Archivo de la etiqueta: independientes

Probabilidad I: Independencia de Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos un nuevo concepto: la probabilidad condicional. Vimos que dada una medida de probabilidad $\mathbb{P}$, para un evento $A$ tal que $\Prob{A} > 0$, podemos calcular la probabilidad de que ocurra otro evento $B$ condicionado a que ya ocurrió $A$. Este concepto es importante, pues también habrá veces en las que la probabilidad condicional $\Prob{B \mid A}$ es la única que se conoce.

Por otro lado, hay algo que también nos debe de interesar. Para dos eventos $A$, $B$ tales que $\Prob{A} > 0$, ¿será siempre cierto que condicionar a que $A$ ya ocurrió cambia la probabilidad de $B$? Es decir, ¿siempre es cierto que $\Prob{B} \neq \Prob{B \mid A}$? La respuesta es que no. Al definir eventos, encontraremos casos en los que la probabilidad de uno no afecta la del otro. Esta propiedad es conocida como independencia de eventos. En esta entrada veremos la definición de independencia de $2$ eventos. Después, veremos cómo se extiende para $3$ o más eventos, pues no es inmediato deducirla a partir de la independencia de $2$ eventos.

Independencia de dos eventos

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Dados dos eventos $A$ y $B$, es posible que al condicionar a que $A$ ya ocurrió, la probabilidad de $B$ no cambie. Esto es, que $\Prob{B} = \Prob{B \mid A}$. De manera intuitiva, esto quiere decir que la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$ (y viceversa). Esta propiedad es conocida como independencia, y se define a continuación:


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que dos eventos $A$ y $B$ son independientes si se cumple que

\[ \Prob{A \cap B} = \Prob{A} \Prob{B}. \]


Una consecuencia inmediata de la definición anterior es que si $A$ y $B$ son eventos independientes, entonces $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$ siempre que $\Prob{A} > 0$ y $\Prob{B} > 0$.

Comentamos que cuando $A$ y $B$ son independientes, la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$. Por ejemplo, supón que $A$ y $B$ son eventos independientes tales que $\Prob{A} = 0.2$ y $\Prob{B} = 0.4$. Si realizaras el experimento aleatorio correspondiente muchas veces, se espera que en $20\%$ de esas realizaciones ocurra $A$, y en un $40\%$ ocurra $B$. Al ser independientes, de aquellas realizaciones en las que ocurrió $A$, $B$ ocurriría en un $40\%$ de ellas, pues su probabilidad no se ve afectada por la ocurrencia de $A$ (recuerda, son independientes). Así, $\Prob{A}\Prob{B} = (0.2)(0.4) = 0.08$, y en consecuencia, $\Prob{B \mid A} = \frac{0.08}{0.2} = 0.4$, que es precisamente $\Prob{B}$.

Ejemplo. Supón que realizas $3$ lanzamientos de moneda de manera equiprobable. Es decir, si $\mathrm{A}$ representa a «águila» y $\mathrm{S}$ representa a «sol», tenemos el siguiente espacio muestral equiprobable $\Omega$:

\[ \Omega = \begin{Bmatrix} \mathrm{(A, A, A)}, & \mathrm{(A, A, S)}, & \mathrm{(A, S, A)}, & \mathrm{(S, A, A)}, \\ \mathrm{(A, S, S)}, & \mathrm{(S, A, S)}, & \mathrm{(S, S, A)}, & \mathrm{(S, S, S)} \end{Bmatrix}, \]

donde cada resultado tiene probabilidad de ocurrencia de $\frac{1}{|\Omega|} = \frac{1}{8}$. Podemos acordar la siguiente convención para los distintos resultados de $\Omega$:

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

simplificando un poco la escritura de los eventos que veremos a continuación. Sean $A$, $B$ y $C$ los siguientes eventos:

  • $A$: El primer lanzamiento es águila. En consecuencia, $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$. Además, $\Prob{A} = \frac{4}{8} = \frac{1}{2}$.
  • $B$: El segundo lanzamiento es águila. Así, $B = \{ \mathrm{AAA, AAS, SAA, SAS} \}$. También se tiene que $\Prob{B} = \frac{1}{2}$.
  • $C$: Hay al menos dos águilas. Esto es, $C = \{ \mathrm{AAA, AAS, ASA, SAA} \}$. A su vez, se tiene que $\Prob{C} = \frac{1}{2}$.

Las probabilidades de cada evento se obtuvieron considerando que el espacio muestral es equiprobable.

  1. Se tiene que $A \cap B = \{ \mathrm{AAA, AAS} \}$, por lo que \[ \Prob{A \cap B} = \frac{2}{8} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B}. \]En consecuencia, se puede concluir que $A$ y $B$ son independientes.
  2. Por otro lado, $A \cap C = \{ \mathrm{AAA, AAS, ASA } \}$. Así, tenemos que \[ \Prob{A \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{C}.\]Como se tiene que $\Prob{A \cap C} \neq \Prob{A}\Prob{C}$, $A$ y $C$ no son independientes.
  3. De manera similar, $B \cap C = \{ \mathrm{AAA, AAS, SAA } \}$, por lo que \[ \Prob{B \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{B}\Prob{C},\]y se concluye que $B$ y $C$ no son independientes.

Observa que los resultados en 2 y 3 tienen sentido con nuestra noción intuitiva de independencia y probabilidad condicional. Por ejemplo, si queremos la probabilidad condicional de $A$ dado $C$, $\Prob{A \mid C}$, obtenemos que esta es

\[ \Prob{A \mid C} = \frac{\Prob{A \cap C}}{\Prob{C}} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4}, \]

que tiene sentido, pues $3$ de los $4$ resultados en $C$ cumplen lo que establece el evento $A$, «que el primer lanzamiento sea águila». Esto exhibe que condicionar a que $C$ ya ocurrió cambia la probabilidad de ocurrencia de $A$, poniendo en evidencia que no son independientes.

El evento $B^{\mathsf{c}} = \{ \mathrm{SSS, SSA, ASS, ASA} \}$ es tal que $\Prob{B^{\mathsf{c}}} = \frac{1}{2}$. Además, se tiene que $A \cap B^{\mathsf{c}} = \{ \mathrm{ASS, ASA} \}$, por lo que

\[ \Prob{A \cap B^{\mathsf{c}}} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B^{\mathsf{c}}}. \]

Esto nos lleva a concluir que no sólo los eventos $A$ y $B$ son independientes: $A$ y $B^{\mathsf{c}}$ también lo son.


La última parte de este ejemplo revela una propiedad de la independencia de eventos que enunciamos a continuación.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sean $A$ y $B \in \mathscr{F}$ eventos. Si $A$ y $B$ son independientes, entonces:

  1. $A$ y $B^{\mathsf{c}}$ son independientes,
  2. $A^{\mathsf{c}}$ y $B$ son independientes,
  3. $A^{\mathsf{c}}$ y $B^{\mathsf{c}}$ son independientes.

Este último teorema corresponde a la idea de que cuando dos eventos son indepenedientes, la no-ocurrencia de un evento no afecta la probabilidad de que ocurra (o no ocurra) el otro.

Independencia de tres eventos

La definición de independencia puede extenderse a más de dos eventos. Sin embargo, esta extensión se debe de hacer de manera delicada. Si tenemos $3$ eventos $A$, $B$ y $C$, ¿cómo podríamos decir que estos $3$ eventos son independientes? Claramente, queremos preservar esa noción de que la ocurrencia o no ocurrencia de uno o más de estos eventos no afecta la probabilidad de ocurrencia de los restantes.

Más concretamente, esto quiere decir que si $A$, $B$ y $C$ son independientes, entonces la ocurrencia o no ocurrencia de $A$ no debería de afectar la probabilidad de ocurrencia de $B$, ni la de $C$. Similarmente, la ocurrencia de $B$ no debería de afectar la probabilidad de $A$, ni la de $C$; y tampoco la ocurrencia de $C$ debería de afectar la probabilidad de $A$, ni la de $B$.

Además, también deberíamos de pedir que la ocurrencia de $A$ y de $B$ (al mismo tiempo) no debe de afectar la probabilidad de que ocurra $C$. Del mismo modo, la ocurrencia de $A$ y $C$ no debe de afectar la probabilidad de $B$; ni la ocurrencia de $B$ y $C$ debe de afectar la probabilidad de $A$.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sean $A$, $B$ y $C$ eventos. Diermos que $A$, $B$ y $C$ son independientes si

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$.
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$.
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$.
  4. $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$.

