Archivo de la etiqueta: subespacios

Definición y ejemplos con demostración de SUBESPACIO

INTRODUCCIÓN

Si tenemos un conjunto $C$ con ciertas propiedades de nuestro interés, no forzosamente todo subconjunto de $C$ va a conservar esas propiedades, pero nos interesa encontrar condiciones suficientes (y de preferencia también necesarias) para saber si un subconjunto $D$ de $C$ dado tiene o no las propiedades que queremos.

Si C es un conjunto que contiene a hombres y a mujeres, podemos definir un subconjunto que no contenga hombres y un subconjunto que no tenga mujeres, con lo cual ya no preservan la propiedad deseada.

En esta entrada analizaremos qué se requiere para que un subconjunto de un espacio vectorial, tenga también estructura de espacio vectorial. Veremos que aunque aparentemente se requiere pedir muchas condiciones, en realidad éstas se pueden reducir sólo a unas cuantas.

SUBESPACIO

Definición: Sea $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Decimos que $W$ es un subespacio de $V$, y se le denota como $W\leqslant V$ si:

i) $W$ contiene al neutro del espacio $V$,
i.e. $\theta_V\in W$

ii) La suma es cerrada en $W,$
i.e. $\forall u,v\in W:$
$u+v\in W$

iii) El producto por escalar es cerrado en $W$,
i.e. $\lambda\in K$, $w\in W:$
$\lambda w\in W$

Veamos una equivalencia a esta definición que nos facilitará demostrar si un subconjunto dado de un espacio vectorial es por sí mismo un espacio vectorial.

Proposición: Sean $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Se cumple que $W\leqslant V$ si y sólo si $W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

Demostración: Veamos que se cumplen ambas implicaciones.

$\Longrightarrow )$ Supongamos que $W\leqslant V$.
Por ii) y iii) la suma y el producto por escalar son cerrados en $W$, entonces las operaciones restringidas de $V$ dan una suma y un producto por escalar en $W$.
Propiedades $1$, $2$, $5$, $6$, $7.1$ y $7.2$ de espacio vectorial: Como $u+v=v+u$ para cualesquiera $u,v\in V$, en particular $u+v=v+u$ para toda $u,v\in W$. Por lo tanto, la suma en $W$ es conmutativa.
Nota: Decimos en este caso que la conmutatividad de la suma se hereda de $V$.
Análogamente se heredan la asociatividad de la suma en $W$ y las propiedades $5$, $6$, $7.1$ y $7.2$ de espacio vectorial.
Propiedad $4$ de espacio vectorial: Para cada $w\in W$ se cumple que $-w=(-1_K)w\in W$ ya que el producto es cerrado en $W$.
Propiedad $5$ de espacio vectorial: Por hipótesis $\theta_V\in W$ y como es el neutro en $V$, $\theta_V+v=v+\theta_V=v$ para todo $v\in V$, en particular $\theta_V+w=w+\theta_V=w$ para todo $w\in W$, así $\theta_V$ funciona como neutro en $W$.
$\therefore W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

$\Longleftarrow )$ Supongamos que $W$ es un $K$ – espacio vectorial con las operaciones restringidas de $V$.
Entonces la suma y el producto por escalar son cerrados en $W$, es decir, se cumplen ii. y iii.
Además $W$ tiene un neutro, digamos $\theta_W\in W$.
Por un lado $\theta_V+\theta_W=\theta_W$ en $V$, pues $\theta_V$ es neutro en $V$.
Por otro lado $\theta_W+\theta_W=\theta_W$ en $W$, pues $\theta_W$ es neutro en $W$.
Así, $\theta_V+\theta_W=\theta_W+\theta_W$ en $V$ y por cancelación en $V$, $\theta_V=\theta_W$.
De donde $\theta_V\in W$
$\therefore W\leqslant V$ .

Obs. Sean $V$ un $K$ – espacio vectorial, $W$ un subconjunto de $V$. Resulta que
$W\leqslant V$ si y sólo si se cumple que: a) $W\not=\emptyset$ y b) $\forall u,v\in W$ $\forall\lambda\in K(\lambda u+v\in W)$.

La implicación de ida es muy directa y queda como ejercicio. Para justificar el regreso supongamos que se cumplen a) y b). Dados $u,v\in W$ se tiene que $u+v=1_Ku+v$ y gracias a b) sabemos que $1_Ku+v\in W$, así se cumple la propiedad ii). Por otro lado, como se cumple a) podemos asegurar que existe $v \in W$, y por la propiedad b) $\theta_V=-v+v=(-1_K)v+v\in W$, por lo que $\theta_V\in W$ y se cumple i). Finalmente dados $u\in W, \lambda \in K$ como $\theta_V\in W$, usando b) se tiene que $\lambda u=\lambda u+\theta_V\in W$ por lo que se cumple la propiedad iii).

Ejemplos

  • $\{ (x,y,0)|x,y\in\mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$
  • $\{\begin{pmatrix}a&b\\b&a\end{pmatrix}|a,b\in\mathbb{R}\}$ es un subespacio de $\mathcal{M}_{2\times 2}(\mathbb{R}).$
  • $\{ f:\mathbb{R}\longrightarrow\mathbb{R}| f$ es continua$\}$ es un subespacio de $\{ f|f:\mathbb{R}\longrightarrow\mathbb{R}\}.$
  • $\{(x,y,z)|x=y=z\in \mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$

Ejemplo soluciones de un sistema homogéneo

Sean $V=\mathcal{M}_{n\times 1}(K)$ y $A\in\mathcal{M}_{m\times n}(K)$.
$W=\{X\in V|AX=0\}$$\leqslant V$.

Recordemos que si tenemos el sistema de ecuaciones homogéneo de $m$ ecuaciones con $n$ incógnitas:

\begin{align*}
\begin{matrix}a_{11}x_1 & +a_{12}x_2 & \cdots & +a_{1n}x_n=0\\ a_{21}x_1 & +a_{22}x_2 & \cdots & +a_{2n}x_n=0 \\ \vdots & & \ddots & \vdots \\ a_{m1} x_1& +a_{m2}x_2 & \cdots & +a_{mn}x_n=0, \end{matrix} \end{align*}
entonces su forma matricial es:
\begin{align*}
AX=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}
= \begin{pmatrix}0\\ \vdots\\ 0\end{pmatrix} = 0 \end{align*}
Recordemos que estamos usando al $0$ para denotar a la matriz $n\times 1$ con todas sus entradas iguales al cero del campo. Veamos que las soluciones del sistema homogéneo dado por $A$ es un subespacio del espacio vectorial de matrices de $n\times 1$ con entradas en el campo $K$.

DEMOSTRACIÓN

Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $X,Y\in W$, $\lambda\in K$.

  1. P.D. $W$ tiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $A\theta_V=A0=0$.
$\therefore\theta_V\in W.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $X+Y\in W$.

Como $X,Y\in W$, $AX=AY=0$ y por lo tanto, $AX+AY=0+0=0$.
Basta recordar que por distributividad en las matrices $A(X+Y)=AX+AY$ para obtener que $A(X+Y)=0$.
$\therefore X+Y\in W.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda X\in W$.

Como $X\in W$, $AX=0$ y por lo tanto, $\lambda (AX)=0$.
Basta recordar que por propiedad del producto por escalar en matrices $A(\lambda X)=\lambda(AX)$ para obtener que $A(\lambda X)=0$
$\therefore\lambda X\in W.$

Así, concluimos que $W=\{X\in V|AX=0\}$, donde $A\in\mathcal{M}_{m\times n}(K)$, es un subespacio de $V=\mathcal{M}_{n\times 1}(K)$.

Proposición: La intersección de una familia no vacía de subespacios es un subespacio.

Demostración: Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$.

Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$. Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $u,v\in W$, $\lambda\in K$.

  1. P.D. $W$ contiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $\forall i\in I(\theta_V\in W_i)$ porque todos los $W_i$ son subespacios de $V$.
$\displaystyle\therefore\theta_V\in\bigcap_{i\in I}W_i.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $u+v\in W$.

Dado que $u,v\in W$, $\forall i\in I(u,v\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(u+v\in W_i)$.
$\displaystyle\therefore u+v\in\bigcap_{i\in I}W_i.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda u\in W$.

Dado que $u\in W$, $\forall i\in I(u\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(\lambda u\in W_i)$.
$\displaystyle\therefore\lambda u\in\bigcap_{i\in I}W_i.$

Concluimos así que $W\leqslant V.$

Tarea Moral

  1. Dado $V$ un $K$ – espacio vectorial. Sean $W_1, W_2\leqslant V$. Demuestra que si $W_1\bigcup W_2\leqslant V$, entonces $W_1\subseteq W_2$, o bien, $W_2\subseteq W_1$.
    Para lograrlo se te sugiere lo siguiente:
    • Supón que $W_1 \nsubseteq W_2$.
    • Observamos que para cualesquiera $w_1\in W_1$ y $w_2\in W_2$, tenemos que $w_1,w_2\in W_1\bigcup W_2$. Y como $W_1\bigcup W_2\leqslant V$, entonces $w_1+w_2\in W_1\bigcup W_2$. Además, gracias a la primera proposición de esta entrada, sabemos que $W_1$ y $W_2$ son $K$ – espacios vectoriales, de modo que los inversos aditivos de $w_1$ y $w_2$ son elementos de $W_1$ y $W_2$ respectivamente.
    • Ahora argumenta por qué $w_1+w_2\notin W_2$ para concluir que $w_1+w_2\in W_1$.
    • Por último argumenta por qué gracias a que $w_1+w_2\in W_1$, obtenemos que $w_2\in W_1$ para concluir que $W_2\subseteq W_1$.
  1. Sean $K=\mathbb{R}$ y $V=\{a+bx+cx^2+dx^3\mid a,b,c,d\in\mathbb{R}\}$.
    Determina si $U=\{p(x)\in V|p(1)=0\}$ y $T=\{p(x)\in V|p'(1)=0\}$ son subespacios de $V$ y encuentra $U\cap T$.

MÁS ADELANTE…

Definiremos y analizaremos un nuevo concepto que dará lugar a un nuevo subespacio muy peculiar y central en el Álgebra Lineal.

Entradas relacionadas

Álgebra Lineal II: Ortogonalidad en espacios euclideanos

Introducción

Anteriormente, cuando hablamos del espacio dual de un espacio vectorial, definimos qué quería decir que una forma lineal y un vector fueran ortogonales. Esa noción de ortogonalidad nos ayudó a definir qué era un hiperplano de un espacio vectorial y a demostra que cualquier subespacio de dimensión $k$ de un espacio de dimensión $n$ podía ponerse como intersección de $n-k$ hiperplanos.

Hay otra noción de ortogonalidad en álgebra lineal que también ya discutimos en el primer curso: la ortogonalidad de parejas de vectores con respecto a un producto interior. En el primer curso vimos esta noción muy brevemente. Lo que haremos ahora es profundizar en esta noción de ortogonalidad. De hecho, gracias a las herramientas que hemos desarrollado podemos conectar ambas nociones de ortogonalidad.

Esta teoría la veremos de manera explícita en el caso real en la entrada. El caso en $\mathbb{C}$ queda esbozado en los ejercicios.

Definición de ortogonalidad

Comenzamos con las siguientes definiciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos vectores $x,y$ en $V$ son ortogonales (con respecto a $b$) si $b(x,y)=0$.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Sea $S$ un subconjunto de vectores de $V$. El conjunto ortogonal de $S$ (con respecto a $b$) consiste de todos aquellos vectores en $V$ que sean ortogonales a todos los vectores de $S$. En símbolos:

$$S^{\bot}:=\{v \in V : \forall s \in S, b(s,v)=0.$$

Es un buen ejercicio verificar que $S^\bot$ siempre es un subespacio de $V$. Finalmente, definimos la ortogonalidad de conjuntos.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos subconjuntos $S$ y $T$ son ortogonales (con respecto a $b$) si $S \subseteq T^{\bot}$.

En otras palabras, estamos pidiendo que todo vector de $S$ sea ortogonal a todo vector de $T$.

Observación. Si tenemos un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$, entonces tenemos la fórmula $$\norm{x+y}^2=\norm{x}^2+2\langle x,y\rangle +\norm{y}^2.$$

De esta forma, $x$ y $y$ son ortogonales si y sólo si $$\norm{x+y}^2= \norm{x}^2+\norm{y}^2.$$ Podemos pensar esto como una generalización del teorema de Pitágoras.

Descomposición en un subespacio y su ortogonal

Comenzamos esta sección con un resultado auxiliar.

Teorema. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$V=W\oplus W^\bot.$$

Demostración. Sea $\langle \cdot,\cdot \rangle$ el producto interior de $V$. Para demostrar la igualdad que queremos, debemos mostrar que $W$ y $W^\bot$ están en posición de suma directa y que $V=W+W^\bot$.

Para ver que $W$ y $W^\bot$ están en posición de suma directa, basta ver que el único elemento en la intersección es el $0$. Si $x$ está en dicha intersección, entonces $\langle x, x \rangle =0$, pues por estar en $W^\bot$ debe ser ortogonal a todos los de $W$, en particular a sí mismo. Pero como tenemos un producto interior, esto implica que $x=0$.

Tomemos ahora un vector $v\in V$ cualquiera. Definamos la forma lineal $f:W\to \mathbb{R}$ tal que $f(u)=\langle u, v \rangle$. Por el teorema de representación de Riesz aplicado al espacio vectorial $V$ y a su forma lineal $f$, tenemos que existe un (único) vector $x$ en $W$ tal que $f(u)=\langle u, x \rangle$ para cualquier $u$ en $W$.

Definamos $y=v-x$ y veamos que está en $W^\bot$. En efecto, para cualquier $u$ en $W$ tenemos:

\begin{align*}
\langle u, y\rangle &= \langle u, v-x \rangle\\
&=\langle u, v \rangle – \langle u , x \rangle\\
&=f(u)-f(u)\\
&=0.
\end{align*}

De esta manera, podemos escribir $v=x+y$ con $x\in W$ y $y\in W^\bot$.

$\square$

En particular, el teorema anterior nos dice que la unión disjunta de una base de $W$ y una base de $W^\bot$ es una base de $V$. Por ello, tenemos el siguiente corolario.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$\dim{W}+\dim{W^\bot}=\dim{V}.$$

Tenemos un corolario más.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$(W^\bot)^\bot=W.$$

Demostración. Tanto $W$ como $(W^\bot)^\bot$ son subespacios de $V$. Tenemos que $W\subseteq (W^\bot)^\bot$ pues cualquier elemento de $W$ es ortogonal a cualquier elemento de $W^\bot$. Además, por el corolario anterior tenemos:

\begin{align*}
\dim{W}+\dim{W^\bot}&=\dim{V}\\
\dim{W^\bot}+\dim{(W^\bot)^\bot}&=\dim{V}.
\end{align*}

De aquí se sigue que $\dim{W} = \dim{(W^\bot)^\bot}$. Así, la igualdad que queremos de subespacios se sigue si un subespacio está contenido en otro de la misma dimensión, entonces deben de ser iguales.

$\square$

Proyecciones ortogonales

Debido al teorema anterior, podemos dar la siguiente definición.

