Archivo de la etiqueta: independientes

Álgebra Lineal I: Problemas de bases y dimensión de espacios vectoriales

Introducción

En las entradas anteriores vimos cómo se puede definir la dimensión de un espacio vectorial. Para ello, necesitamos encontrar una base. En el caso finito, la dimensión del espacio es la cardinalidad de una base. Esto está bien definido pues todas las bases tienen la misma cardinalidad. A continuación solucionaremos algunos ejemplos para reforzar los temas vistos.

Recordatorio de truco para mostrar que algo es base

En varios de los problemas usamos el siguiente resultado. Ya lo enunciamos y demostramos previamente. Pero como es sumamente útil, lo volvemos a enunciar, en términos más prácticos.

Proposición. Sea V un espacio vectorial que ya sepamos que tiene dimensión finita n. Sea B=\{v_1,v_2,\dots, v_n\} un conjunto de n vectores de v. Entonces, cualquiera de las siguientes afirmaciones implica las otras dos:

  1. B es un conjunto linealmente independiente en V
  2. B es un conjunto generador para V.
  3. B es una base de V

Por supuesto, el tercer punto implica los otros dos por la definición de base. Lo que es realmente útil en situaciones teóricas y prácticas es que si ya sabemos que un espacio tiene dimensión n, y tenemos un conjunto de n vectores, entonces basta verificar que o bien (1) o bien (2). Con esto tendremos la otra afirmación gratuitamente.

Al usar este resultado, es muy importante verificar las hipótesis. Es decir, para usarlo se necesita:

  • Argumentar por qué la dimensión de un espacio vectorial es cierto entero n.
  • Argumentar que se está estudiando un conjunto con n vectores.
  • Demostrar ya sea (1) o (2).

Problemas resueltos

Problema. Muestra que las siguientes cuatro matrices A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, C=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, D=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} son una base del espacio vectorial M_2(\mathbb{R}).

Solución. Ya sabemos que M_2(\mathbb{R}) es un espacio vectorial de dimensión 4, pues una base está conformada por las matrices E_{11}, E_{12}, E_{21} y E_{22} de la base canónica. El conjunto que tenemos consiste de 4 matrices. Así, para mostrar que conforman una base, es suficiente con que mostremos que son un conjunto linealmente independiente.

Supongamos que existen reales a,b,c,d tales que

    \[aA+bB+cC+dD=O_2.\]

Haciendo las operaciones entrada por entrada en esta igualdad, obtenemos que esto sucede si y sólo si a,b,c,d son soluciones al sistema de ecuaciones

    \[\begin{cases}a+c&=0\\b-d&=0\\b+d&=0\\a-c&=0.\]

Podríamos encontrar todas las soluciones a este sistema usando reducción gaussiana. Sin embargo, afortunadamente para este sistema hay una forma más sencilla de proceder. Sumando la primera y cuarta igualdad, obtenemos 2a=0, de donde a=0 y entonces por la primer ecuación c=0. De manera simétrica, b=d=0. De esta forma, la única combinación lineal de A,B,C,D que da la matriz cero es la trivial. Concluimos que A,B,C,D son linealmente independientes, y por lo tanto son una base de M_2(\mathbb{R}).

\square

En el problema anterior resultó más práctico mostrar que las matrices eran linealmente independientes, pero también pudimos simplemente mostrar que generaban a M_2(\mathbb{R}). Por la proposición que enunciamos, cualquiera de los dos implica que en este contexto las matrices forman una base.

Veamos ahora un ejemplo en el que es más conveniente mostrar que el conjunto propuesto es generador.

Problema. Encuentra una base de \mathbb{R}_4[x] que tenga al polinomio

    \[p(x)=1+x+x^2+x^3+x^4.\]

Solución. Ya sabemos que \mathbb{R}_4[x] tiene dimensión 5, pues una base es el conjunto de polinomios \mathcal{B}=\{1,x,x^2,x^3,x^4\}.

Proponemos al conjunto

    \[\mathcal{B}'=\{1,x,x^2,x^3,p(x)\}\]

como solución al problema.

Como \mathcal{B}' es un conjunto con 5 elementos, basta con mostrar que es un conjunto que genera a \mathbb{R}_4[x]. Para ello, notemos que \mathcal{B}' puede generar al polinomio x^4 pues se obtiene mediante la combinación lineal

    \[x^4=p(x)-1-x-x^2-x^3.\]

De esta forma, \mathcal{B}' puede generar todo lo que puede generar \mathcal{B}. En símbolos:

    \[\mathbb{R}_4[x]\subseteq \text{span}(\mathcal{B})\subseteq \text{span}(\mathcal{B}') \subseteq \mathbb{R}_4[x].\]

Concluimos que \text{span}(\mathcal{B}') = \mathbb{R}_4[x]. Esto muestra que \mathcal{B}' es una base de \mathbb{R}_4[x] que tiene al polinomio p(x).

\square

Problema. Exactamente uno de los vectores u=(9,5,1) y v=(9,-5,1) puede ser escrito como combinación lineal de los vectores columna de la matriz

    \[A=\begin{pmatrix} 3 & 0 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{pmatrix}.\]

Determina cuál de ellos es y exprésalo como una combinación lineal de los vectores columna de A.

Solución. Un vector b se puede escribir como combinación lineal de las columnas de una matriz A si y sólo si el sistema lineal de ecuaciones AX=b tiene solución. En efecto, si X=(x,y,z), recordemos que

    \[AX=xC_1+yC_2+zC_3,\]

en donde C_1, C_2 y C_3 son las columnas de la matriz A.

De esta forma, una forma de proceder es plantear los sistemas de ecuaciones AX=u y AX=v, y ver cuál de ellos tiene solución. Esto se puede hacer y dará la solución al problema.

Sin embargo, aprovecharemos este problema para introducir un truco más. Como queremos resolver ambos sistemas, podemos hacer reducción gaussiana en la matriz aumentada (A|u|v), en donde estamos agregando dos vectores columna nuevos. De la forma escalonada reducida podremos leer todo lo que queremos. La matriz que nos interesa es

    \begin{align*}\begin{pmatrix}3 & 0 & 3 & 9 & 9 \\ 2 & 1 & 1 & 5 & -5\\ 1 & 2 & -1 & 1 & 1\end{pmatrix}.\end{align*}

Usando la herramienta online de eMathHelp para calcular la forma escalonada reducida de esta matriz, obtenemos

    \begin{align*}(A_{red}|u'|v')=\begin{pmatrix}1 & 0 & 1 & 3 & 0 \\ 0 & 1 & -1 & -1 & 0\\ 0 & 0 & 0 & 0 & 1\end{pmatrix}.\end{align*}

Estamos listos para hacer el análisis. Tomando la submatriz conformada por las primeras cuatro columnas (las correspondientes a A_{red} y u'), vemos que no queda pivote en la última columna. De este modo, sí hay una solución para AX=u.

Para obtener una solución, basta trabajar con esta submatriz y usar nuestros argumentos usuales de sistemas de ecuaciones lineales. La variable z es libre. Las variables x y y son pivote. Haciendo z=0 obtenemos x=3 y y=-1. Concluimos que

    \[\begin{pmatrix} 9 \\ 5 \\ 1 \end{pmatrix} = 3\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}.\]

Esto sería suficiente para terminar el problema, pues el enunciado garantiza que uno y sólo uno de los vectores es combinación lineal de las columnas.

Pero estudiemos el otro caso para ver qué sucede. Tomando la submatriz conformada por las columnas 1, 2, 3, 5 de (A_{red}|u'|v') (correspondientes a A_{red} y v'), vemos que sí hay un pivote en la última columna: el de la tercera fila. Entonces, no hay solución para AX=v.

\square

El problema anterior ayuda a fortalecer mucho nuestra intuición para resolver sistemas de ecuaciones lineales: el sistema AX=b tiene solución si y sólo si el vector b es combinación lineal de los vectores columna de A. Cada solución al sistema corresponde a una de estas combinaciones lineales.

