entradas en la diagonal son distintas de cero.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Aunque para determinar inversos de matrices generales necesitamos desarrollar más teoría, las matrices invertibles de $2\times 2$ son fáciles de entender. Muestra que si se tiene una matriz $A$ en $M_2(F)$ con entradas $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ y $ad-bc\neq 0$, entonces la matriz $$B=\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ es la inversa de $A$. Para ello verifica explícitamente usando la regla del producto que tanto $AB=I_2$, como que $BA=I_2$.
  • En el primer problema de invertir matrices, muestra que $BA$ también es $I_3$.
  • La matriz $$A=\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{2}\end{pmatrix}$$ es invertible. Encuentra su inversa.
  • Verifica que $GL_n(F)$ es en efecto un grupo bajo la operación de multiplicación de matrices. Debes mostrar que:
    • El producto de dos matrices invertibles es invertible.
    • Existe un neutro multiplicativo $E$ (¿quién sería?).
    • Para matriz $A$ en $GL_n(F)$ existe una matriz $B$ en $GL_n(F)$ tal que $AB=BA=E$.
  • Explica por qué la matriz $O_n$ no es invertible. Explica por que si una matriz en $M_n(F)$ tiene una columna (o fila) tal que todas sus entradas sen iguales a $0$, entonces la matriz no es invertible. Este ejercicio lo puedes hacer directamente de la definición, sin tener que recurrir a herramientas más fuertes.
  • Generaliza el penúltimo problema a una matriz de tamaño $n\times n$ con puros unos sobre y por encima de la diagonal, es decir, para la cual $[a_{ij}]=1$ si $j\geq i$ y $0$ en otro caso.

Más adelante…

En esta entrada hablamos del concepto de matrices invertibles, vimos algunas de sus propiedades y esbozamos un método para encontrar la inversa de una matriz. Hay mejores métodos para encontrar dicha inversa. Uno de ellos, que es muy rápido, es el método de reducción gaussiana, que sirve para mucho más que invertir matrices. Para llegar a él, aún tenemos que desarrollar algo de teoría. Pero antes de eso, hablaremos de otros tipos particulares de matrices.

Entradas relacionadas