Definición. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. La proyección ortogonal hacia $W$ es la transformación lineal $p_W:V\to W$ tal que a cada $v$ en $V$ lo manda al único vector $p_W(v)$ tal que $x-p_W(v)$ está en $W^\bot$.

Dicho en otras palabras, para encontrar a la proyección de $v$ en $W$ debemos escribirlo de la forma $v=x+y$ con $x\in W$ y $y\in W^\bot$ y entonces $p_W(v)=x$.

Distancia a subespacios

Cuando definimos la distancia entre conjuntos que tienen más de un punto, una posible forma de hacerlo es considerando los puntos más cercanos en ambos conjuntos, o en caso de no existir, el ínfimo de las distancias entre ellos. Esto da buenas propiedades para la distancia. En particular, cuando queremos definir la distancia de un punto $x$ a un conjunto $S$ hacemos lo siguiente.

Definición. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $S$ un subconjunto de $V$ y $v$ un vector de $S$. Definimos la distancia de $v$ a $S$ como la menor posible distancia de $v$ hacia algún punto de $S$. En símbolos:

$$d(v,S):=\inf_{s\in S} d(v,s).$$

En general, puede ser complicado encontrar el punto que minimiza la distancia de un punto a un conjunto. Sin embargo, esto es más sencillo de hacer si el conjunto es un subespacio de un espacio con producto interior: se hace a través de la proyección al subespacio. Esto queda reflejado en el siguiente resultado.

Proposición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $W$ un subespacio de $V$ y sea $v$ un vector en $V$. Entonces $$d(v,W)=\norm{v-p_W(v)}.$$

Más aún, $p_W(v)$ es el único punto en $W$ para el cual se alcanza la distancia mínima.

Demostración. Por el teorema de descomposición en un subespacio y su ortogonal, sabemos que podemos escribir $v=x+y$ con $x$ en $W$ y con $y$ en $W^\bot$.

Tomemos cualquier elemento $w$ en $W$. Tenemos que $x-w$ está en $W$ y que $y$ está en $W^\bot$. Así, usando el teorema de Pitágoras tenemos que:

\begin{align*}
\norm{v-w}^2&=\norm{y+(x-w)}^2\\
&=\norm{y}^2+\norm{x-w}^2\\
&\geq \norm{y}^2\\
&=\norm{v-x}^2.
\end{align*}

Esto muestra que $\norm{v-w}\geq \norm{v-x}$. Como $x\in W$, esto muestra que la distancia de $v$ a $W$ en efecto se alcanza con $x=p_W(v)$, pues cualquier otra distancia es mayor o igual.

La igualdad en la cadena anterior de alcanza si y sólo si $\norm{x-w}^2=0$, lo cual sucede si y sólo si $x=w$, como queríamos.

$\square$

Más adelante…

En la siguiente entrada recordaremos varias de las ventajas que tiene contar con una base de un espacio vectorial en la que cualesquiera dos vectores sean ortogonales entre sí. Y en la entrada después de esa, recordaremos algunas hipótesis bajo las cuales podemos garantizar encontrar una de esas bases.

Tarea moral

  1. Resuelve los siguientes ejercicios:
    1. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$. Encuentra a $W^{\bot}$ y define la proyección ortogonal $p_W$ hacia $W$.
    2. Encuentra el vector en $\text{Span}((1,2,1), (-1,3,-4))$ que sea el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  2. Sea $V$ un espacio euclidiano y $T : V \to V $ una transformación lineal tal que $T^2=T$. Prueba que T es una proyección ortogonal si y solo si para cualesquiera $x$ y $y$ en $V$ se tiene que $$\langle T(x),y\rangle =\langle x,T(y)\rangle.$$
  3. Resuelve los siguientes ejercicios:
    1. Demuestra que una proyección ortogonal reduce la norma, es decir, que si $T$ es una proyección ortogonal, entonces $\norm{T(v)}\leq \norm{v}$.
    2. Prueba que una proyección ortogonal únicamente puede tener como eigenvalores a $0$ ó a $1$.
  4. Demuestra que la composición de dos proyecciones ortogonales no necesariamente es una proyección ortogonal.
  5. En el teorema de descomposición, ¿es necesaria la hipótesis de tener un producto interior? ¿Qué sucede si sólo tenemos una forma bilineal, simétrica y positiva?

Entradas relacionadas

Álgebra Lineal I: Problemas de bases y dimensión de espacios vectoriales

Introducción

En las entradas anteriores vimos cómo se puede definir la dimensión de un espacio vectorial. Para ello, necesitamos encontrar una base. En el caso finito, la dimensión del espacio es la cardinalidad de una base. Esto está bien definido pues todas las bases tienen la misma cardinalidad. A continuación solucionaremos algunos ejemplos para reforzar los temas vistos.

Recordatorio de truco para mostrar que algo es base

En varios de los problemas usamos el siguiente resultado. Ya lo enunciamos y demostramos previamente. Pero como es sumamente útil, lo volvemos a enunciar, en términos más prácticos.

Proposición. Sea $V$ un espacio vectorial que ya sepamos que tiene dimensión finita $n$. Sea $B=\{v_1,v_2,\dots, v_n\}$ un conjunto de $n$ vectores de $v$. Entonces, cualquiera de las siguientes afirmaciones implica las otras dos:

  1. $B$ es un conjunto linealmente independiente en $V$
  2. $B$ es un conjunto generador para $V$.
  3. $B$ es una base de $V$

Por supuesto, el tercer punto implica los otros dos por la definición de base. Lo que es realmente útil en situaciones teóricas y prácticas es que si ya sabemos que un espacio tiene dimensión $n$, y tenemos un conjunto de $n$ vectores, entonces basta verificar que o bien (1) o bien (2). Con esto tendremos la otra afirmación gratuitamente.

Al usar este resultado, es muy importante verificar las hipótesis. Es decir, para usarlo se necesita:

  • Argumentar por qué la dimensión de un espacio vectorial es cierto entero $n$.
  • Argumentar que se está estudiando un conjunto con $n$ vectores.
  • Demostrar ya sea (1) o (2).

Problemas resueltos

Problema. Muestra que las siguientes cuatro matrices $A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $D=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ son una base del espacio vectorial $M_2(\mathbb{R})$.

Solución. Ya sabemos que $M_2(\mathbb{R})$ es un espacio vectorial de dimensión $4$, pues una base está conformada por las matrices $E_{11}$, $E_{12}$, $E_{21}$ y $E_{22}$ de la base canónica. El conjunto que tenemos consiste de $4$ matrices. Así, para mostrar que conforman una base, es suficiente con que mostremos que son un conjunto linealmente independiente.

Supongamos que existen reales $a,b,c,d$ tales que $$aA+bB+cC+dD=O_2.$$ Haciendo las operaciones entrada por entrada en esta igualdad, obtenemos que esto sucede si y sólo si $a,b,c,d$ son soluciones al sistema de ecuaciones
$$\begin{cases}a+c&=0\\b-d&=0\\b+d&=0\\a-c&=0.$$

Podríamos encontrar todas las soluciones a este sistema usando reducción gaussiana. Sin embargo, afortunadamente para este sistema hay una forma más sencilla de proceder. Sumando la primera y cuarta igualdad, obtenemos $2a=0$, de donde $a=0$ y entonces por la primer ecuación $c=0$. De manera simétrica, $b=d=0$. De esta forma, la única combinación lineal de $A,B,C,D$ que da la matriz cero es la trivial. Concluimos que $A,B,C,D$ son linealmente independientes, y por lo tanto son una base de $M_2(\mathbb{R})$.

$\square$

En el problema anterior resultó más práctico mostrar que las matrices eran linealmente independientes, pero también pudimos simplemente mostrar que generaban a $M_2(\mathbb{R})$. Por la proposición que enunciamos, cualquiera de los dos implica que en este contexto las matrices forman una base.