Problema. Para n un entero positivo y k un entero de 0 a n, definimos al polinomio P_k(x)=x^k(1-x)^{(n-k)}. Muestra que P_0(x),\ldots, P_n(x) es una base para el espacio \mathbb{R}_n[x].

Solución. Como \mathbb{R}_n[x] tiene dimensión n+1 y estamos considerando un conjunto de n+1 polinomios, entonces basta mostrar que este conjunto es linealmente independiente. Supongamos que hay una combinación lineal de ellos que es igual a cero, digamos

    \[\alpha_0 (1-x)^n + \alpha_1 x(1-x)^{n-1} + \ldots + \alpha_{n-1} x^{n-1} (1-x) + \alpha_n x^n=0.\]

Si evaluamos la expresión anterior en x=1, casi todos los sumandos se anulan, excepto el último. De aquí, obtenemos que \alpha_n 1^n=0, de donde \alpha_n=0. La expresión se convierte entonces en

    \[\alpha_0 (1-x)^n + \alpha_1 x(1-x)^{n-1} + \ldots + \alpha_{n-1} x^{n-1} (1-x)=0.\]

Factorizando 1-x de todos los sumandos y usando que el polinomio 1-x\neq 0, podemos “cancelar” al factor 1-x. En otras palabras, podemos “dividir” la combinación lineal entre 1-x para obtener

    \[\alpha_0 (1-x)^{n-1} + \alpha_1 x(1-x)^{n-2} + \ldots + \alpha_{n-1} x^{n-1}=0.\]

De aquí podemos seguir aplicando el mismo argumento: evaluamos en 1, concluimos que el último coeficiente es igual a 0, y entonces podemos dividir subsecuentemente entre 1-x. De esta forma, obtenemos \alpha_n=\alpha_{n-1}=\ldots=\alpha_0=0. Concluimos entonces que los polinomios propuestos son linealmente independientes, y por lo tanto forman una base de \mathbb{R}_n[x].

\square

El argumento del último párrafo se puede formalizar todavía más usando inducción sobre n. Piensa en lo complicado que hubiera sido mostrar de manera directa que los polinomios propuestos generan a \mathbb{R}_n[x]. Gracias a la proposición que discutimos al inicio, esto lo obtenemos de manera automática.

Entradas relacionadas

Álgebra Lineal I: Problemas de combinaciones lineales, generadores e independientes

Introducción

En entradas anteriores ya hablamos de combinaciones lineales, de conjuntos generadores y de conjuntos independientes. Lo que haremos aquí es resolver problemas para reforzar el contenido de estos temas.

Problemas resueltos

Problema. Demuestra que el polinomio p(x)=x^2+x+1 no puede ser escrito en el espacio vectorial \mathbb{R}[x] como una combinación lineal de los polinomios

    \begin{align*} p_1(x)=x^2-x\\ p_2(x) = x^2-1\\ p_3(x) = x-1.\end{align*}

Solución. Para resolver este problema, podemos plantearlo en términos de sistemas de ecuaciones. Supongamos que existen reales a, b y c tales que

    \[p(x)=ap_1(x)+bp_2(x)+cp_3(x).\]

Desarrollando la expresión, tendríamos que

    \begin{align*}x^2+x+1 &= a(x^2-x)+b(x^2-1)+c(x-1)\\&= (a+b)x^2+(-a+c)x+(-b-c),\end{align*}

de donde igualando coeficientes de términos del mismo grado, obtenemos el siguiente sistema de ecuaciones:

    \[\begin{cases}a+b & = 1\\ -a + c &= 1 \\ -b-c &= 1.\end{cases}\]

Para mostrar que este sistema de ecuaciones no tiene solución, le aplicaremos reducción gaussiana a la siguiente matriz extendida:

    \[\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}.\]

Tras la transvección R_2+R_1, obtenemos

    \[\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}.\]

Tras la transvección R_3+R_2, obtenemos

    \[\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.\]

De aquí se ve que la forma escalonada reducida tendrá un pivote en la última columna. Por el teorema de existencia y unicidad el sistema original no tiene solución.

\square

En el problema anterior usamos un argumento de reducción gaussiana para mostrar que el sistema no tiene solución. Este es un método general que funciona en muchas ocasiones. Una solución más sencilla para ver que el sistema del problema no tiene solución es que al sumar las tres ecuaciones se obtiene 0=3.

Problema. Sea n un entero positivo. Sea W el subconjunto de vectores en \mathbb{R}^n cuya suma de entradas es igual a 0. Sea Z el espacio generado por el vector (1,1,\ldots,1) de \mathbb{R}^n. Determina si es cierto que

    \[\mathbb{R}^n=W\oplus Z.\]

Solución. El espacio Z está generado por todas las combinaciones lineales que se pueden hacer con el vector v=(1,1,\ldots,1). Como sólo es un vector, las combinaciones lineales son de la forma av con a en \mathbb{R}, de modo que Z es precisamente

    \[Z=\{(a,a,\ldots,a): a\in\mathbb{R}\}.\]

Para obtener la igualdad

    \[\mathbb{R}^n=W\oplus Z,\]

tienen que pasar las siguientes dos cosas (aquí estamos usando un resultado de la entrada de suma y suma directa de subespacios):

  • W\cap Z = \{0\}
  • W+Z=\mathbb{R}^n

Veamos qué sucede con un vector v en W\cap Z. Como está en Z, debe ser de la forma v=(a,a,\ldots,a). Como está en W, la suma de sus entradas debe ser igual a 0. En otras palabras, 0=a+a+\ldots+a=na. Como n es un entero positivo, esta igualdad implica que a=0. De aquí obtenemos que v=(0,0,\ldots,0), y por lo tanto W\cap Z = \{0\}.

Veamos ahora si se cumple la igualdad \mathbb{R}^n=W+Z. Por supuesto, se tiene que W+Z\subseteq \mathbb{R}^n, pues los elementos de W y Z son vectores en \mathbb{R}^n. Para que la igualdad \mathbb{R}^n\subseteq W+Z se cumpla, tiene que pasar que cualquier vector v=(x_1,\ldots,x_n) en \mathbb{R}^n se pueda escribir como suma de un vector w uno con suma de entradas 0 y un vector z con todas sus entradas iguales. Veamos que esto siempre se puede hacer.

Para hacerlo, sea S=x_1+\ldots+x_n la suma de las entradas del vector v. Consideremos al vector w=\left(x_1-\frac{S}{n},\ldots, x_n-\frac{S}{n} \right) y al vector z=\left(\frac{S}{n},\ldots,\frac{S}{n}).

Por un lado, z está en Z, pues todas sus entradas son iguales. Por otro lado, la suma de las entradas de w es

    \begin{align*}\left(x_1-\frac{S}{n}\right)+\ldots + \left(x_n-\frac{S}{n}\right)&=(x_1+\ldots+x_n)-n\cdot \frac{S}{n}\\ &= S-S=0,\end{align*}

lo cual muestra que w está en W. Finalmente, notemos que la igualdad w+z=v se puede comprobar haciendo la suma entrada a entrada. Con esto mostramos que cualquier vector de V es suma de vectores en W y Z y por lo tanto concluimos la igualdad \mathbb{R}^n=W\oplus Z.

\square

En el problema anterior puede parecer algo mágico la propuesta de vectores w y z. ¿Qué es lo que motiva la elección de \frac{S}{n}? Una forma de enfrentar los problemas de este estilo es utilizar la heurística de trabajar hacia atrás. Sabemos que el vector w debe tener todas sus entradas iguales a cierto número a y queremos que z=v-w tenga suma de entradas igual a 0. La suma de las entradas de v-w es

    \[(x_1-a)+\ldots+(x_n-a)= S -na.\]

La elección de a=\frac{S}{n} está motivada en que queremos que esto sea cero.