Las propiedades 1 a 3 corresponden a la independencia dos a dos que queremos entre los eventos. Además, en conjunto con la propiedad 4 de esta definición, capturan la idea de que la ocurrencia de dos de los eventos no debería de afectar la probabilidad del evento restante. Si $A$, $B$ y $C$ son eventos independientes, entonces

\[ \Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C} = \Prob{B} \Prob{A} \Prob{C}, \]

y como $\Prob{A \cap C} = \Prob{A} \Prob{C}$, entonces se tiene que

\[ \Prob{A \cap B \cap C} = \Prob{B} \Prob{A \cap C}, \]

que justamente corresponde a que la ocurrencia de $A$ y $C$ no afecta la probabilidad de $B$. Lo mismo puede hacerse análogamente para el resto de combinaciones de eventos posibles.

En apariencia, la definición de independencia para $3$ eventos parece un poco excesiva. ¿No será posible deducir las propiedades 1, 2 y 3 a partir de la 4? ¿O quizás deducir la propiedad 4 a partir de las primeras 3? Veamos un par de ejemplos para ver que no es el caso.

Ejemplo. Considera nuevamente el experimento de lanzar una moneda $3$ veces de manera equiprobable. El espacio muestral $\Omega$ de este experimento es

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

donde $\mathrm{A}$ es «águila» y $\mathrm{S}$ es «sol». Considera los siguientes $2$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila»: $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$.
  2. $B$ el evento de que los primeros dos lanzamientos son «águilas», o los últimos dos lanzamientos son «soles». Esto es, $B = \{ \mathrm{AAA, AAS, ASS, SSS} \}$.

Puede observarse intuitivamente que los dos eventos no son independientes, pues ambos dependen del resultado del primer lanzamiento. Formalmente, basta con demostrar que no cumplen la definición de independencia. Para ello, nota que $A \cap B = \{ \mathrm{AAA, AAS, ASS} \}$, por lo que

\[ \Prob{A \cap B} = \frac{|A \cap B|}{|\Omega|} = \frac{3}{8}. \]

Por otro lado, se tiene que $\Prob{A} = \frac{1}{2}$ y $\Prob{B} = \frac{1}{2}$, así que

\[ \Prob{A} \Prob{B} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \frac{1}{4}. \]

En conclusión, tenemos que $\Prob{A \cap B} \neq \Prob{A} \Prob{B}$, y en consecuencia, $A$ y $B$ no son independientes.

Ahora, consideremos un tercer evento:

  1. $C$ el evento de que los últimos dos lanzamientos son distintos. En este caso, se tiene que el evento es $C = \{ \mathrm{AAS, ASA, SAS, SSA} \}$.

Para $C$, tenemos que $\Prob{C} = \frac{1}{2}$. Además, tenemos que $A \cap B \cap C = \{ \mathrm{AAS} \}$, por lo que

\[ \Prob{A \cap B \cap C} = \frac{1}{8} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B} \Prob{C}, \]

así que $A$, $B$ y $C$ cumplen la propiedad 4 de la definición de independencia de $3$ eventos, a pesar de que no cumplen la propiedad 1. Esto quiere decir que cuando tú te encuentres con tres eventos $A$, $B$ y $C$ tales que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, no se puede deducir que son independientes dos a dos, ¡también tienes que comprobarlo para determinar si son independientes!


Ejemplo. Bueno, ¿y qué hay de la interacción opuesta? Si $A$, $B$ y $C$ son eventos tales que

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$,
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$,
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$,

¿es eso suficiente para concluir que son independientes? Es decir, ¿de ahí podemos deducir que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$? La respuesta es que no. Considera el experimento de lanzar una moneda $4$ veces de manera equiprobable. En este caso, podemos escribir al espacio muestral $\Omega$ como sigue.

\[ \Omega = \begin{Bmatrix} \mathrm{AAAA}, & \mathrm{AAAS}, & \mathrm{AASA}, & \mathrm{ASAA}, \\ \mathrm{SAAA}, & \mathrm{AASS}, & \mathrm{ASAS}, & \mathrm{SAAS}, \\ \mathrm{ASSA}, & \mathrm{SASA}, & \mathrm{SSAA}, & \mathrm{SSSA}, \\ \mathrm{SSAS}, & \mathrm{SASS}, & \mathrm{ASSS}, & \mathrm{SSSS} \end{Bmatrix}. \]

Considera los siguientes $3$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila». Esto es, \[ A = \{ \mathrm{AAAA, AAAS, AASA, ASAA, AASS, ASAS, ASSA, ASSS}\}. \]
  2. $B$ el evento de que el último lanzamiento es «águila». Es decir,\[ B = \{ \mathrm{AAAA, AASA, ASAA, SAAA, ASSA, SASA, SSAA, SSSA} \}. \]
  3. $C$ el evento de que los cuatro lanzamientos resulten en $2$ «águilas» y $2$ «soles». Así,\[ C = \{ \mathrm{AASS, ASAS, SAAS, SASA, ASSA, SSAA} \}. \]

En consecuencia, encontramos que $\Prob{A} = \frac{8}{16} = \frac{1}{2}$, $\Prob{B} = \frac{8}{16} = \frac{1}{2}$, y $\Prob{C} = \frac{6}{16} = \frac{3}{8}$.

Al tomar las intersecciones de estos $3$ eventos, obtenemos lo siguiente:

  • $A \cap B = \{ \mathrm{AAAA, AASA, ASAA, ASSA} \}$, por lo que \[ \Prob{A \cap B} = \frac{4}{16} = \frac{1}{4} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B}, \]y en consecuencia, $A$ y $B$ son independientes.
  • $A \cap C = \{ \mathrm{AASS, ASAS, ASSA} \}$, y por lo tanto, \[ \Prob{A \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{C}, \]así que $A$ y $C$ son independientes.
  • $B \cap C = \{ \mathrm{SASA, ASSA, SSAA} \}$, y así, \[ \Prob{B \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{B} \Prob{C}, \]de donde se concluye que $B$ y $C$ son independientes.

No obstante, nota que $A \cap B \cap C = \{ \mathrm{ASSA} \}$. Por ello, se tiene que

\[ \Prob{A \cap B \cap C} = \frac{1}{16} \neq \frac{3}{32} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{B} \Prob{C}. \]

Por lo tanto, $\Prob{A \cap B \cap C} \neq \Prob{A} \Prob{B} \Prob{C}$, así que $A$, $B$ y $C$ no son independientes. Este ejemplo exhibe que aún cuando tengas tres eventos $A$, $B$ y $C$ independientes dos a dos, esto no asegura que se cumple que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, ¡debes de comprobarlo para concluir que los $3$ eventos son independientes!


Independencia de más de 3 eventos

La definición de independencia puede generalizarse para $n \in \mathbb{N}^{+}$ eventos. La idea de la definición será la misma que usamos para definir la independencia de $3$ eventos, pero extendida a todas las combinaciones de tamaño $k$ posibles, con $2 \leq k \leq n$. Presentamos esta definición a continuación.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $n \in \mathbb{N}^{+}$ tal que $n \geq 2$. Sean $A_{1}$, $A_{2}$, …, $A_{n}$ eventos. Diremos que son independientes si y sólamente si para toda colección finita $\{i_{1}, \ldots, i_{k}\}$ de índices distintos en $\{1,\ldots,n\}$ se cumple que

\[ \Prob{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \cdots \Prob{A_{i_{k}}}. \]


La definición anterior puede apantallar un poco, pero observa que lo que significa es que se tiene una lista de propiedades que debe de cumplir la familia $A_{1}$, $A_{2}$, …, $A_{n}$ para poder decir que son independientes. De manera más explícita, estas serían:

  • $\Prob{A_{i_{1}} \cap A_{i_{2}}} = \Prob{A_{i_{1}}}\Prob{A_{i_{2}}}$ para cada $i_{1}$, $i_{2} \in \{1,\ldots,n\}$ tales que $i_{1} \neq i_{2}$.
  • $\Prob{A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \Prob{A_{i_{3}}}$ para cada $i_{1}$, $i_{2}$, $i_{3} \in \{1,\ldots, n\}$ tales que $i_{1} \neq i_{2} \neq i_{3}$.

$\vdots$

  • $\Prob{A_{1} \cap A_{2} \cap \cdots \cap A_{n}} = \Prob{A_{1}}\Prob{A_{2}} \cdots \Prob{A_{n}}$.