Veamos ahora un ejemplo en el que es más conveniente mostrar que el conjunto propuesto es generador.

Problema. Encuentra una base de $\mathbb{R}_4[x]$ que tenga al polinomio $$p(x)=1+x+x^2+x^3+x^4.$$

Solución. Ya sabemos que $\mathbb{R}_4[x]$ tiene dimensión $5$, pues una base es el conjunto de polinomios $\mathcal{B}=\{1,x,x^2,x^3,x^4\}$.

Proponemos al conjunto $$\mathcal{B}’=\{1,x,x^2,x^3,p(x)\}$$ como solución al problema.

Como $\mathcal{B}’$ es un conjunto con $5$ elementos, basta con mostrar que es un conjunto que genera a $\mathbb{R}_4[x]$. Para ello, notemos que $\mathcal{B}’$ puede generar al polinomio $x^4$ pues se obtiene mediante la combinación lineal $$x^4=p(x)-1-x-x^2-x^3.$$

De esta forma, $\mathcal{B}’$ puede generar todo lo que puede generar $\mathcal{B}$. En símbolos: $$\mathbb{R}_4[x]\subseteq \text{span}(\mathcal{B})\subseteq \text{span}(\mathcal{B}’) \subseteq \mathbb{R}_4[x].$$

Concluimos que $\text{span}(\mathcal{B}’) = \mathbb{R}_4[x]$. Esto muestra que $\mathcal{B}’$ es una base de $\mathbb{R}_4[x]$ que tiene al polinomio $p(x)$.

$\square$

Problema. Exactamente uno de los vectores $u=(9,5,1)$ y $v=(9,-5,1)$ puede ser escrito como combinación lineal de los vectores columna de la matriz $$A=\begin{pmatrix} 3 & 0 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{pmatrix}.$$ Determina cuál de ellos es y exprésalo como una combinación lineal de los vectores columna de $A$.

Solución. Un vector $b$ se puede escribir como combinación lineal de las columnas de una matriz $A$ si y sólo si el sistema lineal de ecuaciones $AX=b$ tiene solución. En efecto, si $X=(x,y,z)$, recordemos que $$AX=xC_1+yC_2+zC_3,$$ en donde $C_1$, $C_2$ y $C_3$ son las columnas de la matriz $A$.

De esta forma, una forma de proceder es plantear los sistemas de ecuaciones $AX=u$ y $AX=v$, y ver cuál de ellos tiene solución. Esto se puede hacer y dará la solución al problema.

Sin embargo, aprovecharemos este problema para introducir un truco más. Como queremos resolver ambos sistemas, podemos hacer reducción gaussiana en la matriz aumentada $(A|u|v)$, en donde estamos agregando dos vectores columna nuevos. De la forma escalonada reducida podremos leer todo lo que queremos. La matriz que nos interesa es
\begin{align*}\begin{pmatrix}
3 & 0 & 3 & 9 & 9 \\ 2 & 1 & 1 & 5 & -5\\ 1 & 2 & -1 & 1 & 1
\end{pmatrix}.\end{align*}

Usando la herramienta online de eMathHelp para calcular la forma escalonada reducida de esta matriz, obtenemos

\begin{align*}(A_{red}|u’|v’)=\begin{pmatrix}
1 & 0 & 1 & 3 & 0 \\ 0 & 1 & -1 & -1 & 0\\ 0 & 0 & 0 & 0 & 1
\end{pmatrix}.\end{align*}

Estamos listos para hacer el análisis. Tomando la submatriz conformada por las primeras cuatro columnas (las correspondientes a $A_{red}$ y $u’$), vemos que no queda pivote en la última columna. De este modo, sí hay una solución para $AX=u$.

Para obtener una solución, basta trabajar con esta submatriz y usar nuestros argumentos usuales de sistemas de ecuaciones lineales. La variable $z$ es libre. Las variables $x$ y $y$ son pivote. Haciendo $z=0$ obtenemos $x=3$ y $y=-1$. Concluimos que $$\begin{pmatrix} 9 \\ 5 \\ 1 \end{pmatrix} = 3\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}.$$

Esto sería suficiente para terminar el problema, pues el enunciado garantiza que uno y sólo uno de los vectores es combinación lineal de las columnas.

Pero estudiemos el otro caso para ver qué sucede. Tomando la submatriz conformada por las columnas $1$, $2$, $3$, $5$ de $(A_{red}|u’|v’)$ (correspondientes a $A_{red}$ y $v’$), vemos que sí hay un pivote en la última columna: el de la tercera fila. Entonces, no hay solución para $AX=v$.

$\square$

El problema anterior ayuda a fortalecer mucho nuestra intuición para resolver sistemas de ecuaciones lineales: el sistema $AX=b$ tiene solución si y sólo si el vector $b$ es combinación lineal de los vectores columna de $A$. Cada solución al sistema corresponde a una de estas combinaciones lineales.

Problema. Para $n$ un entero positivo y $k$ un entero de $0$ a $n$, definimos al polinomio $P_k(x)=x^k(1-x)^{(n-k)}$. Muestra que $P_0(x),\ldots, P_n(x)$ es una base para el espacio $\mathbb{R}_n[x]$.

Solución. Como $\mathbb{R}_n[x]$ tiene dimensión $n+1$ y estamos considerando un conjunto de $n+1$ polinomios, entonces basta mostrar que este conjunto es linealmente independiente. Supongamos que hay una combinación lineal de ellos que es igual a cero, digamos $$\alpha_0 (1-x)^n + \alpha_1 x(1-x)^{n-1} + \ldots + \alpha_{n-1} x^{n-1} (1-x) + \alpha_n x^n=0.$$

Si evaluamos la expresión anterior en $x=1$, casi todos los sumandos se anulan, excepto el último. De aquí, obtenemos que $\alpha_n 1^n=0$, de donde $\alpha_n=0$. La expresión se convierte entonces en $$\alpha_0 (1-x)^n + \alpha_1 x(1-x)^{n-1} + \ldots + \alpha_{n-1} x^{n-1} (1-x)=0.$$

Factorizando $1-x$ de todos los sumandos y usando que el polinomio $1-x\neq 0$, podemos «cancelar» al factor $1-x$. En otras palabras, podemos «dividir» la combinación lineal entre $1-x$ para obtener $$\alpha_0 (1-x)^{n-1} + \alpha_1 x(1-x)^{n-2} + \ldots + \alpha_{n-1} x^{n-1}=0.$$

De aquí podemos seguir aplicando el mismo argumento: evaluamos en $1$, concluimos que el último coeficiente es igual a $0$, y entonces podemos dividir subsecuentemente entre $1-x$. De esta forma, obtenemos $\alpha_n=\alpha_{n-1}=\ldots=\alpha_0=0$. Concluimos entonces que los polinomios propuestos son linealmente independientes, y por lo tanto forman una base de $\mathbb{R}_n[x]$.

$\square$

El argumento del último párrafo se puede formalizar todavía más usando inducción sobre $n$. Piensa en lo complicado que hubiera sido mostrar de manera directa que los polinomios propuestos generan a $\mathbb{R}_n[x]$. Gracias a la proposición que discutimos al inicio, esto lo obtenemos de manera automática.

Entradas relacionadas

Álgebra Lineal I: Problemas de combinaciones lineales, generadores e independientes

Introducción

En entradas anteriores ya hablamos de combinaciones lineales, de conjuntos generadores y de conjuntos independientes. Lo que haremos aquí es resolver problemas para reforzar el contenido de estos temas.