Problema. Considera las siguientes tres matrices en M_2(\mathbb{C}):

    \begin{align*} A&= \begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix}\\B&= \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}\\C&= \begin{pmatrix} i & -7  \\ 12 & 7 \end{pmatrix}.\end{align*}

Demuestra que A, B y C son matrices linealmente dependientes. Da una combinación lineal no trivial de ellas que sea igual a 0.

Solución. Para mostrar que son linealmente dependientes, basta dar la combinación lineal no trivial buscada. Buscamos entonces a,b,c números complejos no cero tales que aA+bB+cC=O_2, la matriz cero en M_2(\mathbb{C}). Para que se de esta igualdad, es necesario que suceda entrada a entrada. Tenemos entonces el siguiente sistema de ecuaciones:

    \[\begin{cases}-i a + 2i b + ic &= 0\\-3a + b -7c &=0\\2a + 3b + 12c &= 0\\3a -b +7c &=0.\end{cases}\]

En este sistema de ecuaciones tenemos números complejos, pero se resuelve exactamente de la misma manera que en el caso real. Para ello, llevamos la matriz correspondiente al sistema a su forma escalonada reducida. Comenzamos dividiendo el primer renglón por -i y aplicando transvecciones para hacer el resto de las entradas de la columna iguales a 0. Luego intercambiamos la tercera y cuarta filas.

    \begin{align*}&\begin{pmatrix}-i & 2i & i \\-3 & 1 & -7 \\2 & 3 & 12 \\3 & -1 & 7\end{pmatrix}\\\to&\begin{pmatrix}1 & -2 & -1 \\0 & -5 & -10 \\0 & 7 & 14 \\0 & 5 & 10\end{pmatrix}\end{align*}

Ahora reescalamos con factor -\frac{1}{5} la segunda fila y hacemos transvecciones para hacer igual a cero el resto de entradas de la columna 2:

    \begin{align*}&\begin{pmatrix}1 & 0& 3 \\0 & 1 & 2 \\0 & 0 & 0 \\0 & 0 & 0\end{pmatrix}\end{align*}

Con esto llegamos a la forma escalonada reducida de la matriz. De acuerdo al procedimiento que discutimos en la entrada de sistemas lineales homogéneos, concluimos que las variables a y b son pivote y la variable c es libre. Para poner a a y b en términos de c, usamos la primera y segunda ecuaciones. Nos queda

    \begin{align*} a &= -3c \\ b &= -2c. \end{align*}

En resumen, concluimos que para cualqueir número complejo c en \mathbb{C} se tiene la combinación lineal

    \[-3c\begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix} - 2c \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}  + c\begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.\]

Una posible combinación lineal no trivial se obtiene tomando c=1.

\square

En el problema anterior bastaba encontrar una combinación lineal no trivial para acabar el ejercicio. Por supuesto, esto también se puede hacer por prueba y error. Sin embargo, la solución que dimos da una manera sistemática de resolver problemas de este estilo.

Problema. Consideremos el espacio vectorial V de funciones f:\mathbb{R}\to \mathbb{R}. Para cada real a en (0,\infty), definimos a la función f_a\in V dada por

    \[f_a(x)=e^{ax}.\]

Tomemos reales distintos 0<a_1<a_2<\ldots<a_n. Supongamos que existe una combinación lineal de las funciones f_{a_1},\ldots,f_{a_n} que es igual a 0, es decir, que existen reales \alpha_1,\ldots,\alpha_n tales que

    \[\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0\]

para todo real x\geq 0.

Muestra que \alpha_1=\ldots=\alpha_n=0. Concluye que la familia (f_a)_{a\in \mathbb{R}} es linealmente independiente en V.

Solución. Procedemos por inducción sobre n. Para n=1, si tenemos la igualdad \alpha e^{ax}=0 para toda x, entonces \alpha=0, pues e^{ax} siempre es un número positivo. Supongamos ahora que sabemos el resultado para cada que elijamos n-1 reales cualesquiera. Probaremos el resultado para n reales cualesquiera.

Supongamos que tenemos la combinación lineal

    \[\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0\]

para todo real x\geq 0.

Dividamos esta igualdad que tenemos entre e^{a_nx}:

    \[\alpha_1 e^{(a_1-a_n)x} + \alpha_2e^{(a_2-a_n)x} + \ldots + \alpha_{n-1}e^{(a_{n-1}-a_n)x}+\alpha_n = 0.\]

¿Qué sucede cuando hacemos x\to \infty? Cada uno de los sumandos de la forma \alpha_i e^{(a_i-a_n)x} se hace cero, pues a_i<a_n y entonces el exponente es negativo y se va a -\infty. De esta forma, queda la igualdad \alpha_n=0. Así, nuestra combinación lineal se ve ahora de la forma

    \[\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_{n-1} e^{a_{n-1}x} = 0.\]

Por la hipótesis inductiva, \alpha_1=\ldots=\alpha_{n-1}=0. Como también ya demostramos \alpha_n=0, hemos terminado el paso inductivo.

Concluimos que la familia (infinita) (f_a)_{a\in \mathbb{R}} es linealmente independiente en V pues cualquier subconjunto finito de ella es linealmente independiente.

\square

El problema anterior muestra que la razón por la cual ciertos objetos son linealmente independientes puede deberse a una propiedad analítica o de cálculo. A veces dependiendo del contexto en el que estemos, hay que usar herramientas de ese contexto para probar afirmaciones de álgebra lineal.

Entradas relacionadas

Álgebra Lineal I: Conjuntos generadores e independencia lineal

Introducción

En esta entrada explicaremos cómo podemos estudiar espacios y subespacios vectoriales a partir de conjuntos más pequeños que guardan la información más relevante de ellos. A estos conjuntos les llamaremos generadores. Además estudiaremos el concepto de independencia lineal. A grandes rasgos podemos decir que un conjunto es linealmente independiente cuando no tiene “elementos redundantes” que se pueden obtener a partir de otros en el conjunto. En ambos casos, nos basaremos fuertemente en el concepto de combinaciones lineales que ya discutimos anteriormente.

Conjuntos generadores

El inciso (1) de la siguiente definición ya lo mencionamos parcialmente en una entrada anterior, para un conjunto finito de vectores. Aquí lo enunciamos de modo que también aplique para conjuntos posiblemente infinitos.

Definición. Sea V un espacio vectorial sobre F y S un subconjunto de V.

  1. El subespacio generado por S es el subconjunto de V que consiste de todas las combinaciones lineales c_1v_1+c_2v_2+\dots + c_nv_n, donde v_1,v_2,\dots,v_n es un subconjunto finito de S y c_1,c_2, \dots , c_n son escalares en F. Al subespacio generado de S lo denotamos por \text{span}(S). A menudo nos referiremos al subespacio generado de S simplemente como “el generado de S.
  2. b) Decimos que S es un conjunto generador de V si \text{span}(S)=V.

En otras palabras, un subconjunto S de V es generador cuando cualquier elemento de V se puede escribir como una combinación lineal de elementos de S.

Ejemplos.