Es decir, para verificar que $n$ eventos son independientes, hay que checar que la probabilidad «abre» la intersección como un producto primero con todas las combinaciones de eventos dos a dos, luego tres a tres, y así sucesivamente hasta llegar a la propiedad con todos los eventos.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Sean $A$ y $B$ eventos tales que $\Prob{A} > 0$ y $\Prob{B} > 0$. Demuestra que si $A$ y $B$ son independientes, entonces se cumple que $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$.
  2. Demuestra que para cualesquiera $A$, $B$ eventos, si $A$ y $B$ son independientes, entonces $A^{\mathsf{c}}$ y $B$ son independientes.
  3. A partir de la definición de independencia de $n$ eventos, escribe las propiedades que deben de cumplir $4$ eventos $A$, $B$, $C$ y $D$ para ser llamados independientes. Sugerencia: Primero revisa cómo se llega a la definición para $3$ eventos a partir de la de $n$ eventos.

Más adelante…

La independencia de eventos es un concepto importantísimo en la probabilidad, pues en muchos ejercicios y aplicaciones, se hacen supuestos de independencia. A pesar de que demostrar que $n$ conjuntos son independientes puede resultar complicado, cuando asumes la independencia, tienes una gran cantidad de propiedades a tu disposición. Por ello, en muchos teoremas básicos, la independencia se toma como hipótesis.

Más adelante, cuando veamos el concepto de variable aleatoria, veremos lo que significa que dos variables aleatorias sean independientes, y será necesario utilizar las definiciones que hemos visto aquí.

El siguiente tema que abordaremos son dos fórmulas para el cálculo de probabilidades muy útiles y que se basan en la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes.

Entradas relacionadas

Álgebra Lineal I: Problemas de bases y dimensión de espacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores vimos cómo se puede definir la dimensión de un espacio vectorial. Para ello, necesitamos encontrar una base. En el caso finito, la dimensión del espacio es la cardinalidad de una base. Esto está bien definido pues todas las bases tienen la misma cardinalidad. A continuación solucionaremos algunos ejemplos para reforzar los temas vistos.

Recordatorio de truco para mostrar que algo es base

En varios de los problemas usamos el siguiente resultado. Ya lo enunciamos y demostramos previamente. Pero como es sumamente útil, lo volvemos a enunciar, en términos más prácticos.

Proposición. Sea $V$ un espacio vectorial que ya sepamos que tiene dimensión finita $n$. Sea $B=\{v_1,v_2,\dots, v_n\}$ un conjunto de $n$ vectores de $v$. Entonces, cualquiera de las siguientes afirmaciones implica las otras dos:

  1. $B$ es un conjunto linealmente independiente en $V$
  2. $B$ es un conjunto generador para $V$.
  3. $B$ es una base de $V$

Por supuesto, el tercer punto implica los otros dos por la definición de base. Lo que es realmente útil en situaciones teóricas y prácticas es que si ya sabemos que un espacio tiene dimensión $n$, y tenemos un conjunto de $n$ vectores, entonces basta verificar que o bien (1) o bien (2). Con esto tendremos la otra afirmación gratuitamente.

Al usar este resultado, es muy importante verificar las hipótesis. Es decir, para usarlo se necesita:

  • Argumentar por qué la dimensión de un espacio vectorial es cierto entero $n$.
  • Argumentar que se está estudiando un conjunto con $n$ vectores.
  • Demostrar ya sea (1) o (2).

Problemas resueltos

Problema. Muestra que las siguientes cuatro matrices $A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $D=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ son una base del espacio vectorial $M_2(\mathbb{R})$.

Solución. Ya sabemos que $M_2(\mathbb{R})$ es un espacio vectorial de dimensión $4$, pues una base está conformada por las matrices $E_{11}$, $E_{12}$, $E_{21}$ y $E_{22}$ de la base canónica. El conjunto que tenemos consiste de $4$ matrices. Así, para mostrar que conforman una base, es suficiente con que mostremos que son un conjunto linealmente independiente.

Supongamos que existen reales $a,b,c,d$ tales que $$aA+bB+cC+dD=O_2.$$ Haciendo las operaciones entrada por entrada en esta igualdad, obtenemos que esto sucede si y sólo si $a,b,c,d$ son soluciones al sistema de ecuaciones
$$\begin{cases}a+c&=0\\b-d&=0\\b+d&=0\\a-c&=0.$$

Podríamos encontrar todas las soluciones a este sistema usando reducción gaussiana. Sin embargo, afortunadamente para este sistema hay una forma más sencilla de proceder. Sumando la primera y cuarta igualdad, obtenemos $2a=0$, de donde $a=0$ y entonces por la primer ecuación $c=0$. De manera simétrica, $b=d=0$. De esta forma, la única combinación lineal de $A,B,C,D$ que da la matriz cero es la trivial. Concluimos que $A,B,C,D$ son linealmente independientes, y por lo tanto son una base de $M_2(\mathbb{R})$.

$\square$

En el problema anterior resultó más práctico mostrar que las matrices eran linealmente independientes, pero también pudimos simplemente mostrar que generaban a $M_2(\mathbb{R})$. Por la proposición que enunciamos, cualquiera de los dos implica que en este contexto las matrices forman una base.

Veamos ahora un ejemplo en el que es más conveniente mostrar que el conjunto propuesto es generador.

Problema. Encuentra una base de $\mathbb{R}_4[x]$ que tenga al polinomio $$p(x)=1+x+x^2+x^3+x^4.$$

Solución. Ya sabemos que $\mathbb{R}_4[x]$ tiene dimensión $5$, pues una base es el conjunto de polinomios $\mathcal{B}=\{1,x,x^2,x^3,x^4\}$.

Proponemos al conjunto $$\mathcal{B}’=\{1,x,x^2,x^3,p(x)\}$$ como solución al problema.

Como $\mathcal{B}’$ es un conjunto con $5$ elementos, basta con mostrar que es un conjunto que genera a $\mathbb{R}_4[x]$. Para ello, notemos que $\mathcal{B}’$ puede generar al polinomio $x^4$ pues se obtiene mediante la combinación lineal $$x^4=p(x)-1-x-x^2-x^3.$$

De esta forma, $\mathcal{B}’$ puede generar todo lo que puede generar $\mathcal{B}$. En símbolos: $$\mathbb{R}_4[x]\subseteq \text{span}(\mathcal{B})\subseteq \text{span}(\mathcal{B}’) \subseteq \mathbb{R}_4[x].$$

Concluimos que $\text{span}(\mathcal{B}’) = \mathbb{R}_4[x]$. Esto muestra que $\mathcal{B}’$ es una base de $\mathbb{R}_4[x]$ que tiene al polinomio $p(x)$.

$\square$

Problema. Exactamente uno de los vectores $u=(9,5,1)$ y $v=(9,-5,1)$ puede ser escrito como combinación lineal de los vectores columna de la matriz $$A=\begin{pmatrix} 3 & 0 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{pmatrix}.$$ Determina cuál de ellos es y exprésalo como una combinación lineal de los vectores columna de $A$.

Solución. Un vector $b$ se puede escribir como combinación lineal de las columnas de una matriz $A$ si y sólo si el sistema lineal de ecuaciones $AX=b$ tiene solución. En efecto, si $X=(x,y,z)$, recordemos que $$AX=xC_1+yC_2+zC_3,$$ en donde $C_1$, $C_2$ y $C_3$ son las columnas de la matriz $A$.

De esta forma, una forma de proceder es plantear los sistemas de ecuaciones $AX=u$ y $AX=v$, y ver cuál de ellos tiene solución. Esto se puede hacer y dará la solución al problema.

Sin embargo, aprovecharemos este problema para introducir un truco más. Como queremos resolver ambos sistemas, podemos hacer reducción gaussiana en la matriz aumentada $(A|u|v)$, en donde estamos agregando dos vectores columna nuevos. De la forma escalonada reducida podremos leer todo lo que queremos. La matriz que nos interesa es
\begin{align*}\begin{pmatrix}
3 & 0 & 3 & 9 & 9 \\ 2 & 1 & 1 & 5 & -5\\ 1 & 2 & -1 & 1 & 1
\end{pmatrix}.\end{align*}

Usando la herramienta online de eMathHelp para calcular la forma escalonada reducida de esta matriz, obtenemos

\begin{align*}(A_{red}|u’|v’)=\begin{pmatrix}
1 & 0 & 1 & 3 & 0 \\ 0 & 1 & -1 & -1 & 0\\ 0 & 0 & 0 & 0 & 1
\end{pmatrix}.\end{align*}

Estamos listos para hacer el análisis. Tomando la submatriz conformada por las primeras cuatro columnas (las correspondientes a $A_{red}$ y $u’$), vemos que no queda pivote en la última columna. De este modo, sí hay una solución para $AX=u$.