Problemas resueltos

Problema. Demuestra que el polinomio $p(x)=x^2+x+1$ no puede ser escrito en el espacio vectorial $\mathbb{R}[x]$ como una combinación lineal de los polinomios \begin{align*} p_1(x)=x^2-x\\ p_2(x) = x^2-1\\ p_3(x) = x-1.\end{align*}

Solución. Para resolver este problema, podemos plantearlo en términos de sistemas de ecuaciones. Supongamos que existen reales $a$, $b$ y $c$ tales que $$p(x)=ap_1(x)+bp_2(x)+cp_3(x).$$

Desarrollando la expresión, tendríamos que
\begin{align*}
x^2+x+1 &= a(x^2-x)+b(x^2-1)+c(x-1)\\
&= (a+b)x^2+(-a+c)x+(-b-c),
\end{align*}

de donde igualando coeficientes de términos del mismo grado, obtenemos el siguiente sistema de ecuaciones: $$\begin{cases}a+b & = 1\\ -a + c &= 1 \\ -b-c &= 1.\end{cases}$$

Para mostrar que este sistema de ecuaciones no tiene solución, le aplicaremos reducción gaussiana a la siguiente matriz extendida: $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_2+R_1$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_3+R_2$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

De aquí se ve que la forma escalonada reducida tendrá un pivote en la última columna. Por el teorema de existencia y unicidad el sistema original no tiene solución.

$\square$

En el problema anterior usamos un argumento de reducción gaussiana para mostrar que el sistema no tiene solución. Este es un método general que funciona en muchas ocasiones. Una solución más sencilla para ver que el sistema del problema no tiene solución es que al sumar las tres ecuaciones se obtiene $0=3$.

Problema. Sea $n$ un entero positivo. Sea $W$ el subconjunto de vectores en $\mathbb{R}^n$ cuya suma de entradas es igual a $0$. Sea $Z$ el espacio generado por el vector $(1,1,\ldots,1)$ de $\mathbb{R}^n$. Determina si es cierto que $$\mathbb{R}^n=W\oplus Z.$$

Solución. El espacio $Z$ está generado por todas las combinaciones lineales que se pueden hacer con el vector $v=(1,1,\ldots,1)$. Como sólo es un vector, las combinaciones lineales son de la forma $av$ con $a$ en $\mathbb{R}$, de modo que $Z$ es precisamente $$Z=\{(a,a,\ldots,a): a\in\mathbb{R}\}.$$

Para obtener la igualdad $$\mathbb{R}^n=W\oplus Z,$$ tienen que pasar las siguientes dos cosas (aquí estamos usando un resultado de la entrada de suma y suma directa de subespacios):

  • $W\cap Z = \{0\}$
  • $W+Z=\mathbb{R}^n$

Veamos qué sucede con un vector $v$ en $W\cap Z$. Como está en $Z$, debe ser de la forma $v=(a,a,\ldots,a)$. Como está en $W$, la suma de sus entradas debe ser igual a $0$. En otras palabras, $0=a+a+\ldots+a=na$. Como $n$ es un entero positivo, esta igualdad implica que $a=0$. De aquí obtenemos que $v=(0,0,\ldots,0)$, y por lo tanto $W\cap Z = \{0\}$.

Veamos ahora si se cumple la igualdad $\mathbb{R}^n=W+Z$. Por supuesto, se tiene que $W+Z\subseteq \mathbb{R}^n$, pues los elementos de $W$ y $Z$ son vectores en $\mathbb{R}^n$. Para que la igualdad $\mathbb{R}^n\subseteq W+Z$ se cumpla, tiene que pasar que cualquier vector $v=(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ se pueda escribir como suma de un vector $w$ uno con suma de entradas $0$ y un vector $z$ con todas sus entradas iguales. Veamos que esto siempre se puede hacer.

Para hacerlo, sea $S=x_1+\ldots+x_n$ la suma de las entradas del vector $v$. Consideremos al vector $w=\left(x_1-\frac{S}{n},\ldots, x_n-\frac{S}{n} \right)$ y al vector $z=\left(\frac{S}{n},\ldots,\frac{S}{n}\right)$.

Por un lado, $z$ está en $Z$, pues todas sus entradas son iguales. Por otro lado, la suma de las entradas de $w$ es
\begin{align*}
\left(x_1-\frac{S}{n}\right)+\ldots + \left(x_n-\frac{S}{n}\right)&=(x_1+\ldots+x_n)-n\cdot \frac{S}{n}\\ &= S-S=0,
\end{align*}

lo cual muestra que $w$ está en $W$. Finalmente, notemos que la igualdad $w+z=v$ se puede comprobar haciendo la suma entrada a entrada. Con esto mostramos que cualquier vector de $V$ es suma de vectores en $W$ y $Z$ y por lo tanto concluimos la igualdad $\mathbb{R}^n=W\oplus Z$.

$\square$

En el problema anterior puede parecer algo mágico la propuesta de vectores $w$ y $z$. ¿Qué es lo que motiva la elección de $\frac{S}{n}$? Una forma de enfrentar los problemas de este estilo es utilizar la heurística de trabajar hacia atrás. Sabemos que el vector $w$ debe tener todas sus entradas iguales a cierto número $a$ y queremos que $z=v-w$ tenga suma de entradas igual a $0$. La suma de las entradas de $v-w$ es $$(x_1-a)+\ldots+(x_n-a)= S -na.$$ La elección de $a=\frac{S}{n}$ está motivada en que queremos que esto sea cero.

Problema. Considera las siguientes tres matrices en $M_2(\mathbb{C})$:
\begin{align*}
A&= \begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix}\\
B&= \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}\\
C&= \begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix}.
\end{align*}

Demuestra que $A$, $B$ y $C$ son matrices linealmente dependientes. Da una combinación lineal no trivial de ellas que sea igual a $0$.

Solución. Para mostrar que son linealmente dependientes, basta dar la combinación lineal no trivial buscada. Buscamos entonces $a,b,c$ números complejos no cero tales que $aA+bB+cC=O_2$, la matriz cero en $M_2(\mathbb{C})$. Para que se de esta igualdad, es necesario que suceda entrada a entrada. Tenemos entonces el siguiente sistema de ecuaciones:
$$\begin{cases}
-i a + 2i b + ic &= 0\\
-3a + b -7c &=0\\
2a + 3b + 12c &= 0\\
3a -b +7c &=0.
\end{cases}$$

En este sistema de ecuaciones tenemos números complejos, pero se resuelve exactamente de la misma manera que en el caso real. Para ello, llevamos la matriz correspondiente al sistema a su forma escalonada reducida. Comenzamos dividiendo el primer renglón por $-i$ y aplicando transvecciones para hacer el resto de las entradas de la columna iguales a $0$. Luego intercambiamos la tercera y cuarta filas.

\begin{align*}
&\begin{pmatrix}
-i & 2i & i \\
-3 & 1 & -7 \\
2 & 3 & 12 \\
3 & -1 & 7
\end{pmatrix}\\
\to&\begin{pmatrix}
1 & -2 & -1 \\
0 & -5 & -10 \\
0 & 7 & 14 \\
0 & 5 & 10
\end{pmatrix}
\end{align*}

Ahora reescalamos con factor $-\frac{1}{5}$ la segunda fila y hacemos transvecciones para hacer igual a cero el resto de entradas de la columna 2:

\begin{align*}
&\begin{pmatrix}
1 & 0& 3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\end{align*}

Con esto llegamos a la forma escalonada reducida de la matriz. De acuerdo al procedimiento que discutimos en la entrada de sistemas lineales homogéneos, concluimos que las variables $a$ y $b$ son pivote y la variable $c$ es libre. Para poner a $a$ y $b$ en términos de $c$, usamos la primera y segunda ecuaciones. Nos queda \begin{align*} a &= -3c \\ b &= -2c. \end{align*}

En resumen, concluimos que para cualqueir número complejo $c$ en $\mathbb{C}$ se tiene la combinación lineal $$-3c\begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix} – 2c \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix} + c\begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Una posible combinación lineal no trivial se obtiene tomando $c=1$.