  1. Considera el espacio vectorial \mathbb{R}^3 y el conjunto

        \begin{align*}e_1=\begin{pmatrix}1\\0\\0\end{pmatrix}, \hspace{2mm} e_2=\begin{pmatrix}0\\1\\0\end{pmatrix}, \hspace{2mm} e_3=\begin{pmatrix}0\\0\\1\end{pmatrix}.\end{align*}


    Entonces e_1,e_2,e_3 forma un conjunto generador de \mathbb{R}^3, pues cada vector X=\begin{pmatrix}x\\y\\z\end{pmatrix} se puede escribir como X=xe_1+ye_2+ze_3. Sin embargo, el conjunto conformado por únicamente e_2 y e_3 no es generador pues, por ejemplo, el vector (1,1,1) no puede ser escrito como combinación lineal de ellos.
  2. Sea \mathbb{R}_n[x] el espacio de los polinomios con coeficientes reales y de grado a los más n. La familia 1,x,\dots, x^n es un conjunto generador.
  3. Considera el espacio M_{m,n}(F). Sea E_{ij} la matriz cuya entrada (i,j) es 1 y todas sus demás entradas son 0. Entonces la familia (E_{ij})_{1\leq i\leq m, 1\leq j \leq n} es un conjunto generador de V, pues cada matriz A=[a_{ij}] puede ser escrita como

        \begin{align*}A=\displaystyle\sum_{i=1}^m \displaystyle\sum_{j=1}^n a_{ij}E_{ij}.\end{align*}


    Este ejemplo lo discutimos anteriormente, cuando hablamos de matrices y sus operaciones.
  4. Para dar un ejemplo donde un conjunto generador consiste de una cantidad infinita de elementos, considera el espacio \mathbb{R}[x] de polinomios. En este caso, el conjunto \{x^i: i \geq 0\} de todas las potencias de x es un conjunto generador. Seria imposible tener un conjunto generador finito para \mathbb{R}[x] pues si ese conjunto es S y el grado máximo de un polinomio en S es M, entonces no podremos obtener al polinomio x^{M+1} como combinación lineal de elementos de S.

\square

Reducción gaussiana y conjuntos generadores

Cuando estamos en el espacio vectorial F^n, la reducción gaussiana también resulta muy útil a la hora de estudiar el subespacio generado por los ciertos vectores v_1,v_2,\dots, v_k. Considera la matriz A\in M_{k,n}(F) obtenida por poner como vectores fila a v_1,v_2,\dots, v_k en la base canónica de F^n . Hacer operaciones elementales sobre los renglones de A no altera el subespacio generado por sus renglones, de manera que \text{span}(v_1,\dots, v_k) es precisamente el subespacio generado los renglones de A_{red}. Esto nos da una manera más sencilla de entender a \text{span}(v_1, \dots, v_k).

Ejemplo. Considera los vectores v_1=(1,2,6),\hspace{2mm} v_2=(-1,3,2), \hspace{2mm}v_3=(0,5,8) en \mathbb{R}^3. Queremos encontrar una manera sencilla de expresar V=\text{span}(v_1,v_2,v_3).
Considera la matriz

    \begin{align*}A=\begin{pmatrix}1 & 2 & 6\\-1 & 3 & 2\\0 & 5 & 8\end{pmatrix}.\end{align*}


Aplicando el algortimo de reducción gaussiana (manualmente o con una calculadora online) llegamos a que

    \begin{align*}A_{red}=\begin{pmatrix}1 & 0 & \frac{14}{5}\\0 & 1 & \frac{8}{5}\\0 & 0 & 0\end{pmatrix}.\end{align*}


De manera que

    \begin{align*}V=\text{span}\left(\left(1,0,\frac{14}{5}\right),\left(0,1,\frac{8}{5}\right)\right).\end{align*}

Siendo más explícitos todavía, V es entonces el conjunto de vectores de \mathbb{R}^3 de la forma

    \[a\left(1,0,\frac{14}{5}\right)+b\left(0,1,\frac{8}{5}\right)=\left(a,b,\frac{14a+8b}{5}\right).\]

\square

Independencia lineal

Sean V un espacio vectorial sobre un campo F, v_1, \dots ,v_n\in V y v\in \text{span}(v_1, \dots, v_n). Por definición, existen escalares c_1,c_2, \dots , c_n en F tales que

    \begin{align*}v=c_1v_1+c_2v_2+\dots + c_nv_n.\end{align*}

No hay algo en la definición de subespacio generado que nos indique que los escalares deben ser únicos, y en muchas ocasiones no lo son.

Problema. Sean v_1,v_2,v_3 tres vectores en \mathbb{R}^n tales que 3v_1+v_2+v_3=0 y sea v=v_1+v_2-2v_3. Encuentra una infinidad de maneras de expresar a v como combinación lineal de v_1,v_2,v_3.

Solución. Sea \alpha \in \mathbb{R}. Multiplicando por \alpha la igualdad 3v_1+v_2+v_3=0 y sumando la igualdad v_1+v_2+v_3=v se sigue que

    \begin{align*}v=(3\alpha + 1)v_1 + (\alpha +1)v_2 + (\alpha - 2)v_3.\end{align*}


Así, para cada \alpha \in \mathbb{R} hay una manera diferente de expresar a v como combinación lineal de v_1,v_2,v_3.

\square

Supongamos ahora que el vector v puede ser escrito como v=a_1v_1+a_2v_2+ \dots + a_nv_n. Si b_1,b_2, \dots, b_n son otros escalares tales que v=b_1v_1+b_2v_2+ \dots + b_nv_n, entonces al restar la segunda relación de la primera obtenemos

    \begin{align*}0=(a_1-b_1)v_1+ (a_2-b_2)v_2+ \dots + (a_n-b_n)v_n.\end{align*}


De manera que podríamos concluir que los escalares a_1,a_2,\dots,a_n son únicos si la ecuación

    \begin{align*}z_1v_1+z_2v_2+ \dots + z_nv_n=0\end{align*}


implica z_1=z_2=\dots=z_n=0 (con z_1,\dots ,z_n\in F), pero este no siempre es el caso (ejemplo de ello es el problema anterior).

Los vectores v_1, v_2, \dots, v_n que tienen la propiedad de generar a los vectores en \text{span}(v_1,\ldots,v_n) de manera únicason de suma importancia en el álgebra lineal y merecen un nombre formal.

Definición. Sea V un espacio vectorial sobre el campo F.
a) Decimos que los vectores v_1,v_2, \dots, v_n\in V son linealmente dependientes si existe una relación

    \begin{align*}c_1v_1+c_2v_2+\dots+c_nv_n=0\end{align*}


para la cual c_1,c_2, \dots,c_n son escalares de F y alguno es distinto de cero.
b) Decimos que los vectores v_1,v_2, \dots, v_n\in V son linealmente independientes si no son linealmente dependientes, es decir, si la relación

    \begin{align*}a_1v_1+a_2v_2+\dots+a_nv_n=0\end{align*}


implica que a_1=a_2=\dots=a_n=0.

La discusión previa a la definición muestra que un vector en \text{span}(v_1,\ldots,v_n) puede ser escrito de manera única como combinación lineal de los vectores v_1,\ldots,v_n si y sólo si estos vectores son linealmente independientes.

Ejemplos de dependencia e independencia lineal

Ejemplo. Las matrices A=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, B=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} y C=\begin{pmatrix} 0 & 0 & 0 \\0 & 1 & 1 \end{pmatrix} son linealmente independientes en M_{2,3}(\mathbb{R}). Verifiquemos esto. Supongamos que hay una combinación lineal de ellas igual a cero, es decir, que existen reales a,b,c tales que aA+bB+cC=O_{2,3}. Obtenemos entonces que

    \[\begin{pmatrix} a+b & 0 & 0 \\ a+b & b+c & c \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.\]

De la entrada (2,3) obtenemos que c=0. Así, de la entrada (2,2) obtenemos que b=0 y consecuentemente, de la entrada (1,1) obtenemos que a=0. De esta forma, la única combinación lineal de las matrices A, B y C que da 0 es cuando los coeficientes son iguales a cero. Concluimos que A, B y C son linealmente independientes.