Para obtener una solución, basta trabajar con esta submatriz y usar nuestros argumentos usuales de sistemas de ecuaciones lineales. La variable $z$ es libre. Las variables $x$ y $y$ son pivote. Haciendo $z=0$ obtenemos $x=3$ y $y=-1$. Concluimos que $$\begin{pmatrix} 9 \\ 5 \\ 1 \end{pmatrix} = 3\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}.$$

Esto sería suficiente para terminar el problema, pues el enunciado garantiza que uno y sólo uno de los vectores es combinación lineal de las columnas.

Pero estudiemos el otro caso para ver qué sucede. Tomando la submatriz conformada por las columnas $1$, $2$, $3$, $5$ de $(A_{red}|u’|v’)$ (correspondientes a $A_{red}$ y $v’$), vemos que sí hay un pivote en la última columna: el de la tercera fila. Entonces, no hay solución para $AX=v$.

$\square$

El problema anterior ayuda a fortalecer mucho nuestra intuición para resolver sistemas de ecuaciones lineales: el sistema $AX=b$ tiene solución si y sólo si el vector $b$ es combinación lineal de los vectores columna de $A$. Cada solución al sistema corresponde a una de estas combinaciones lineales.

Problema. Para $n$ un entero positivo y $k$ un entero de $0$ a $n$, definimos al polinomio $P_k(x)=x^k(1-x)^{(n-k)}$. Muestra que $P_0(x),\ldots, P_n(x)$ es una base para el espacio $\mathbb{R}_n[x]$.

Solución. Como $\mathbb{R}_n[x]$ tiene dimensión $n+1$ y estamos considerando un conjunto de $n+1$ polinomios, entonces basta mostrar que este conjunto es linealmente independiente. Supongamos que hay una combinación lineal de ellos que es igual a cero, digamos $$\alpha_0 (1-x)^n + \alpha_1 x(1-x)^{n-1} + \ldots + \alpha_{n-1} x^{n-1} (1-x) + \alpha_n x^n=0.$$

Si evaluamos la expresión anterior en $x=1$, casi todos los sumandos se anulan, excepto el último. De aquí, obtenemos que $\alpha_n 1^n=0$, de donde $\alpha_n=0$. La expresión se convierte entonces en $$\alpha_0 (1-x)^n + \alpha_1 x(1-x)^{n-1} + \ldots + \alpha_{n-1} x^{n-1} (1-x)=0.$$

Factorizando $1-x$ de todos los sumandos y usando que el polinomio $1-x\neq 0$, podemos «cancelar» al factor $1-x$. En otras palabras, podemos «dividir» la combinación lineal entre $1-x$ para obtener $$\alpha_0 (1-x)^{n-1} + \alpha_1 x(1-x)^{n-2} + \ldots + \alpha_{n-1} x^{n-1}=0.$$

De aquí podemos seguir aplicando el mismo argumento: evaluamos en $1$, concluimos que el último coeficiente es igual a $0$, y entonces podemos dividir subsecuentemente entre $1-x$. De esta forma, obtenemos $\alpha_n=\alpha_{n-1}=\ldots=\alpha_0=0$. Concluimos entonces que los polinomios propuestos son linealmente independientes, y por lo tanto forman una base de $\mathbb{R}_n[x]$.

$\square$

El argumento del último párrafo se puede formalizar todavía más usando inducción sobre $n$. Piensa en lo complicado que hubiera sido mostrar de manera directa que los polinomios propuestos generan a $\mathbb{R}_n[x]$. Gracias a la proposición que discutimos al inicio, esto lo obtenemos de manera automática.

Entradas relacionadas

Álgebra Lineal I: Problemas de combinaciones lineales, generadores e independientes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya hablamos de combinaciones lineales, de conjuntos generadores y de conjuntos independientes. Lo que haremos aquí es resolver problemas para reforzar el contenido de estos temas.

Problemas resueltos

Problema. Demuestra que el polinomio $p(x)=x^2+x+1$ no puede ser escrito en el espacio vectorial $\mathbb{R}[x]$ como una combinación lineal de los polinomios \begin{align*} p_1(x)=x^2-x\\ p_2(x) = x^2-1\\ p_3(x) = x-1.\end{align*}

Solución. Para resolver este problema, podemos plantearlo en términos de sistemas de ecuaciones. Supongamos que existen reales $a$, $b$ y $c$ tales que $$p(x)=ap_1(x)+bp_2(x)+cp_3(x).$$

Desarrollando la expresión, tendríamos que
\begin{align*}
x^2+x+1 &= a(x^2-x)+b(x^2-1)+c(x-1)\\
&= (a+b)x^2+(-a+c)x+(-b-c),
\end{align*}

de donde igualando coeficientes de términos del mismo grado, obtenemos el siguiente sistema de ecuaciones: $$\begin{cases}a+b & = 1\\ -a + c &= 1 \\ -b-c &= 1.\end{cases}$$

Para mostrar que este sistema de ecuaciones no tiene solución, le aplicaremos reducción gaussiana a la siguiente matriz extendida: $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_2+R_1$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_3+R_2$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

De aquí se ve que la forma escalonada reducida tendrá un pivote en la última columna. Por el teorema de existencia y unicidad el sistema original no tiene solución.

$\square$

En el problema anterior usamos un argumento de reducción gaussiana para mostrar que el sistema no tiene solución. Este es un método general que funciona en muchas ocasiones. Una solución más sencilla para ver que el sistema del problema no tiene solución es que al sumar las tres ecuaciones se obtiene $0=3$.

Problema. Sea $n$ un entero positivo. Sea $W$ el subconjunto de vectores en $\mathbb{R}^n$ cuya suma de entradas es igual a $0$. Sea $Z$ el espacio generado por el vector $(1,1,\ldots,1)$ de $\mathbb{R}^n$. Determina si es cierto que $$\mathbb{R}^n=W\oplus Z.$$

Solución. El espacio $Z$ está generado por todas las combinaciones lineales que se pueden hacer con el vector $v=(1,1,\ldots,1)$. Como sólo es un vector, las combinaciones lineales son de la forma $av$ con $a$ en $\mathbb{R}$, de modo que $Z$ es precisamente $$Z=\{(a,a,\ldots,a): a\in\mathbb{R}\}.$$

Para obtener la igualdad $$\mathbb{R}^n=W\oplus Z,$$ tienen que pasar las siguientes dos cosas (aquí estamos usando un resultado de la entrada de suma y suma directa de subespacios):

  • $W\cap Z = \{0\}$
  • $W+Z=\mathbb{R}^n$

Veamos qué sucede con un vector $v$ en $W\cap Z$. Como está en $Z$, debe ser de la forma $v=(a,a,\ldots,a)$. Como está en $W$, la suma de sus entradas debe ser igual a $0$. En otras palabras, $0=a+a+\ldots+a=na$. Como $n$ es un entero positivo, esta igualdad implica que $a=0$. De aquí obtenemos que $v=(0,0,\ldots,0)$, y por lo tanto $W\cap Z = \{0\}$.

Veamos ahora si se cumple la igualdad $\mathbb{R}^n=W+Z$. Por supuesto, se tiene que $W+Z\subseteq \mathbb{R}^n$, pues los elementos de $W$ y $Z$ son vectores en $\mathbb{R}^n$. Para que la igualdad $\mathbb{R}^n\subseteq W+Z$ se cumpla, tiene que pasar que cualquier vector $v=(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ se pueda escribir como suma de un vector $w$ uno con suma de entradas $0$ y un vector $z$ con todas sus entradas iguales. Veamos que esto siempre se puede hacer.

Para hacerlo, sea $S=x_1+\ldots+x_n$ la suma de las entradas del vector $v$. Consideremos al vector $w=\left(x_1-\frac{S}{n},\ldots, x_n-\frac{S}{n} \right)$ y al vector $z=\left(\frac{S}{n},\ldots,\frac{S}{n}\right)$.

Por un lado, $z$ está en $Z$, pues todas sus entradas son iguales. Por otro lado, la suma de las entradas de $w$ es
\begin{align*}
\left(x_1-\frac{S}{n}\right)+\ldots + \left(x_n-\frac{S}{n}\right)&=(x_1+\ldots+x_n)-n\cdot \frac{S}{n}\\ &= S-S=0,
\end{align*}

lo cual muestra que $w$ está en $W$. Finalmente, notemos que la igualdad $w+z=v$ se puede comprobar haciendo la suma entrada a entrada. Con esto mostramos que cualquier vector de $V$ es suma de vectores en $W$ y $Z$ y por lo tanto concluimos la igualdad $\mathbb{R}^n=W\oplus Z$.