$\square$

En el problema anterior bastaba encontrar una combinación lineal no trivial para acabar el ejercicio. Por supuesto, esto también se puede hacer por prueba y error. Sin embargo, la solución que dimos da una manera sistemática de resolver problemas de este estilo.

Problema. Consideremos el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$. Para cada real $a$ en $(0,\infty)$, definimos a la función $f_a\in V$ dada por $$f_a(x)=e^{ax}.$$

Tomemos reales distintos $0<a_1<a_2<\ldots<a_n$. Supongamos que existe una combinación lineal de las funciones $f_{a_1},\ldots,f_{a_n}$ que es igual a $0$, es decir, que existen reales $\alpha_1,\ldots,\alpha_n$ tales que $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Muestra que $\alpha_1=\ldots=\alpha_n=0$. Concluye que la familia $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$.

Solución. Procedemos por inducción sobre $n$. Para $n=1$, si tenemos la igualdad $\alpha e^{ax}=0$ para toda $x$, entonces $\alpha=0$, pues $e^{ax}$ siempre es un número positivo. Supongamos ahora que sabemos el resultado para cada que elijamos $n-1$ reales cualesquiera. Probaremos el resultado para $n$ reales cualesquiera.

Supongamos que tenemos la combinación lineal $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Dividamos esta igualdad que tenemos entre $e^{a_nx}$:

$$\alpha_1 e^{(a_1-a_n)x} + \alpha_2e^{(a_2-a_n)x} + \ldots + \alpha_{n-1}e^{(a_{n-1}-a_n)x}+\alpha_n = 0.$$

¿Qué sucede cuando hacemos $x\to \infty$? Cada uno de los sumandos de la forma $\alpha_i e^{(a_i-a_n)x}$ se hace cero, pues $a_i<a_n$ y entonces el exponente es negativo y se va a $-\infty$. De esta forma, queda la igualdad $\alpha_n=0$. Así, nuestra combinación lineal se ve ahora de la forma $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_{n-1} e^{a_{n-1}x} = 0.$$

Por la hipótesis inductiva, $\alpha_1=\ldots=\alpha_{n-1}=0$. Como también ya demostramos $\alpha_n=0$, hemos terminado el paso inductivo.

Concluimos que la familia (infinita) $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$ pues cualquier subconjunto finito de ella es linealmente independiente.

$\square$

El problema anterior muestra que la razón por la cual ciertos objetos son linealmente independientes puede deberse a una propiedad analítica o de cálculo. A veces dependiendo del contexto en el que estemos, hay que usar herramientas de ese contexto para probar afirmaciones de álgebra lineal.

Entradas relacionadas

Álgebra Lineal I: Suma y suma directa de subespacios

Introducción

En esta entrada nos apoyaremos fuertemente en las nociones de espacios y subespacios vectoriales que estudiamos en entradas anteriores. Lo primero que haremos has hablar de cómo podemos sumar subespacios. Esta es una operación distinta a la suma del espacio vectorial, pues sucede en términos de subconjuntos. Luego, veremos cómo mediante una elección cuidadosa de subespacios, podemos expresar a un espacio vectorial en términos de ĺa suma de subespacios más sencillos. A una descomposición de este tipo le llamamos suma directa. Estudiaremos también algunas de sus propiedades.

Suma de subespacios

En esta sección hablamos de cómo sumar subespacios de un espacio vectorial. Para entender la intución, pensemos primero en el caso de dos subespacios $W_1$ y $W_2$ de un espacio vectorial. Queremos definir un conjunto $W_1+W_2$. Para hacer esto, lo que haremos es sumar cada elemento de $W_1$ con cada elemento de $W_2$.

Ejemplo. Si estamos en el espacio vectorial $\mathbb{R}^3$, podemos considerar los siguientes dos subespacios:
\begin{align*}
W_1&= \{(a,0,0): a\in \mathbb{R}\}\\
W_2&=\{(0,b,0): b \in \mathbb{R}\}.
\end{align*}

Para encontrar el conjunto $W_1+W_2$, lo que haremos es sumar a cada elemento de $W_1$ con cada elemento de $W_2$, considerando todas las posiblidades. En general, tenemos que una de estas sumas es de la forma $$(a,0,0)+(0,b,0)=(a,b,0).$$ Así, concluimos que $$W_1+W_2=\{(a,b,0): a,b \in \mathbb{R}\}.$$

$\square$

Para más subespacios la intución es similar. A continuación damos la definición formal para la suma de una cantidad finita de subespacios.

Definición. Sea $n$ un entero positivo y $W_1, W_2, \dots , W_n$ subespacios de un espacio vectorial $V$. Su suma $$W_1+ W_2+ \dots + W_n$$ es el subconjunto de $V$ que consiste de todos los vectores de la forma $$w_1+w_2+\dots + w_n$$ con $w_i \in W_i$ para todo $1\leq i \leq n$.

La definición anterior sólo habla de cómo sumar una cantidad finita de subespacios. También se puede dar una definición para una familia arbitraria $(W_i)_{i\in I}$ de subespacios de $V$, pero tenemos que ser más cuidadosos para que la teoría posterior funcione bien. Lo que se hace es considerar todas las sumas «con una cantidad finita de términos». Esto lo decimos de manera formal como sigue. El conjunto $\displaystyle\sum_{i\in I}W_i$ consiste de todas las sumas $\displaystyle\sum_{i\in I}w_i$ con $w_i\in W_i$ para todo $i \in I$ y todos los vectores $w_i$ salvo una cantidad finita son iguales a cero. Esto ayuda a dar una definición incluso si $I$ es finito.

La mayor parte de los resultados que demostraremos para la suma de una cantidad finita de subespacios también se vale para la suma de una cantidad infinita. Por simplicidad, usualmente nos enfocaremos en el caso finito, pero te recomendamos pensar en cómo serían los argumentos para el caso infinito.

La suma de subespacios es subespacio

El siguiente resultado dice que «la suma de subespacios es subespacio».

Proposición. Si $W_1, W_2, \dots , W_n$ son subespacios de un espacio vectorial $V$, entonces $W_1 + W_2 + \dots + W_n$ es un subespacio de $V$.

Demostración. Para facilitar la escritura denotaremos $S=W_1+ W_2 + \dots + W_n$. Sean $s,s’\in S$ y $c$ un escalar. Por una equivalencia de subespacios, basta demostrar que $s+cs’\in S$.

Por definición de $S$, existen $w_1,\dots, w_n, w_1′,\dots , w_n’ $ con $w_i, w_i’\in W_i$ para $1\leq i \leq n$, tales que
\begin{align*}
s&=w_1+ w_2+ \dots + w_n\\ s’&=w_1’+ w_2’+ \dots + w_n’.
\end{align*}
Entonces
\begin{align*}
s+cs’&=w_1+w_2+\dots + w_n + c(w_1’+w_2’+\dots + w_n’)\\
&=w_1+w_2+\dots + w_n + cw_1’+cw_2’+\dots + cw_n’\\
&=(w_1 +cw_1′)+ \dots + (w_n+cw_n’).
\end{align*}
Como $W_i$ es un subespacio de $V$ y $w_i,w_i’$ son elementos de $W_i$, entonces $(w_i+cw_i’)\in W_i$ para cada $1\leq i \leq n$. Así, la expresión que encontramos es la suma de un vector en $W_1$, uno en $W_2$, … , uno en $W_n$ y por lo tant $s+cs’\in S$. Esto muestra lo que queríamos y así $S$ es subespacio de $V$.