\square

Ejemplo. Considera el espacio vectorial V de funciones de [0,1] a \mathbb{R}. Demuestra que las funciones f(x)=\sin^2 (x), g(x) = 3\cos^2(x), m(x)=x^2 y h(x)=-5. Veremos que estas funciones son linealmente dependientes. Para ello, debemos encontrar reales a,b,c,d no todos ellos iguales a cero tales que

    \[af+bg+cm+dh=0,\]

es decir, tales que para todo x en el intervalo [0,1] se cumpla que

    \[a\sin^2(x) + 3b\cos^2(x) + cx^2 -5d = 0.\]

Proponemos a=1, b=\frac{1}{3}, c=0 y d=\frac{1}{5}. Notemos que con esta elección de coeficientes tenemos por la identidad pitagórica que

    \begin{align*}\sin^2(x)+\cos^2(x) - 1 = 0.\end{align*}

Hemos encontrado coeficientes, no todos ellos iguales a cero, tales que una combinación lineal de las funciones es igual a la función cero. Concluimos que las funciones son linealmente dependientes.

\square

Reducción gaussiana e independencia lineal

Ahora estudiaremos una técnica para estudiar la independencia lineal. Esta nos permitirá determinar si dados algunos vectores v_1,v_2\dots,v_k\in F^n, estos son linealmente independientes. Veamos que este problema puede ser resuelto de manera sencilla por medio de un algoritmo. En efecto, necesitamos saber si podemos encontrar x_1, \dots, x_k\in F no todos iguales a 0 y tales que

    \begin{align*}x_1v_1+\dots+x_nv_n=0.\end{align*}

Sea A de n\times k la matriz cuyas columnas están dadas por los vectores v_1, \dots, v_k. Entonces la relación anterior es equivalente al sistema AX=0, donde X es el vector columna con coordenadas x_1, \dots, x_k.Por lo tanto los vectores v_1, \dots, v_k son linealmente independientes si y sólo si el sistema homogéneo AX=0 únicamente tiene a la solución trivial.

Como ya vimos anteriormente, este problema se puede resolver mediante el algoritmo de reducción gaussiana: Sea A_{red} la forma escalonada reducida de A. Si existe un pivote en cada columna de A_{red}, entonces no hay variables libres y la solución al sistema únicamente es el vector cero. Así, v_1,\dots, v_k son linealmente independientes. De lo contrario son linealmente dependientes. Siguiendo este procedimiento, es posible resolver el problema original de manera algorítimica.

Otra cosa importante que podemos deducir a partir de este análisis es que como un sistema lineal homogéneo con más variables que ecuaciones siempre tiene una solución no trivial, entonces si tenemos más de n vectores en F^n, estos nunca serán linealmente independientes.

Problema. Considera los vectores

    \begin{align*}v_1&=(1,2,3,4,5)\\v_2&=(2,3,4,5,1)\\v_3&=(1,3,5,7,9)\\v_4&=(3,5,7,9,1)\end{align*}

en \mathbb{R}^5. ¿Son linealmente independientes? Si la respuesta es negativa, da una relación no trivial de dependencia lineal entre estos vectores.

Solución. Consideremos la matriz cuyas columnas son los vectores v_1, \dots, v_4

    \begin{align*}A=\begin{pmatrix}1 & 2 & 1 & 3\\2 & 3 & 3 & 5\\3 & 4 & 5 & 7\\4 & 5 & 7 & 9\\5 & 1 & 9 & 1\end{pmatrix}.\end{align*}


Aplicando reducción gaussiana obtenemos

    \begin{align*}A_{red}=\begin{pmatrix}1 & 0 & 0 & -2\\0& 1 & 0 & 2\\ 0&0 & 1 & 1\\0 &0 & 0 & 0\\0& 0 & 0 & 0\end{pmatrix}.\end{align*}

Como no hay pivote en la última columna, ésta corresponde a una variable libre. Así, habrá por lo menos una solución no trivial y entonces los vectores v_1,v_2,v_3,v_4 son linealmente dependientes.

Para encontrar la relación no trivial de dependencia lineal resolvemos el sistema AX=0, el cual es equivalente al sistema A_{red}X=0. De la matriz anterior obtenemos las siguientes igualdades

    \begin{align*}x_1=2x_4, \hspace{3mm}, x_2=-2x_4, \hspace{3mm} x_3=-x_4.\end{align*}


Tomando x_4=1 (de hecho podemos asignarle cualquier valor distinto de cero), obtenemos la relación de dependencia lineal

    \begin{align*}2v_1-2v_2-v_3+v_4=0.\end{align*}

\square

Hagamos otro problema en el que la técnica anterior nos ayuda a estudiar la independencia lineal.

Problema. Demuestra que los vectores

    \begin{align*}v_1=(2,1,3,1), \hspace{2mm} v_2=(-1,0,1,2), \hspace{2mm} v_3=(3,2,7,4), \hspace{2mm} v_4=(1,2,0,-1), \hspace{2mm}\end{align*}


son linealmente dependientes y encuentra tres de ellos que sean linealmente independientes.

Solución. Sea A la matriz cuyas columnas son los vectores v_1, \dots , v_4

    \begin{align*}A=\begin{pmatrix}2 & -1 & 3 & 1\\1 & 0 & 2 & 2\\3 & 1 & 7 & 0\\1 & 2 & 4 & -1\end{pmatrix}.\end{align*}

Aplicando reducción gaussiana obtenemos

    \begin{align*}A_{red}=\begin{pmatrix}1 & 0 & 2 & 0\\0& 1 & 1 & 0\\0&0 & 0 & 1\\0 &0 & 0 & 0\end{pmatrix}.\end{align*}


Como la tercera columna de A_{red} no tiene al pivote de ninguna fila, deducimos que los cuatro vectores son linealmente dependientes.

Si eliminamos la tercera columna, entonces la matriz que queda es la forma escalonada reducida correspondiente al conjunto \{v_1,v_2,v_4\}. Como esta matriz sí tiene pivotes de filas en cada columna, concluimos que este es un conjunto de vectores linealmente independientes.

\square

Independencia lineal de conjuntos infinitos

Hasta este momento hemos trabajado únicamente con familias finitas de vectores, así que es natural preguntarse qué procede con las familias infinitas. Con la definición que tenemos, si tomamos una familia infinita de vectores (v_i)_{i\in I} no podríamos darle algún significado a la suma infinita \displaystyle\sum_{i\in I}c_iv_i para cualquier toda elección de escalares c_i, pues en espacios vectoriales no está en general definido cómo hacer una suma infinita. Sin embargo, si todos salvo una cantidad finita de escalares son 0, entonces la suma anterior sería una suma finita y ya tendría sentido.

De esta manera, podemos extender la definición como sigue.

Definición. La familia (v_i)_{i\in I} es linealmente dependiente si existe una familia de escalares (c_i)_{i\in I} tales que todos salvo una cantidad finita de ellos son cero, pero al menos uno no es cero y que \displaystyle\sum_{i\in I}c_iv_i=0.

De manera equivalente y para simplificar el razonamiento anterior podemos decir que una familia arbitraria de vectores es linealmente dependiente si tiene una subfamilia finita linealmente dependiente. Una familia de vectores es linealmente independiente si toda subfamilia finita es linealmente independiente. Por lo tanto, un conjunto L (posiblemente infinito) es linealmente independiente si dados elementos distintos l_1,\dots, l_n\in L y escalares a_1,a_2,\dots, a_n con a_1l_1+a_2l_2+\dots+ a_nl_n=0, entonces a_1=a_2=\dots=a_n=0.

Observación. a) Una subfamilia de una familia linealmente independiente es linealmente independiente. En efecto, sea (v_i)_{i\in I} una familia linealmente independiente y sea J\subset I. Supongamos que (v_i)_{i\in J} es linealmente dependiente. Entonces existe una subfamilia finita linealmente dependiente v_{i_1}, \dots, v_{i_n} con i_1, \dots,i_n\in J, pero i_1, \dots,i_n\in I, entonces v_{i_1}, \dots, v_{i_n} es una subfamilia finita y linealmente dependiente de una familia linealmente independiente lo cual es una contradicción.
b) Si dos vectores de una familia son iguales, entonces automáticamente la familia es linealmente dependiente.

\square

Más adelante veremos ejemplos de generadores y de independencia lineal con familias infinitas de vectores.