$\square$

En el problema anterior puede parecer algo mágico la propuesta de vectores $w$ y $z$. ¿Qué es lo que motiva la elección de $\frac{S}{n}$? Una forma de enfrentar los problemas de este estilo es utilizar la heurística de trabajar hacia atrás. Sabemos que el vector $w$ debe tener todas sus entradas iguales a cierto número $a$ y queremos que $z=v-w$ tenga suma de entradas igual a $0$. La suma de las entradas de $v-w$ es $$(x_1-a)+\ldots+(x_n-a)= S -na.$$ La elección de $a=\frac{S}{n}$ está motivada en que queremos que esto sea cero.

Problema. Considera las siguientes tres matrices en $M_2(\mathbb{C})$:
\begin{align*}
A&= \begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix}\\
B&= \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}\\
C&= \begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix}.
\end{align*}

Demuestra que $A$, $B$ y $C$ son matrices linealmente dependientes. Da una combinación lineal no trivial de ellas que sea igual a $0$.

Solución. Para mostrar que son linealmente dependientes, basta dar la combinación lineal no trivial buscada. Buscamos entonces $a,b,c$ números complejos no cero tales que $aA+bB+cC=O_2$, la matriz cero en $M_2(\mathbb{C})$. Para que se de esta igualdad, es necesario que suceda entrada a entrada. Tenemos entonces el siguiente sistema de ecuaciones:
$$\begin{cases}
-i a + 2i b + ic &= 0\\
-3a + b -7c &=0\\
2a + 3b + 12c &= 0\\
3a -b +7c &=0.
\end{cases}$$

En este sistema de ecuaciones tenemos números complejos, pero se resuelve exactamente de la misma manera que en el caso real. Para ello, llevamos la matriz correspondiente al sistema a su forma escalonada reducida. Comenzamos dividiendo el primer renglón por $-i$ y aplicando transvecciones para hacer el resto de las entradas de la columna iguales a $0$. Luego intercambiamos la tercera y cuarta filas.

\begin{align*}
&\begin{pmatrix}
-i & 2i & i \\
-3 & 1 & -7 \\
2 & 3 & 12 \\
3 & -1 & 7
\end{pmatrix}\\
\to&\begin{pmatrix}
1 & -2 & -1 \\
0 & -5 & -10 \\
0 & 7 & 14 \\
0 & 5 & 10
\end{pmatrix}
\end{align*}

Ahora reescalamos con factor $-\frac{1}{5}$ la segunda fila y hacemos transvecciones para hacer igual a cero el resto de entradas de la columna 2:

\begin{align*}
&\begin{pmatrix}
1 & 0& 3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\end{align*}

Con esto llegamos a la forma escalonada reducida de la matriz. De acuerdo al procedimiento que discutimos en la entrada de sistemas lineales homogéneos, concluimos que las variables $a$ y $b$ son pivote y la variable $c$ es libre. Para poner a $a$ y $b$ en términos de $c$, usamos la primera y segunda ecuaciones. Nos queda \begin{align*} a &= -3c \\ b &= -2c. \end{align*}

En resumen, concluimos que para cualqueir número complejo $c$ en $\mathbb{C}$ se tiene la combinación lineal $$-3c\begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix} – 2c \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix} + c\begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Una posible combinación lineal no trivial se obtiene tomando $c=1$.

$\square$

En el problema anterior bastaba encontrar una combinación lineal no trivial para acabar el ejercicio. Por supuesto, esto también se puede hacer por prueba y error. Sin embargo, la solución que dimos da una manera sistemática de resolver problemas de este estilo.

Problema. Consideremos el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$. Para cada real $a$ en $(0,\infty)$, definimos a la función $f_a\in V$ dada por $$f_a(x)=e^{ax}.$$

Tomemos reales distintos $0<a_1<a_2<\ldots<a_n$. Supongamos que existe una combinación lineal de las funciones $f_{a_1},\ldots,f_{a_n}$ que es igual a $0$, es decir, que existen reales $\alpha_1,\ldots,\alpha_n$ tales que $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Muestra que $\alpha_1=\ldots=\alpha_n=0$. Concluye que la familia $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$.

Solución. Procedemos por inducción sobre $n$. Para $n=1$, si tenemos la igualdad $\alpha e^{ax}=0$ para toda $x$, entonces $\alpha=0$, pues $e^{ax}$ siempre es un número positivo. Supongamos ahora que sabemos el resultado para cada que elijamos $n-1$ reales cualesquiera. Probaremos el resultado para $n$ reales cualesquiera.

Supongamos que tenemos la combinación lineal $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Dividamos esta igualdad que tenemos entre $e^{a_nx}$:

$$\alpha_1 e^{(a_1-a_n)x} + \alpha_2e^{(a_2-a_n)x} + \ldots + \alpha_{n-1}e^{(a_{n-1}-a_n)x}+\alpha_n = 0.$$

¿Qué sucede cuando hacemos $x\to \infty$? Cada uno de los sumandos de la forma $\alpha_i e^{(a_i-a_n)x}$ se hace cero, pues $a_i<a_n$ y entonces el exponente es negativo y se va a $-\infty$. De esta forma, queda la igualdad $\alpha_n=0$. Así, nuestra combinación lineal se ve ahora de la forma $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_{n-1} e^{a_{n-1}x} = 0.$$

Por la hipótesis inductiva, $\alpha_1=\ldots=\alpha_{n-1}=0$. Como también ya demostramos $\alpha_n=0$, hemos terminado el paso inductivo.

Concluimos que la familia (infinita) $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$ pues cualquier subconjunto finito de ella es linealmente independiente.

$\square$

El problema anterior muestra que la razón por la cual ciertos objetos son linealmente independientes puede deberse a una propiedad analítica o de cálculo. A veces dependiendo del contexto en el que estemos, hay que usar herramientas de ese contexto para probar afirmaciones de álgebra lineal.

Entradas relacionadas

Álgebra Lineal I: Conjuntos generadores e independencia lineal

Por Ayax Calderón

Introducción

En esta entrada explicaremos cómo podemos estudiar espacios y subespacios vectoriales a partir de conjuntos más pequeños que guardan la información más relevante de ellos. A estos conjuntos les llamaremos generadores. Además estudiaremos el concepto de independencia lineal. A grandes rasgos podemos decir que un conjunto es linealmente independiente cuando no tiene «elementos redundantes» que se pueden obtener a partir de otros en el conjunto. En ambos casos, nos basaremos fuertemente en el concepto de combinaciones lineales que ya discutimos anteriormente.

Conjuntos generadores

El inciso (1) de la siguiente definición ya lo mencionamos parcialmente en una entrada anterior, para un conjunto finito de vectores. Aquí lo enunciamos de modo que también aplique para conjuntos posiblemente infinitos.

Definición. Sea $V$ un espacio vectorial sobre $F$ y $S$ un subconjunto de $V$.

  1. El subespacio generado por $S$ es el subconjunto de $V$ que consiste de todas las combinaciones lineales $c_1v_1+c_2v_2+\dots + c_nv_n$, donde $v_1,v_2,\dots,v_n$ es un subconjunto finito de $S$ y $c_1,c_2, \dots , c_n$ son escalares en $F$. Al subespacio generado de $S$ lo denotamos por $\text{span}(S)$. A menudo nos referiremos al subespacio generado de $S$ simplemente como «el generado de $S$».
  2. b) Decimos que $S$ es un conjunto generador de $V$ si $\text{span}(S)=V$.

En otras palabras, un subconjunto $S$ de $V$ es generador cuando cualquier elemento de $V$ se puede escribir como una combinación lineal de elementos de $S$.

Ejemplos.