$\square$

De hecho la suma de subespacios $W_1+\ldots+W_n$ no sólo es un subespacio de $V$, sino que además es especial, en el sentido de que es el subespacio «más chiquito» de $V$ que contiene a cada subespacio $W_1,\ldots,W_n$. El siguiente problema enuncia esto de manera formal.

Problema. Sean $W_1,\ldots,W_n$ subespacios de un espacio vectorial $V$. Sea $S=W_1+W_2+ \dots + W_n$. Demuestra que:

  • Para cada $i=1,\ldots,n$, se tiene que $W_i\subseteq S$.
  • Si se tiene un subespacio $W$ tal que para cada $i=1,\ldots,n$ se tiene que $W_i\subseteq W$ entonces $S\subseteq W$

Demostración.

  • En vista de que cada vector $w_i\in W_i$ puede ser escrito como $0+0+\dots + 0 + w_i +0+\dots +0$ y $0 \in \displaystyle\bigcap_{i=1}^n W_i$, entonces $W_i \subset W_1+ \dots +W_n$ para todo $1\leq i \leq n$.
  • Sea $W$ un subespacio de $V$ tal que $W$ contiene a los subespacios $W_1, \dots W_n$. Mostremos que $W$ contiene a la suma $S$. Sea $v\in S = W_1 +\dots + W_n$. Por definición, $v=w_1+\dots + w_n$ para algunos $w_i\in W_i$. Como $W$ contiene a los subespacios $W_1, \dots W_n$, entonces $w_1, \dots w_n\in W$. Como $W$ es cerrado bajo sumas (por ser subespacio) entonces $w_1+\dots + w_n\in W$ y así $W_1 + \dots +W_n \subset W$.

$\square$

Subespacios en posición de suma directa

Ya definimos qué es la suma de subespacios. Ahora queremos definir qué es la suma directa. En realidad, la suma directa es simplemente una suma de subespacios en la que los subespacios son especiales en un sentido muy específico. Comenzamos dando esta definición. Es un concepto muy importante que nos será útil varias veces en el curso.

Definición. Sean $W_1, W_2, \dots , W_n$ subespacios de un espacio vectorial $V$. Decimos que $W_1,W_2,\dots, W_n$ están en posición de suma directa si la única forma de obtener la igualdad
\begin{align*}
w_1+w_2+\dots+w_n=0
\end{align*}
con $w_i\in W_i$ para todo $1\leq i \leq n$, es cuando
\begin{align*}
w_1=w_2=\dots =w_n =0.
\end{align*}

Ejemplo. Consideremos el espacio vectorial de polinomios en $\mathbb{R}_2[x]$, es decir, aquellos de la forma $ax^2+bx+c$ con $a,b,c$ reales. Consideremos los siguientes subespacios de $\mathbb{R}_2[x]$:

\begin{align*}
W_1&=\{ax^2: a \in \mathbb{R}\}\\
W_2&=\{bx: b \in \mathbb{R}\}\\
W_3&=\mathbb{R}=\{c: c \in \mathbb{R}\}\\
W_4&=\mathbb{R}_1[x]=\{bx+c: b,c \in \mathbb{R}\}\\
W_5&=\{ax^2+c: a,c \in \mathbb{R}\}\\
W_6&=\{ax^2+bx: a,b \in \mathbb{R}\}\\
\end{align*}

Los tres subespacios $W_1, W_2, W_3$ están en posición de suma directa, pues si tomamos $ax^2$ en $W_1$, $bx$ en $W_2$ y $c$ en $W_3$, la única forma de que su suma $ax^2+bx+c$ sea igual al polinomio cero es si $a=b=c=0$, y por lo tanto en realidad sólo estamos tomando el vector $0$ de cada uno de los subespacios.

Los subespacios $W_4$, $W_5$ y $W_6$ no están en posición de suma directa, pues hay formas de tomar elementos no cero en cada uno de ellos, cuya suma sí es el vector cero. Por ejemplo, el polinomio $x-8$ está en $W_4$, el polinomio $-5x^2+8$ está en $W_5$ y el polinomio $5x^2-x$ está en $W_6$. Ninguno de estos vectores es el polinomio cero, pero la suma de los tres sí es cero.

$\square$

Existen otras manera de expresar la condición anterior, una de ellas es la siguiente.

Proposición. Los subespacios $W_1, \dots W_n$ del espacio vectorial $V$ están en posición de suma directa si y sólo si cada elemento de $$W_1+W_2+\dots +W_n$$ puede ser escirto de manera única como una suma $$w_1+\dots + w_n$$ con $w_i\in W_i$ para todo $1\leq i \leq n$.

Demostración. Primero supongamos que los subespacios $W_1,W_2, \dots, W_n$ están en posición de suma directa y tomemos un elemento $v$ de $$W_1+\dots + W_n.$$ Por definición, dicho elemento puede ser expresado como $v=w_1 + \dots + w_n$ con $w_i \in W_i $ para todo $1\leq i \leq n$. Supongamos también que $v$ puede ser escrito como $v=w_1’+\dots + w_n’$ con $w_i’ \in W_i$. Queremos demostrar que $w_i=w_i’$ para todo $1 \leq i \leq n$. Restando las dos relaciones anteriores se tiene
\begin{align*}
0=v-v=\displaystyle\sum_{i=1}^n (w_i-w_i’).
\end{align*}
Sea $u_i=w_i-w_i’$. Como $W_i$ es subespacio de $V$, entonces es cerrado bajo inversos y bajo suma, por lo tanto $u_i\in W_i$. Así $u_1 + \dots + u_n$ es una suma de elementos igual a cero.Como $W_1, \dots, W_n$ están en posición de suma directa, entonces necesariamente $u_1=\dots =u_n=0$ y así $w_i=w_i’$ para todo $1 \leq i \leq n$.

Ahora supongamos que cada elemento de $W_1+\dots + W_n$ puede ser escrito de manera única como suma de elementos de $W_1, \dots , W_n$. En particular el cero se descompone de manera única como $$0=0+0+\ldots +0.$$ De manera que dados $w_i \in W_i$ con $1 \leq i \leq n$ tales que $w_1+w_2+ \dots + w_n =0$, necesariamente $w_1=w_2=\dots =w_n=0$. Por lo tanto $W_1, W_2, \dots ,W_n$ están en posición de suma directa.

$\square$

Suma directa de subespacios

Estamos listos para dar una definición clave.

Definición. a) Decimos que un espacio vectorial $V$ es suma directa de sus subespacios $W_1, W_2, \dots , W_n$ si $W_1, W_2, \dots , W_n$ están en posición de suma directa y $V=W_1+W_2 + \dots + W_n$. En símbolos, escribimos y escribimos
\begin{align*}
V=W_1 \oplus W_2 \oplus \dots \oplus W_n.
\end{align*}
b) Si $V_1, V_2$ son subespacios de un espacio vectorial $V$, decimos que $V_2$ es complemento de $V_1$ si
\begin{align*}
V=V_1 \oplus V_2.
\end{align*}

Por los resultados anteriores se tiene que $V=W_1 \oplus \dots \oplus W_n$ si y sólo si cada vector $v\in V$ puede ser escrito de manera única como una suma de la forma $w_1+ \dots + w_n$, con $w_i \in W_i$ para todo $i$. Por consiguiente, si $V_1, V_2$ son subespacios de $V$, entonces $V_2$ es complemento de $V_1$ si y sólo si cada vector $v \in V$ puede ser escrito de manera única como $v=v_1+v_2$ con $v_1 \in V_1, \hspace{2mm} v_2 \in V_2$.

El siguiente resultado es extremadamente útil a la hora de resolver problemas con sumas directas con dos subespacios.

Problema. Demuestra que $V_2$ es complemento de $V_1$ si y sólo si $V_1+V_2=V$ y $V_1 \cap V_2 = \{0\}$.