Una relación entre independencia lineal y generados

Podemos relacionar las nociones de subespacio generado y de independencia lineal con la siguiente proposición. Básicamente nos dice que un conjunto \{v_1, \dots, v_n\} es linealmente dependiente si y sólo si alguno sus elementos se puede expresar como combinación lineal de los demás.

Es importante mencionar que usamos la palabra “conjunto” y no “familia”, puesto que con la primera nos referimos a que los vectores son distintos dos a dos, mientras que con la segunda sí pueden haber repeticiones.

Proposición. Sea S un conjunto de vectores en algún espacio vectorial V. Entonces S es linealmente dependiente si y sólo si existe v\in S tal que v\in \text{span}(S\backslash \{v\}).

Demostración. Supongamos que S es linealmente dependiente. Entonces existe una cantidad finita de vectores v_1,v_2, \dots , v_n\in S y algunos escalares a_1,a_2, \dots, a_n no todos iguales a 0, tales que

    \begin{align*}a_1v_1+a_2v_2+ \dots + a_nv_n=0.\end{align*}


Notemos que v_1,\dots , v_n son distintos dos a dos, pues estamos suponiendo que los elementos de S también lo son.

Como no todos los escalares son 0, existe i\in \{1,2,\dots, n\} tal que a_i\neq 0. Dividiendo la igualdad anterior entre a_i, obtenemos

    \begin{align*}\frac{a_1}{a_i}v_1+ \dots + \frac{a_{i-1}}{a_i}v_{i-1}+ v_i+ \frac{a_{i+1}}{a_i}v_{i+1}+ \dots + \frac{a_n}{a_i}v_n=0,\end{align*}


por consiguiente

    \begin{align*}v_i=-\frac{a_1}{a_i}v_1- \dots - \frac{a_{i-1}}{a_i}v_{i-1}-\frac{a_{i+1}}{a_i}v_{i+1}-\dots - \frac{a_n}{a_i}v_n.\end{align*}

De lo anterior se sigue que v_i pertenece al generado de v_1, \dots , v_{i-1}, v_{i+1}, \dots , v_n, el cual está contenido en \text{span}(S \backslash \{v_i\}), pues \{v_1, \dots , v_{i-1}, v_{i+1}, \dots , v_n\}\subset S\backslash \{v_i\}. Esto prueba una implicación.

Para la otra implicación, supongamos que existe v\in S tal que v\in \text{span}(S\backslash \{v\}). Esto significa que existen v_1,v_2, \dots, v_n\in S\backslash \{v\} y escalares a_1,a_2,\dots ,a_n tales que

    \begin{align*}v=a_1v_1+a_2v_2+\dots+a_nv_n.\end{align*}


Pero entonces

    \begin{align*}1\cdot v + (-a_1)v_1+ \dots + (-a_n)v_n=0\end{align*}


y los vectores v,v_1,\dots , v_n son linealmente dependientes pues por lo menos el primer coeficiente es distinto de cero. Como v no está en \{v_1, \ldots, v_n\}, se sigue que S tiene un subconjunto finito que es linealmente dependiente y por lo tanto S también lo es.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Decide si el conjunto con las matrices \begin{pmatrix} 0 & 1 \\ 0 & 0\end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1\end{pmatrix} y \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} es un conjunto generador de M_2(\mathbb{R}).
  • Sean S_1 y S_2 subconjuntos de un subespacio vectorial V tales que S_1\subset S_2. Demuestra que \text{span}(S_1)\subset \text{span}(S_2). Concluye que si S_1 es generador, entonces S_2 también lo es
  • Demuestra la observación b).
  • Da un conjunto de 3 vectores de \mathbb{R}^3 linealmente independientes y tales que ninguna de sus entradas es 0. Haz lo mismo para linealmente dependientes.
  • Sean f,g:\mathbb{R}\longrightarrow \mathbb{R} funciones definidas por

        \begin{align*}f(t)=e^{rt}, \hspace{4mm} g(t)=e^{st}\end{align*}


    con r\neq s. Demuestra que f y g son linealmente independientes en \mathcal{F}(\mathbb{R},\mathbb{R}), el espacio de las funciones de los reales en los reales.

Más adelante…

Aquí ya hablamos de conjuntos generadores y de linealmente independientes. La entrada teórica que sigue es crucial y en ella se verá y formalizará la intuición de que los conjuntos generadores deben ser “grandes”, mientras que los independientes deben ser “chicos”. El resultado clave es el lema de intercambio de Steinitz.

Cuando un conjunto de vectores es tanto generador, como linealmente independiente, está en un equilibrio que ayuda a describir una propiedad muy importante de un espacio vectorial: la de dimensión.

Entradas relacionadas

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema. Considera los vectores

v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)

en \mathbb{R}^4. Prueba que para cualquier elección de x\in\mathbb{R}, los vectores v_1,v_2,v_3 son linealmente independientes.

Solución. Sea A la matriz cuyas columnas son v_1,v_2,v_3, es decir,

A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.

Sabemos que v_1,v_2,v_3 son linealmente independiente si y sólo si \text{dim(span}(v_1,v_2,v_3))=3, ya que \text{rank}(A)=3, y eso es equivalente (por la clase del lunes) a demostrar que A tiene una submatriz de 3\times 3 invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,

lo que implica que es invertible, y por lo tanto v_1,v_2, v_3 son vectores linealmente independientes.

\square

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre \mathbb{R} o sobre \mathbb{C}. Como \mathbb{R}\subset \mathbb{C}, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en \mathbb{R} se cumplen en \mathbb{C}. En este caso particular, si las soluciones de una matriz en M_{m,n}(\mathbb{R}) son soluciones de la misma matriz pero vista como elemento en M_{m,n}(\mathbb{C}). El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea A\in M_{m,n}(F) y sea F_1 un campo contenido en F. Consideremos el sistema lineal AX=0. Si el sistema tiene una solución no trivial en F_1^n, entonces tiene una solución no trivial en F^n.

Demostración. Dado que el sistema tiene una solución no trivial en F_1^n, r:=\text{rank}(A) < n vista como elemento en M_{m,n}(F_1). Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a A como elemento de M_{m,n}(F_1) o de M_{m,n}(F). Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de F^n de dimensión n-r>0. Por lo tanto, el sistema AX=0 tiene una solución no trivial en F^n.

\square

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. Sea S_a el siguiente sistema lineal:

\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.

Encuentra los valores de a para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como AX=b donde

A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.

Notemos que

\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,

entonces si a\neq 1/8, A es invertible, y por lo tanto \text{rank}(A)=3, mientras que si a=1/8, A no es invertible y \text{rank}(A)=2 ya que la submatriz es invertible

\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.

Además, si la matriz (A,b) es igual a

\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, \text{rank}(A,b)=3.

Aplicando el Teorema de Rouché-Capelli, para a=1/8, el sistema AX=b no tiene soluciones. También podemos concluir que como \text{rank}(A)=3 para todo a\neq 1/8, el sistema tiene exactamente una solución. (Y AX=b nunca tiene infinitas soluciones).

\square

Problema. Sean a,b,c números reales dados. Resuelve el sistema lineal

\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.

Solución. La matriz del sistema es

A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.

No es difícil ver que \text{det}(A)=4abc. Si abc\neq 0, usando la regla de Cramer, la única solución al sistema está dada por

x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}

y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},

resolviendo los determinantes obtenemos que

x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.

Ahora, si abc=0, entonces A no es invertible (\text{rank}(A)<3). El sistema es consistente si y sólo si \text{rank}(A)=\text{rank}(A,b).

Sin pérdida de generalidad, decimos que a=0 (pues abc=0). Esto reduce el sistema a

\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.

El sistema es consistente si b=c y distintos de cero. En este caso, tenemos que b(2x+y+z)=1 y b(y+z)=1, implicando x=0, y+z=1/b. De manera similar, obtenemos las posibles soluciones si b=0 o si c=0.