  1. Considera el espacio vectorial $\mathbb{R}^3$ y el conjunto
    \begin{align*}
    e_1=\begin{pmatrix}
    1\\
    0\\
    0\end{pmatrix}, \hspace{2mm} e_2=\begin{pmatrix}
    0\\
    1\\
    0\end{pmatrix}, \hspace{2mm} e_3=\begin{pmatrix}
    0\\
    0\\
    1\end{pmatrix}.
    \end{align*}
    Entonces $e_1,e_2,e_3$ forma un conjunto generador de $\mathbb{R}^3$, pues cada vector $X=\begin{pmatrix}
    x\\
    y\\
    z\end{pmatrix}$ se puede escribir como $X=xe_1+ye_2+ze_3$. Sin embargo, el conjunto conformado por únicamente $e_2$ y $e_3$ no es generador pues, por ejemplo, el vector $(1,1,1)$ no puede ser escrito como combinación lineal de ellos.
  2. Sea $\mathbb{R}_n[x]$ el espacio de los polinomios con coeficientes reales y de grado a los más $n$. La familia $1,x,\dots, x^n$ es un conjunto generador.
  3. Considera el espacio $M_{m,n}(F)$. Sea $E_{ij}$ la matriz cuya entrada $(i,j)$ es $1$ y todas sus demás entradas son $0$. Entonces la familia $(E_{ij})_{1\leq i\leq m, 1\leq j \leq n}$ es un conjunto generador de $V$, pues cada matriz $A=[a_{ij}]$ puede ser escrita como
    \begin{align*}
    A=\displaystyle\sum_{i=1}^m \displaystyle\sum_{j=1}^n a_{ij}E_{ij}.
    \end{align*}
    Este ejemplo lo discutimos anteriormente, cuando hablamos de matrices y sus operaciones.
  4. Para dar un ejemplo donde un conjunto generador consiste de una cantidad infinita de elementos, considera el espacio $\mathbb{R}[x]$ de polinomios. En este caso, el conjunto $\{x^i: i \geq 0\}$ de todas las potencias de $x$ es un conjunto generador. Seria imposible tener un conjunto generador finito para $\mathbb{R}[x]$ pues si ese conjunto es $S$ y el grado máximo de un polinomio en $S$ es $M$, entonces no podremos obtener al polinomio $x^{M+1}$ como combinación lineal de elementos de $S$.

$\square$

Reducción gaussiana y conjuntos generadores

Cuando estamos en el espacio vectorial $F^n$, la reducción gaussiana también resulta muy útil a la hora de estudiar el subespacio generado por los ciertos vectores $v_1,v_2,\dots, v_k$. Considera la matriz $A\in M_{k,n}(F)$ obtenida por poner como vectores fila a $v_1,v_2,\dots, v_k$ en la base canónica de $F^n$ . Hacer operaciones elementales sobre los renglones de $A$ no altera el subespacio generado por sus renglones, de manera que $\text{span}(v_1,\dots, v_k)$ es precisamente el subespacio generado los renglones de $A_{red}$. Esto nos da una manera más sencilla de entender a $\text{span}(v_1, \dots, v_k)$.

Ejemplo. Considera los vectores $v_1=(1,2,6),\hspace{2mm} v_2=(-1,3,2), \hspace{2mm}v_3=(0,5,8)$ en $\mathbb{R}^3$. Queremos encontrar una manera sencilla de expresar $V=\text{span}(v_1,v_2,v_3)$.
Considera la matriz
\begin{align*}
A=\begin{pmatrix}
1 & 2 & 6\\
-1 & 3 & 2\\
0 & 5 & 8\end{pmatrix}.
\end{align*}
Aplicando el algortimo de reducción gaussiana (manualmente o con una calculadora online) llegamos a que
\begin{align*}
A_{red}=\begin{pmatrix}
1 & 0 & \frac{14}{5}\\
0 & 1 & \frac{8}{5}\\
0 & 0 & 0\end{pmatrix}.
\end{align*}
De manera que
\begin{align*}
V=\text{span}\left(\left(1,0,\frac{14}{5}\right),\left(0,1,\frac{8}{5}\right)\right).
\end{align*}

Siendo más explícitos todavía, $V$ es entonces el conjunto de vectores de $\mathbb{R}^3$ de la forma $$a\left(1,0,\frac{14}{5}\right)+b\left(0,1,\frac{8}{5}\right)=\left(a,b,\frac{14a+8b}{5}\right).$$

$\square$

Independencia lineal

Sean $V$ un espacio vectorial sobre un campo $F$, $v_1, \dots ,v_n\in V$ y $v\in \text{span}(v_1, \dots, v_n)$. Por definición, existen escalares $c_1,c_2, \dots , c_n$ en $F$ tales que
\begin{align*}
v=c_1v_1+c_2v_2+\dots + c_nv_n.
\end{align*}

No hay algo en la definición de subespacio generado que nos indique que los escalares deben ser únicos, y en muchas ocasiones no lo son.

Problema. Sean $v_1,v_2,v_3$ tres vectores en $\mathbb{R}^n$ tales que $3v_1+v_2+v_3=0$ y sea $v=v_1+v_2-2v_3$. Encuentra una infinidad de maneras de expresar a $v$ como combinación lineal de $v_1,v_2,v_3$.

Solución. Sea $\alpha \in \mathbb{R}$. Multiplicando por $\alpha$ la igualdad $3v_1+v_2+v_3=0$ y sumando la igualdad $v_1+v_2+v_3=v$ se sigue que
\begin{align*}
v=(3\alpha + 1)v_1 + (\alpha +1)v_2 + (\alpha – 2)v_3.
\end{align*}
Así, para cada $\alpha \in \mathbb{R}$ hay una manera diferente de expresar a $v$ como combinación lineal de $v_1,v_2,v_3$.

$\square$

Supongamos ahora que el vector $v$ puede ser escrito como $v=a_1v_1+a_2v_2+ \dots + a_nv_n$. Si $b_1,b_2, \dots, b_n$ son otros escalares tales que $v=b_1v_1+b_2v_2+ \dots + b_nv_n$, entonces al restar la segunda relación de la primera obtenemos
\begin{align*}
0=(a_1-b_1)v_1+ (a_2-b_2)v_2+ \dots + (a_n-b_n)v_n.
\end{align*}
De manera que podríamos concluir que los escalares $a_1,a_2,\dots,a_n$ son únicos si la ecuación
\begin{align*}
z_1v_1+z_2v_2+ \dots + z_nv_n=0
\end{align*}
implica $z_1=z_2=\dots=z_n=0$ (con $z_1,\dots ,z_n\in F$), pero este no siempre es el caso (ejemplo de ello es el problema anterior).

Los vectores $v_1, v_2, \dots, v_n$ que tienen la propiedad de generar a los vectores en $\text{span}(v_1,\ldots,v_n)$ de manera únicason de suma importancia en el álgebra lineal y merecen un nombre formal.

Definición. Sea $V$ un espacio vectorial sobre el campo $F$.
a) Decimos que los vectores $v_1,v_2, \dots, v_n\in V$ son linealmente dependientes si existe una relación
\begin{align*}
c_1v_1+c_2v_2+\dots+c_nv_n=0
\end{align*}
para la cual $c_1,c_2, \dots,c_n$ son escalares de $F$ y alguno es distinto de cero.
b) Decimos que los vectores $v_1,v_2, \dots, v_n\in V$ son linealmente independientes si no son linealmente dependientes, es decir, si la relación
\begin{align*}
a_1v_1+a_2v_2+\dots+a_nv_n=0
\end{align*}
implica que $a_1=a_2=\dots=a_n=0.$

La discusión previa a la definición muestra que un vector en $\text{span}(v_1,\ldots,v_n)$ puede ser escrito de manera única como combinación lineal de los vectores $v_1,\ldots,v_n$ si y sólo si estos vectores son linealmente independientes.

Ejemplos de dependencia e independencia lineal

Ejemplo. Las matrices $A=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ y $C=\begin{pmatrix} 0 & 0 & 0 \\0 & 1 & 1 \end{pmatrix}$ son linealmente independientes en $M_{2,3}(\mathbb{R})$. Verifiquemos esto. Supongamos que hay una combinación lineal de ellas igual a cero, es decir, que existen reales $a,b,c$ tales que $aA+bB+cC=O_{2,3}$. Obtenemos entonces que $$\begin{pmatrix} a+b & 0 & 0 \\ a+b & b+c & c \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

De la entrada $(2,3)$ obtenemos que $c=0$. Así, de la entrada $(2,2)$ obtenemos que $b=0$ y consecuentemente, de la entrada $(1,1)$ obtenemos que $a=0$. De esta forma, la única combinación lineal de las matrices $A$, $B$ y $C$ que da $0$ es cuando los coeficientes son iguales a cero. Concluimos que $A$, $B$ y $C$ son linealmente independientes.

$\square$

Ejemplo. Considera el espacio vectorial $V$ de funciones de $[0,1]$ a $\mathbb{R}$. Demuestra que las funciones $f(x)=\sin^2 (x)$, $g(x) = 3\cos^2(x)$, $m(x)=x^2$ y $h(x)=-5$. Veremos que estas funciones son linealmente dependientes. Para ello, debemos encontrar reales $a,b,c,d$ no todos ellos iguales a cero tales que $$af+bg+cm+dh=0,$$ es decir, tales que para todo $x$ en el intervalo $[0,1]$ se cumpla que $$a\sin^2(x) + 3b\cos^2(x) + cx^2 -5d = 0.$$

Proponemos $a=1$, $b=\frac{1}{3}$, $c=0$ y $d=\frac{1}{5}$. Notemos que con esta elección de coeficientes tenemos por la identidad pitagórica que
\begin{align*}
\sin^2(x)+\cos^2(x) – 1 = 0.
\end{align*}

Hemos encontrado coeficientes, no todos ellos iguales a cero, tales que una combinación lineal de las funciones es igual a la función cero. Concluimos que las funciones son linealmente dependientes.