Demostración. Supongamos que $V_2$ es complemento de $V_1$, entonces $V=V_1+V_2$. Falta mostrar que $V_1\cap V_2 = \{0\}$.

Sea $v\in V_1 \cap V_2$, entonces $v=v+0=0+v$, y por la unicidad que ya se demostró en la proposición anterior se tiene que $v=0$, entonces $V_1\cap V_2\subset\{0\}$. Como $V_1, V_2$ son subespacios de $V$, cada uno de ellos tiene al vector $0$. Así, $\{0\}\subset V_1 \cap V_2$. Por lo tanto $V_1\cap V_2=\{0\}$.

Ahora supongamos que $V_1 + V_2 =V$ y $V_1\cap V_2=\{0\}$. Supongamos que existe un vector $v \in V$ tal que
\begin{align*}
v_1+v_2=v=v_1’+v_2′
\end{align*}
con $v_1,v_1’\in V_1$ y $v_2,v_2’\in V_2$.
Entonces
\begin{align*}
v_1-v_1’=v_2′-v_2
\end{align*}
El lado izquierdo de la igualdad anterior pertenece a $V_1$, mientras que el lado derecho pertenece a $V_2$, pero como son iguales, necesariamente ambos pertencen a $V_1 \cap V_2=\{0\}$ y así $v_1=v_1’$ y $v_2=v_2’$, que es lo que queríamos demostrar.

$\square$

Más ejemplos de suma y suma directa de subespacios.

  1. El espacio vectorial $V=\mathbb{R}^2$ es suma directa de los subespacios
    \begin{align*}
    V_1=\{(x,0)|x \in \mathbb{R} \}
    \end{align*}
    y
    \begin{align*}
    V_2=\{(0,y)|y \in \mathbb{R} \}.
    \end{align*}
    En efecto, cada $(x,y)\in \mathbb{R}^2$ puede ser escrito de manera única en la forma
    \begin{align*}
    (a,0)+(0,b)
    \end{align*}
    via $a=x, \hspace{2mm} b=y.$
  2. Sea $V=M_n(\mathbb{R})$ el espacio vectorial de las matrices de $n\times n$ con entradas reales. Si $V_1,V_2$ son los subespacios de las matrices simétricas y de las matrices antisimétricas, respectivamente, entonces $V=V_1 \oplus V_2$.
    En efecto, cada matriz $A\in V$ puede ser escrita de manera única como suma de una matriz simétrica y de una matriz antisimétrica de la siguiente forma:
    $A=B+C$ con
    \begin{align*}
    B&=\frac{1}{2}(A+ \ ^tA)\\C&=\frac{1}{2}(A- \ ^tA).
    \end{align*}
  3. Sea $V=\{f:\mathbb{R}\longrightarrow \mathbb{R} \}$ el espacio vectorial de funciones de $\mathbb{R}$ en $\mathbb{R}$. Sea $V_1$ el subespacio de todas las funciones pares (recuerda que una función es par si satisface $f(x)=f(-x)$ para toda $x$) y $V_2$ el subespacio de todas las funciones impares (las que satisfacen $f(x)=-f(-x)$ para toda $x$).
    Entonces $V=V_1 \oplus V_2$.
    En efecto, dada $f\in V$, la única manera de expresarla como $f=g+h$ con $g$ par y $h$ impar es tomando
    \begin{align*}
    g(x)=\frac{f(x)+f(-x)}{2} \hspace{2mm} y \hspace{2mm} h(x)=\frac{f(x)-f(-x)}{2}.
    \end{align*}

$\square$

Un problema de suma directa de subespacios

Problema. Sea $V=\{f:[-1,1]\to \mathbb{R}: \text{f es continua}\}.$ Sean
\begin{align*}
V_1=\left\{f\in V: \int_{-1}^1 f(t)dt=0\right\}
\end{align*}
y $V_2$ el subconjunto de $V$ de todas las funciones constantes.
a) Demuestra que $V_1, V_2$ son subespacios de $V$.
b) Demuestra que $V=V_1\oplus V_2$.

Demostración. a) Sean $f_1,f_2 \in V_1$ y $c\in \mathbb{R}$, entonces $cf_1+f_2$ es continua y
\begin{align*}
\int_{-1}^1(cf_1+f_2)(t)dt = c\int_{-1}^1f_1(t)dt + \int_{-1}^1 f_2(t) dt =0,
\end{align*}
por lo tanto $cf_1+f_2\in V_1$ y así $V_1$ es un subespacio de $V$.

De manera similar veamos que $V_2$ es subespacio. Sean $f,g\in V_2$ y $c\in \mathbb{R}$, entonces $f(x)=a$ y $g(x)=b$ para toda $x$. Luego
\begin{align*}
(f+c\cdot g)(x)=a+c\cdot b
\end{align*}
para toda $x$. Por lo tanto $V_2$ es subespacio de $V$.

b) Por el problema de la sección anterior, basta con demostrar que $V_1\cap V_2=\{0\}$ y $V=V_1+V_2$. Sea $f$ una función en $V_1 \cap V_2$. Por un lado tenemos que $f$ es constante, y por otro lado que $f$ integra $0$ sobre $[-1,1]$ Digamos que $f(t)=c$ para todo $t\in [-1,1]$, entonces
\begin{align*}
0=\int_{-1}^1f(t)dt=2c.
\end{align*}
De aquí, $c=0$ y así $f=0$ (la función cero). Por lo tanto $V_1\cap V_2=\{0\}$.

Ahora, para probar que $V=V_1 + V_2$ tomamos $f\in V$ y tratemos de escribirla como $f=c+g$ con $c$ constante y $g\in V_1$. Queremos asegurarnos de que
\begin{align*}
\int_{-1}^1 g(t)dt=0,
\end{align*}
esto es
\begin{align*}
\int_{-1}^1 (f(t)-c)dt=0\\
\int_{-1}^1f(t)dt=2c.
\end{align*}
Esto ya nos dice cómo proponer a $c$ y a $g$. Lo hacemos a continuación.
\begin{align*}
c&=\frac{1}{2}\int_{-1}^1f(t)dt \\ g&=f-c.
\end{align*}

$\square$

Tarea moral

  • Verifica en todos los ejemplos de la entrada que los subespacios que se mencionan en efecto son subespacios.
  • Sea $V$ el conjunto de las matrices triangulares superiores de $n\times n$ y sea $W_1$ el espacio de las matrices diagonales. Demuestra que $V$ es espacio vectorial, $W_1$ es subespacio de $V$ y que $V=W_1\oplus W_2$, donde $W_2=\{A\in V | A_{ij}=0$ cuando $i \geq j \}$.
  • Sea $F$ un campo de característica distinta de $2$,
    \begin{align*}
    W_1=\{A\in M_n(F)|A_{ij}=0, i\leq j\}
    \end{align*}
    y $W_2$ el conjunto de todas las matrices simétricas de $n \times n$ con entradas en $F$. Demuestra que $M_n(F)=W_1\oplus W_2$
  • En el ejemplo 2, verifica que $B$ es una matriz simétrica y $C$ una matriz antisimétrica.
  • En el ejemplo 3 ,verifica $g$ es par y $h$ es impar.

Más adelante…

Los conceptos de suma y suma de subespacios serán utilizados repetidamente. Por ejemplo, a partir de la suma de subespacios se pueden definir las proyecciones, un tipo de transformaciones lineales particulares.

El concepto de suma directa de subespacios también es muy importante en el sentido de que permite descomponer a un espacio en espacios vectoriales más pequeños. Esta idea será de mucha utilidad cuando hablemos de la teoría de dualidad y de diagonalización de matrices.

Entradas relacionadas