Resumiendo:

  • Si abc\neq 0, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) a=0 y b=c \neq 0; caso 2) b=0 y a=c\neq 0; caso 3) c=0 y a=b\neq 0, tenemos infinitas soluciones descritas como, para todo w\in \mathbb{R}: caso 1) (0,w,1/b-w); caso 2) (w,0,1/a-w); caso 3) (w,1/a-w,0).
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para a,b,c, el sistema no es consistente.

\square

Álgebra Lineal I: Eigenvalores y eigenvectores de transformaciones y matrices

Introducción

En entradas anteriores ya establecimos los fundamentos para hablar de determinantes. Dimos su definición para el caso de vectores y el caso de matrices/transformaciones lineales. Enunciamos y demostramos varias de sus propiedades. Luego dedicamos toda una entrada a ver formas de calcularlos. Finalmente, vimos que nos pueden ayudar para entender mucho mejor a los sistemas de ecuaciones lineales. Entender bien estos conceptos te será de gran utilidad en tu formación matemática.

Además, los determinantes son un paso natural en uno de nuestros objetivos del curso: entender por qué las matrices simétricas reales son diagonalizables. Recuerda que una matriz A en M_n(F) es diagonalizable si existe una matriz diagonal D y una matriz invertible P, ambas en M_n(F), de modo que

    \[A=P^{-1}DP.\]

Lo que haremos en esta entrada es hablar de esos valores que aparecen en la matriz diagonal D en el caso de que A sea diagonalizable. Resulta que estos valores están relacionados con una pregunta muy natural en términos de lo que le hace la matriz a ciertos vectores. Y mejor aún, como veremos, hay un método para encontrar estos valores por medio de un determinante. Vamos poco a poco.

Eigenvalores y eigenvectores para transformaciones lineales

Sea V un espacio vectorial sobre un campo F y sea T:V\to V una transformación lineal. Para fijar ideas, pensemos en \mathbb{R}^n por el momento. A veces, T simplemente la cambia la magnitud a un vector, sin cambiarle la dirección. Es decir, hay algunos vectores para los cuales T se comporta simplemente como la multiplicación por un escalar. En símbolos, hay vectores v tales que existe un valor \lambda tal que T(v)=\lambda v.

Por supuesto, al vector 0 siempre le pasa esto, pues como T es lineal, se tiene que T(0)=0=\lambda\cdot 0 para cualquier escalar \lambda. Resulta que cuando se estudian estos vectores y escalares especiales, lo más conveniente es quitar al vector 0 de la discusión. Estas ideas llevan a la siguiente definición.

Definición. Un eigenvalor de una transformación lineal T:V\to V es un escalar \lambda tal que \lambda \text{id} - T no es invertible. En otras palabras, \lambda es un escalar tal que existe un vector no cero en el kernel de \lambda \text{id} - T. A un vector v\neq 0 en V tal que

    \[(\lambda \text{id} - T)v=0,\]

se le conoce como un eigenvector de T.

En otras palabras, v es un eigenvector correspondiente a T si v no es cero y T(v)=\lambda v. A los eigenvalores y eigenvectores de T también se les conoce en la bibliografía como valores propios y vectores propios de T.

Observa que si al conjunto de eigenvectores para un eigenvalor \lambda le agregamos el vector 0, entonces obtenemos el kernel de una transformación lineal, que sabemos que es un subespacio vectorial.

Veamos un par de ejemplos para que queden más claras las ideas.

Ejemplo. Consideremos a la transformación lineal T:\mathbb{R}^3\to \mathbb{R}^3 dada por

    \[T(x,y,z)=(-2x+15y+18z,3y+10z,z).\]

Observa que

    \begin{align*}T(1,0,0)&=(-2,0,0)\\&=-2(1,0,0),\end{align*}

que

    \begin{align*}T(-19,-5,1)&=((-2)(-19)+15(-5)+18,3(-5)+10, 1)\\&=(28+75-18,-15+10,1)\\&=(-19,-5,1),\end{align*}

y que

    \begin{align*}T(3,1,0)&=(-6+15,3,0)\\&=(9,3,0)\\&=3(3,1,0).\end{align*}

Estas igualdades muestran que (1,0,0) es un eigenvector de T con eigenvalor -2, que (-19,-5,1) es un eigenvector de T con eigenvalor 1 y (3,1,0) es un eigenvector de T con eigenvalor 3.

\square

Ejemplo. Consideremos al espacio vectorial \mathbb{R}[x] de polinomios con coeficientes reales. Tomemos la transformación lineal T que manda a un polinomio a su segunda derivada. ¿Quiénes son los eigenvalores y eigenvectores de T?

Para que p sea un eigenvector con eigenvalor \lambda, tiene que suceder que

    \[p''=T(p)=\lambda p.\]

Como p no es el vector cero, tiene un cierto grado. Si \lambda \neq 0, entonces la igualdad anterior no puede suceder, pues si p es de grado mayor o igual a 2, entonces el grado de p'' es menor al de \lambda p, y si el grado de p es 0 ó 1, su segunda derivada es 0, y no puede pasar \lambda p = 0. Así, el único eigenvalor que puede tener T es \lambda = 0. Observa que sí es válido que los eigenvalores sean cero (los eigenvectores no).

Cuando \lambda = 0, tiene que pasar que p'' sea 0\cdot p, es decir, el polinomio cero. Los únicos polinomios tales que su derivada es cero son los constantes y los lineales. Pero el polinomio cero por definición no es eigenvector.

Así, la respuesta final es que el único eigenvalor de T es 0, y sus eigenvectores correspondientes son los polinomios constantes distintos de cero, y los polinomios lineales.

\square

Eigenvalores y eigenvectores para matrices

Tenemos una definición similar para matrices. Sea A una matriz en M_n(F).

Definición. Un escalar \lambda en F es un eigenvalor de A si la matriz \lambda I_n - A no es invertible. En otras palabras, si existe un vector no cero X en F^n tal que AX=\lambda X. A un tal vector X se le conoce como un eigenvector correspondiente al eigenvalor \lambda.

En otras palabras, los eigenvalores y eigenvectores de A son exactamente los eigenvalores y eigenvectores de la transformación T_A:\mathbb{F}^n\to \mathbb{F}^n dada por T_A(v)=Av.

Además, si elegimos cualquier base B de un espacio de dimensión finita V y A es la matriz de T con respecto a la base B, entonces para cualquier escalar \lambda se tiene que \lambda I_n - A es la matriz de \lambda \text{id} - T con respecto a esta misma base. De aquí se deduce que los eigenvalores de T son los mismos que los eigenvalores de A. Dos matrices que representan a T difieren sólo en un cambio de base, así que obtenemos el siguiente resultado fundamental.

Proposición. Si A es una matriz en M_n(F) y P es una matriz invertible, entonces A y P^{-1}AP tienen los mismos eigenvalores. En otras palabras, matrices similares tienen los mismos eigenvalores.

En el primer ejemplo tomamos la transformación lineal T:\mathbb{R}^3\to \mathbb{R}^3 tal que

    \[T(x,y,z)=(-2x+15y+18z,3y+10z,z).\]

Su matriz en la base canónica de \mathbb{R}^3 es

    \[A=\begin{pmatrix} -2 & 15 & 18\\ 0 & 3 & 10\\ 0 & 0 & 1 \end{pmatrix}.\]

En el ejemplo vimos que los eigenvalores eran -2, 1 y 3, que precisamente conciden con las entradas en la diagonal de A. Esto no es casualidad. El siguiente resultado muestra esto, y es una primer evidencia de la importancia de los determinantes para encontrar los eigenvalores de una matriz.

Proposición. Si A es una matriz triangular (superior o inferior) en M_n(F), entonces sus eigenvalores son exactamente las entradas en su diagonal principal.