$\square$

Reducción gaussiana e independencia lineal

Ahora estudiaremos una técnica para estudiar la independencia lineal. Esta nos permitirá determinar si dados algunos vectores $v_1,v_2\dots,v_k\in F^n$, estos son linealmente independientes. Veamos que este problema puede ser resuelto de manera sencilla por medio de un algoritmo. En efecto, necesitamos saber si podemos encontrar $x_1, \dots, x_k\in F$ no todos iguales a $0$ y tales que
\begin{align*}
x_1v_1+\dots+x_nv_n=0.
\end{align*}

Sea $A$ de $n\times k$ la matriz cuyas columnas están dadas por los vectores $v_1, \dots, v_k$. Entonces la relación anterior es equivalente al sistema $AX=0$, donde $X$ es el vector columna con coordenadas $x_1, \dots, x_k$.Por lo tanto los vectores $v_1, \dots, v_k$ son linealmente independientes si y sólo si el sistema homogéneo $AX=0$ únicamente tiene a la solución trivial.

Como ya vimos anteriormente, este problema se puede resolver mediante el algoritmo de reducción gaussiana: Sea $A_{red}$ la forma escalonada reducida de $A$. Si existe un pivote en cada columna de $A_{red}$, entonces no hay variables libres y la solución al sistema únicamente es el vector cero. Así, $v_1,\dots, v_k$ son linealmente independientes. De lo contrario son linealmente dependientes. Siguiendo este procedimiento, es posible resolver el problema original de manera algorítimica.

Otra cosa importante que podemos deducir a partir de este análisis es que como un sistema lineal homogéneo con más variables que ecuaciones siempre tiene una solución no trivial, entonces si tenemos más de $n$ vectores en $F^n$, estos nunca serán linealmente independientes.

Problema. Considera los vectores
\begin{align*}
v_1&=(1,2,3,4,5)\\
v_2&=(2,3,4,5,1)\\
v_3&=(1,3,5,7,9)\\
v_4&=(3,5,7,9,1)
\end{align*} en $\mathbb{R}^5$. ¿Son linealmente independientes? Si la respuesta es negativa, da una relación no trivial de dependencia lineal entre estos vectores.

Solución. Consideremos la matriz cuyas columnas son los vectores $v_1, \dots, v_4$
\begin{align*}
A=\begin{pmatrix}
1 & 2 & 1 & 3\\
2 & 3 & 3 & 5\\
3 & 4 & 5 & 7\\
4 & 5 & 7 & 9\\
5 & 1 & 9 & 1
\end{pmatrix}.
\end{align*}
Aplicando reducción gaussiana obtenemos
\begin{align*}
A_{red}=\begin{pmatrix}
1 & 0 & 0 & -2\\
0& 1 & 0 & 2\\
0&0 & 1 & 1\\
0 &0 & 0 & 0\\
0& 0 & 0 & 0
\end{pmatrix}.
\end{align*}

Como no hay pivote en la última columna, ésta corresponde a una variable libre. Así, habrá por lo menos una solución no trivial y entonces los vectores $v_1,v_2,v_3,v_4$ son linealmente dependientes.

Para encontrar la relación no trivial de dependencia lineal resolvemos el sistema $AX=0$, el cual es equivalente al sistema $A_{red}X=0$. De la matriz anterior obtenemos las siguientes igualdades
\begin{align*}
x_1=2x_4, \hspace{3mm}, x_2=-2x_4, \hspace{3mm} x_3=-x_4.
\end{align*}
Tomando $x_4=1$ (de hecho podemos asignarle cualquier valor distinto de cero), obtenemos la relación de dependencia lineal
\begin{align*}
2v_1-2v_2-v_3+v_4=0.
\end{align*}

$\square$

Hagamos otro problema en el que la técnica anterior nos ayuda a estudiar la independencia lineal.

Problema. Demuestra que los vectores
\begin{align*}
v_1=(2,1,3,1), \hspace{2mm} v_2=(-1,0,1,2), \hspace{2mm} v_3=(3,2,7,4), \hspace{2mm} v_4=(1,2,0,-1), \hspace{2mm}
\end{align*}
son linealmente dependientes y encuentra tres de ellos que sean linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son los vectores $v_1, \dots , v_4$
\begin{align*}
A=\begin{pmatrix}
2 & -1 & 3 & 1\\
1 & 0 & 2 & 2\\
3 & 1 & 7 & 0\\
1 & 2 & 4 & -1
\end{pmatrix}.
\end{align*}

Aplicando reducción gaussiana obtenemos
\begin{align*}
A_{red}=\begin{pmatrix}
1 & 0 & 2 & 0\\
0& 1 & 1 & 0\\
0&0 & 0 & 1\\
0 &0 & 0 & 0
\end{pmatrix}.
\end{align*}
Como la tercera columna de $A_{red}$ no tiene al pivote de ninguna fila, deducimos que los cuatro vectores son linealmente dependientes.

Si eliminamos la tercera columna, entonces la matriz que queda es la forma escalonada reducida correspondiente al conjunto $\{v_1,v_2,v_4\}$. Como esta matriz sí tiene pivotes de filas en cada columna, concluimos que este es un conjunto de vectores linealmente independientes.

$\square$

Independencia lineal de conjuntos infinitos

Hasta este momento hemos trabajado únicamente con familias finitas de vectores, así que es natural preguntarse qué procede con las familias infinitas. Con la definición que tenemos, si tomamos una familia infinita de vectores $(v_i)_{i\in I}$ no podríamos darle algún significado a la suma infinita $\displaystyle\sum_{i\in I}c_iv_i$ para cualquier toda elección de escalares $c_i$, pues en espacios vectoriales no está en general definido cómo hacer una suma infinita. Sin embargo, si todos salvo una cantidad finita de escalares son $0$, entonces la suma anterior sería una suma finita y ya tendría sentido.

De esta manera, podemos extender la definición como sigue.

Definición. La familia $(v_i)_{i\in I}$ es linealmente dependiente si existe una familia de escalares $(c_i)_{i\in I}$ tales que todos salvo una cantidad finita de ellos son cero, pero al menos uno no es cero y que $\displaystyle\sum_{i\in I}c_iv_i=0$.

De manera equivalente y para simplificar el razonamiento anterior podemos decir que una familia arbitraria de vectores es linealmente dependiente si tiene una subfamilia finita linealmente dependiente. Una familia de vectores es linealmente independiente si toda subfamilia finita es linealmente independiente. Por lo tanto, un conjunto $L$ (posiblemente infinito) es linealmente independiente si dados elementos distintos $l_1,\dots, l_n\in L$ y escalares $a_1,a_2,\dots, a_n$ con $a_1l_1+a_2l_2+\dots+ a_nl_n=0$, entonces $a_1=a_2=\dots=a_n=0.$

Observación. a) Una subfamilia de una familia linealmente independiente es linealmente independiente. En efecto, sea $(v_i)_{i\in I}$ una familia linealmente independiente y sea $J\subset I$. Supongamos que $(v_i)_{i\in J}$ es linealmente dependiente. Entonces existe una subfamilia finita linealmente dependiente $v_{i_1}, \dots, v_{i_n}$ con $i_1, \dots,i_n\in J $, pero $i_1, \dots,i_n\in I $, entonces $v_{i_1}, \dots, v_{i_n}$ es una subfamilia finita y linealmente dependiente de una familia linealmente independiente lo cual es una contradicción.
b) Si dos vectores de una familia son iguales, entonces automáticamente la familia es linealmente dependiente.

$\square$

Más adelante veremos ejemplos de generadores y de independencia lineal con familias infinitas de vectores.

Una relación entre independencia lineal y generados

Podemos relacionar las nociones de subespacio generado y de independencia lineal con la siguiente proposición. Básicamente nos dice que un conjunto $\{v_1, \dots, v_n\}$ es linealmente dependiente si y sólo si alguno sus elementos se puede expresar como combinación lineal de los demás.

Es importante mencionar que usamos la palabra «conjunto» y no «familia», puesto que con la primera nos referimos a que los vectores son distintos dos a dos, mientras que con la segunda sí pueden haber repeticiones.