Demostración. Haremos el caso para cuando A es triangular superior. El otro caso queda de tarea moral.

Queremos encontrar los valores \lambda para los cuales la matriz \lambda I_n - A no sea invertible. La matriz A es triangular superior, así que la matriz \lambda I_n - A también, pues las entradas de A se vuelven negativas, y luego sólo se altera la diagonal principal.

Si las entradas diagonales de A son a_{11},\ldots,a_{nn}, entonces las entradas diagonales de \lambda I_n -A son

    \[\lambda - a_{11},\ldots,\lambda-a_{nn}.\]

La matriz \lambda I_n - A no es invertible si y sólo si su determinante es igual a cero. Como es una matriz triangular superior, su determinante es el producto de sus entradas diagonales, es decir,

    \[\det(\lambda I_n - A) = (\lambda - a_{11})\cdot\ldots\cdot(\lambda - a_{nn}).\]

Este producto es 0 si y sólo si \lambda es igual a alguna entrada a_{ii}. De esta forma, los únicos eigenvalores de A son las entradas en su diagonal.

\square

Si A es una matriz diagonalizable, entonces es semejante a una matriz diagonal D. Por la proposición anterior, los eigenvalores de A serían entonces las entradas en la diagonal principal de D. Esto nos da una intuición muy importante: si acaso pudiéramos encontrar todos los eigenvalores de A, entonces eso podría ser un paso parcial hacia diagonalizarla.

Encontrar eigenvalores es encontrar las raíces de un polinomio

La siguiente proposición conecta eigenvalores, polinomios y determinantes.

Proposición. Sea A una matriz en M_n(F). Entonces la expresión

    \[\det(\lambda I_n - A)\]

está en F[\lambda], es decir, es un polinomio en la variable \lambda con coeficientes en F. Además, es de grado exactamente n.

Demostración. La fórmula para el determinante

    \begin{align*}\begin{vmatrix}\lambda - a_{11} & -a_{12} & \ldots & -a_{1n}\\-a_{21} & \lambda - a_{22} & \ldots & -a_{1n}\\\vdots & & \ddots & \\-a_{n1} & -a_{n2} & \ldots & \lambda - a_{nn}\end{vmatrix}\end{align*}

en términos de permutaciones nos dice que el determinante es sumas de productos de entradas de A. Cada una de las entradas es un polinomio en F[\lambda], ya sea constante, o lineal. Como F[\lambda] es cerrado bajo sumas y productos, esto prueba la primer parte de la afirmación.

Para probar que el grado es exactamente n, notemos que cada sumando de la expresión multiplica exactamente n entradas. Como las entradas a lo mucho son de grado uno en F[\lambda], entonces cada sumando es un polinomio de grado a lo más n. Hay una única forma que el grado sea n: cuando se elige la permutación identidad y entonces se obtiene el sumando

    \[(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).\]

Esto termina la prueba.

\square

La proposición anterior nos asegura entonces que la siguiente definición tiene sentido.

Definición. Para A una matriz en M_n(F), el polinomio característico de A es el polinomio \chi_A(\lambda) en F[\lambda] dado por

    \[\chi_A(\lambda) = \det(\lambda I_n - A).\]

De esta forma, \lambda es un eigenvalor de A si y sólo si es una raíz del polinomio \chi_A(\lambda). Esto son buenas y malas noticias. Por un lado, nos cambia un problema de álgebra lineal a uno de polinomios, en donde a veces tenemos herramientas algebraicas que nos ayudan a encontrar raíces. Sin embargo, como se ve en cursos anteriores, también hay otros polinomios para los cuales es muy difícil encontrar sus raíces de manera exacta. Lo que salva un poco esa situación es que sí existen métodos para aproximar raíces numéricamente de manera computacional.

A pesar de la dificultad de encontrar raíces, sin duda tenemos consecuencias interesantes de esta conexión. Consideremos como ejemplo el siguiente resultado.

Proposición. Una matriz A en M_n(F) tiene a lo más n eigenvalores distintos. Lo mismo es cierto para una transformación lineal T:V\to V para V un espacio vectorial de dimensión n.

Demostración. La matriz A tiene tantos eigenvalores como raíces en F tiene su polinomio característico. Como el polinomio característico es de grado exactamente n, tiene a lo más n raíces en F.

La parte de transformaciones queda de tarea moral.

\square

Ya que encontramos los eigenvalores de una matriz o transformación, es posible que queramos encontrar uno o más eigenvectores correspondientes a ese eigenvalor. Observa que eso corresponde a encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo de la forma

    \[(I_n-A) X = 0.\]

Para ello ya tenemos muchas herramientas, como hacer reducción Gaussiana.

Terminamos esta entrada con un ejemplo de cómo encontrar los valores propios y vectores propios en un caso concreto.

Problema. Encuentra los eigenvalores de la matriz

    \[A=\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\]

considerándola como:

  • Una matriz en M_3(\mathbb{R})
  • Una matriz en M_3(\mathbb{C}).

En el caso de M_n(\mathbb{R}), encuentra un eigenvector para cada eigenvalor.

Solución. Para encontrar los eigenvalores, tenemos que encontrar el determinante

    \[\begin{vmatrix}\lambda - 1 & 0 & 0\\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}.\]

Usando expansión de Laplace en la primer columna y haciendo las operaciones, obtenemos que el determinante de \lambda I_3 - A es el polinomio

    \[(\lambda-1)(\lambda^2+1).\]

Aquí es importante la distinción de saber en qué campo estamos trabajando. Si estamos en M_3(\mathbb{R}), la única raíz del polinomio es 1. Si estamos en M_3(\mathbb{C}), obtenemos otras dos raíces: i y -i.

Ahora, para cuando A es matriz en M_3(\mathbb{R}), necesitamos encontrar un eigenvector para el eigenvalor 1. Esto equivale a encontrar una solución al sistema de ecuaciones

    \[(I_3-A)X=0,\]

es decir, a

    \[\begin{pmatrix}0 & 0 & 0\\ 0 & 1 & 1 \\ 0 & -1 & 1\end{pmatrix}X=0.\]

Una solución para este sistema es X=(1,0,0). Y en efecto, (1,0,0) es eigenvector de A para el eigenvalor 1 pues no es el vector cero y

    \[\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + 0 + 0 \\ 0 + 0 + 0 \\ 0 + 0 + 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.\]

\square

Observa que la matriz anterior no es diagonalizable en M_n(\mathbb{R}), pues si lo fuera tendría que ser semejante a una matriz diagonal D con entradas i y -i en la diagonal, pero entonces D no sería una matriz en M_n(\mathbb{R}). Esto nos da otra intuición con respecto a la diagonalización de una matriz: si acaso una matriz en M_n(F) es diagonalizable, entonces su polinomio característico debe tener puras raíces en F. Esta es una condición necesaria, pero aún no es suficiente.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En la entrada vimos que los eigenvalores de una transformación T son los eigenvalores de cualquier matriz que la represente. ¿Es cierto que los eigenvectores de T son los eigenvectores de cualquier matriz que lo represente?
  • Muestra que una transformación lineal T:V\to V para V un espacio vectorial de dimensión n tiene a lo más n eigenvalores distintos.
  • Encuentra los eigenvalores de las matrices de permutación.
  • Para un real \theta\in[0,2\pi) se define la matriz

        \[A(\theta):=\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.\]

    Muestra que A(\theta) tiene eigenvalores reales si y sólo si \theta=0 \o \theta=\pi. Sugerencia: Encuentra el polinomio característico (que es cuadrático) y calcula su discrimintante. Si es negativo, no tiene soluciones reales.
  • Sea A una matriz en M_n(F). Muestra que la matriz transpuesta ^t A tiene los mismos eigenvalores que A, y de hecho, el mismo polinomio característico que A. Sugerencia. Recuerda que una matriz y su transpuesta tienen el mismo determinante.