Proposición. Sea $S$ un conjunto de vectores en algún espacio vectorial $V$. Entonces $S$ es linealmente dependiente si y sólo si existe $v\in S$ tal que $v\in \text{span}(S\backslash \{v\})$.

Demostración. Supongamos que $S$ es linealmente dependiente. Entonces existe una cantidad finita de vectores $v_1,v_2, \dots , v_n\in S$ y algunos escalares $a_1,a_2, \dots, a_n$ no todos iguales a $0$, tales que
\begin{align*}
a_1v_1+a_2v_2+ \dots + a_nv_n=0.
\end{align*}
Notemos que $v_1,\dots , v_n$ son distintos dos a dos, pues estamos suponiendo que los elementos de $S$ también lo son.

Como no todos los escalares son $0$, existe $i\in \{1,2,\dots, n\}$ tal que $a_i\neq 0$. Dividiendo la igualdad anterior entre $a_i$, obtenemos
\begin{align*}
\frac{a_1}{a_i}v_1+ \dots + \frac{a_{i-1}}{a_i}v_{i-1}+ v_i+ \frac{a_{i+1}}{a_i}v_{i+1}+ \dots + \frac{a_n}{a_i}v_n=0,
\end{align*}
por consiguiente
\begin{align*}
v_i=-\frac{a_1}{a_i}v_1- \dots – \frac{a_{i-1}}{a_i}v_{i-1}-\frac{a_{i+1}}{a_i}v_{i+1}-\dots – \frac{a_n}{a_i}v_n.
\end{align*}

De lo anterior se sigue que $v_i$ pertenece al generado de $v_1, \dots , v_{i-1}, v_{i+1}, \dots , v_n$, el cual está contenido en $\text{span}(S \backslash \{v_i\})$, pues $\{v_1, \dots , v_{i-1}, v_{i+1}, \dots , v_n\}\subset S\backslash \{v_i\}$. Esto prueba una implicación.

Para la otra implicación, supongamos que existe $v\in S$ tal que $v\in \text{span}(S\backslash \{v\})$. Esto significa que existen $v_1,v_2, \dots, v_n\in S\backslash \{v\}$ y escalares $a_1,a_2,\dots ,a_n$ tales que
\begin{align*}
v=a_1v_1+a_2v_2+\dots+a_nv_n.
\end{align*}
Pero entonces
\begin{align*}
1\cdot v + (-a_1)v_1+ \dots + (-a_n)v_n=0
\end{align*}
y los vectores $v,v_1,\dots , v_n$ son linealmente dependientes pues por lo menos el primer coeficiente es distinto de cero. Como $v$ no está en $\{v_1, \ldots, v_n\}$, se sigue que $S$ tiene un subconjunto finito que es linealmente dependiente y por lo tanto $S$ también lo es.

$\square$

Tarea moral

  • Decide si el conjunto con las matrices $\begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1\end{pmatrix}$ y $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ es un conjunto generador de $M_2(\mathbb{R})$.
  • Sean $S_1$ y $S_2$ subconjuntos de un subespacio vectorial $V$ tales que $S_1\subset S_2$. Demuestra que $\text{span}(S_1)\subset \text{span}(S_2)$. Concluye que si $S_1$ es generador, entonces $S_2$ también lo es
  • Demuestra la observación b).
  • Da un conjunto de $3$ vectores de $\mathbb{R}^3$ linealmente independientes y tales que ninguna de sus entradas es $0$. Haz lo mismo para linealmente dependientes.
  • Sean $f,g:\mathbb{R}\longrightarrow \mathbb{R}$ funciones definidas por
    \begin{align*}
    f(t)=e^{rt}, \hspace{4mm} g(t)=e^{st}
    \end{align*}
    con $r\neq s$. Demuestra que $f$ y $g$ son linealmente independientes en $\mathcal{F}(\mathbb{R},\mathbb{R})$, el espacio de las funciones de los reales en los reales.

Más adelante…

Aquí ya hablamos de conjuntos generadores y de linealmente independientes. La entrada teórica que sigue es crucial y en ella se verá y formalizará la intuición de que los conjuntos generadores deben ser «grandes», mientras que los independientes deben ser «chicos». El resultado clave es el lema de intercambio de Steinitz.

Cuando un conjunto de vectores es tanto generador, como linealmente independiente, está en un equilibrio que ayuda a describir una propiedad muy importante de un espacio vectorial: la de dimensión.

Entradas relacionadas

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Por Blanca Radillo

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema. Considera los vectores

$v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)$

en $\mathbb{R}^4$. Prueba que para cualquier elección de $x\in\mathbb{R}$, los vectores $v_1,v_2,v_3$ son linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son $v_1,v_2,v_3$, es decir,

$A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Sabemos que $v_1,v_2,v_3$ son linealmente independiente si y sólo si $\text{dim(span}(v_1,v_2,v_3))=3$, ya que $\text{rank}(A)=3$, y eso es equivalente (por la clase del lunes) a demostrar que $A$ tiene una submatriz de $3\times 3$ invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,$

lo que implica que es invertible, y por lo tanto $v_1,v_2, v_3$ son vectores linealmente independientes.

$\square$

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre $\mathbb{R}$ o sobre $\mathbb{C}$. Como $\mathbb{R}\subset \mathbb{C}$, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en $\mathbb{R}$ se cumplen en $\mathbb{C}$. En este caso particular, si las soluciones de una matriz en $M_{m,n}(\mathbb{R})$ son soluciones de la misma matriz pero vista como elemento en $M_{m,n}(\mathbb{C})$. El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea $A\in M_{m,n}(F)$ y sea $F_1$ un campo contenido en $F$. Consideremos el sistema lineal $AX=0$. Si el sistema tiene una solución no trivial en $F_1^n$, entonces tiene una solución no trivial en $F^n$.

Demostración. Dado que el sistema tiene una solución no trivial en $F_1^n$, $r:=\text{rank}(A) < n$ vista como elemento en $M_{m,n}(F_1)$. Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a $A$ como elemento de $M_{m,n}(F_1)$ o de $M_{m,n}(F)$. Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de $F^n$ de dimensión $n-r>0$. Por lo tanto, el sistema $AX=0$ tiene una solución no trivial en $F^n$.

$\square$

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. Sea $S_a$ el siguiente sistema lineal:

$\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.$

Encuentra los valores de $a$ para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como $AX=b$ donde

$A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$

Notemos que

$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,$

entonces si $a\neq 1/8$, $A$ es invertible, y por lo tanto $\text{rank}(A)=3$, mientras que si $a=1/8$, $A$ no es invertible y $\text{rank}(A)=2$ ya que la submatriz es invertible

$\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.$

Además, si la matriz $(A,b)$ es igual a

$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},$

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, $\text{rank}(A,b)=3$.

Aplicando el Teorema de Rouché-Capelli, para $a=1/8$, el sistema $AX=b$ no tiene soluciones. También podemos concluir que como $\text{rank}(A)=3$ para todo $a\neq 1/8$, el sistema tiene exactamente una solución. (Y $AX=b$ nunca tiene infinitas soluciones).

$\square$

Problema. Sean $a,b,c$ números reales dados. Resuelve el sistema lineal

$\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.$

Solución. La matriz del sistema es

$A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.$

No es difícil ver que $\text{det}(A)=4abc$. Si $abc\neq 0$, usando la regla de Cramer, la única solución al sistema está dada por

$x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}$

$y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},$

resolviendo los determinantes obtenemos que

$x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.$

Ahora, si $abc=0$, entonces $A$ no es invertible ($\text{rank}(A)<3$). El sistema es consistente si y sólo si $\text{rank}(A)=\text{rank}(A,b)$.

Sin pérdida de generalidad, decimos que $a=0$ (pues $abc=0$). Esto reduce el sistema a

$\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.$

El sistema es consistente si $b=c$ y distintos de cero. En este caso, tenemos que $b(2x+y+z)=1$ y $b(y+z)=1$, implicando $x=0$, $y+z=1/b$. De manera similar, obtenemos las posibles soluciones si $b=0$ o si $c=0$.

Resumiendo:

  • Si $abc\neq 0$, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) $a=0$ y $b=c \neq 0$; caso 2) $b=0$ y $a=c\neq 0$; caso 3) $c=0$ y $a=b\neq 0$, tenemos infinitas soluciones descritas como, para todo $w\in \mathbb{R}$: caso 1) $(0,w,1/b-w)$; caso 2) $(w,0,1/a-w)$; caso 3) $(w,1/a-w,0)$.
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para $a,b,c$, el sistema no es consistente.

$\square$

Entradas relacionadas