Archivo del Autor: Jennyfer Paulina Bennetts Castillo

1.6. SUBESPACIO GENERADO POR UN CONJUNTO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

1.5. COMBINACIÓN LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

La combinación lineal es el «equipo» que formamos por medio de nuestras «parejas» (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas

1.4. SUBESPACIO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Si tenemos un conjunto $C$ con ciertas propiedades de nuestro interés, no forzosamente todo subconjunto de $C$ va a conservar esas propiedades, pero nos interesa encontrar condiciones suficientes (y de preferencia también necesarias) para saber si un subconjunto $D$ de $C$ dado tiene o no las propiedades que queremos.

Si $C$ es un conjunto que contiene a hombres y a mujeres, podemos definir un subconjunto que no contenga hombres y un subconjunto que no tenga mujeres, con lo que ya no preservan la propiedad deseada.

En esta entrada analizaremos qué se requiere para que un subconjunto de un espacio vectorial, tenga también estructura de espacio vectorial. Veremos que aunque aparentemente se requiere pedir muchas condiciones, en realidad éstas se pueden reducir sólo a unas cuantas.

SUBESPACIO

Definición: Sea $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Decimos que $W$ es un subespacio de $V$, y se le denota como $W\leqslant V$ si:

i) $W$ contiene al neutro del espacio $V$,
i.e. $\theta_V\in W$

ii) La suma es cerrada en $W,$
i.e. $\forall u,v\in W:$
$u+v\in W$

iii) El producto por escalar es cerrado en $W$,
i.e. $\lambda\in K$, $w\in W:$
$\lambda w\in W$

Veamos una equivalencia a esta definición que nos facilitará demostrar si un subconjunto dado de un espacio vectorial es por sí mismo un espacio vectorial.

Proposición: Sean $V$ un $K$ – espacio vectorial y $W$ un subconjunto de $V$. Se cumple que $W\leqslant V$ si y sólo si $W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

Demostración: Veamos que se cumplen ambas implicaciones.

$\Longrightarrow )$ Sup. que $W\leqslant V$.
Por ii) y iii) la suma y el producto por escalar son cerrados en $W$, entonces las operaciones restringidas de $V$ dan una suma y un producto por escalar en $W$.
Propiedades $1$, $2$, $5$, $6$, $7.1$ y $7.2$ de espacio vectorial: Como $u+v=v+u$ para cualesquiera $u,v\in V$, en particular $u+v=v+u$ para toda $u,v\in W$. Por lo tanto, la suma en $W$ es conmutativa.
Nota: Decimos en este caso que la conmutatividad de la suma se hereda de $V$.
Análogamente se heredan la asociatividad de la suma en $W$ y las propiedades $5$, $6$, $7.1$ y $7.2$ de espacio vectorial.
Propiedad $4$ de espacio vectorial: Para cada $w\in W$ se cumple que $-w=(-1_K)w\in W$ ya que el producto es cerrado en $W$.
Propiedad $5$ de espacio vectorial: Por hipótesis $\theta_V\in W$ y como es el neutro en $V$, $\theta_V+v=v+\theta_V=v$ para todo $v\in V$, en particular $\theta_V+w=w+\theta_V=w$ para todo $w\in W$, así $\theta_V$ funciona como neutro en $W$.
$\therefore W$ con las operaciones restringidas de $V$ es un $K$ – espacio vectorial.

$\Longleftarrow )$ Sup. que $W$ es un $K$ – espacio vectorial con las operaciones restringidas de $V$.
Entonces la suma y el producto por escalar son cerrados en $W$, es decir, se cumplen ii. y iii.
Además $W$ tiene un neutro, digamos $\theta_W\in W$.
Por un lado $\theta_V+\theta_W=\theta_W$ en $V$, pues $\theta_V$ es neutro en $V$.
Por otro lado $\theta_W+\theta_W=\theta_W$ en $W$, pues $\theta_W$ es neutro en $W$.
Así, $\theta_V+\theta_W=\theta_W+\theta_W$ en $V$ y por cancelación en $V$, $\theta_V=\theta_W$.
De donde $\theta_V\in W$
$\therefore W\leqslant V$ .

Obs. Sean $V$ un $K$ – espacio vectorial, $W$ un subconjunto de $V$. Resulta que
$W\leqslant V$ si y sólo si se cumple que: a) $W\not=\emptyset$ y b) $\forall u,v\in W$ $\forall\lambda\in K(\lambda u+v\in W)$.

La implicación de ida es muy directa y queda como ejercicio. Para justificar el regreso sup. que se cumplen a) y b). Dados $u,v\in W$ se tiene que $u+v=1_Ku+v$ y gracias a b) sabemos que $1_Ku+v\in W$, así se cumple la propiedad ii). Por otro lado, como se cumple a) podemos asegurar que existe $v \in W$, y por la propiedad b) $\theta_V=-v+v=(-1_K)v+v\in W$, por lo que $\theta_V\in W$ y se cumple i). Finalmente dados $u\in W, \lambda \in K$ como $\theta_V\in W$, usando b) se tiene que $\lambda u=\lambda u+\theta_V\in W$ por lo que se cumple la propiedad iii).

Ejemplos:

  • $\{ (x,y,0)|x,y\in\mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$
  • $\{\begin{pmatrix}a&b\\b&a\end{pmatrix}|a,b\in\mathbb{R}\}$ es un subespacio de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
  • $\mathcal{P}_n(\mathbb{R})$ (el conjunto de polinomios de grado mayor o igual a $n$ con coeficientes en $\mathbb{R}$) es un subespacio de $\mathbb{R}[x]$
  • $\{ f:\mathbb{R}\longrightarrow\mathbb{R}| f$ es continua$\}$ es un subespacio de $\{ f|f:\mathbb{R}\longrightarrow\mathbb{R}\}.$
  • $\{(x,y,z)|x=y=z\in \mathbb{R}\}$ es un subespacio de $\mathbb{R}^3.$

EJEMPLO SISTEMA HOMOGÉNEO

Sean $V=\mathcal{M}{n\times 1}(K)$ y $A\in\mathcal{M}{m\times n}(K)$.
$W={X\in V|AX=0}$$\leqslant V$.

Recordemos que si tenemos el sistema de ecuaciones homogéneo de $m$ ecuaciones con $n$ incógnitas:

\begin{align*}
\begin{matrix}a_{11}x_1 & +a_{12}x_2 & \cdots & +a_{1n}x_n=0\\ a_{21}x_1 & +a_{22}x_2 & \cdots & +a_{2n}x_n=0 \\ \vdots & & \ddots & \vdots \\ a_{m1} x_1& +a_{m2}x_2 & \cdots & +a_{mn}x_n=0, \end{matrix} \end{align*}
entonces su forma matricial es:
\begin{align*}
AX=\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}
= \begin{pmatrix}0\\ \vdots\\ 0\end{pmatrix} = 0 \end{align*}
Recordemos que estamos usando al $0$ para denotar a la matriz $n\times 1$ con todas sus entradas iguales al cero del campo. Veamos que las soluciones del sistema homogéneo dado por $A$ es un subespacio del espacio vectorial de matrices de $n\times 1$ con entradas en el campo $K$.

DEMOSTRACIÓN

Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $X,Y\in W$, $\lambda\in K$.

  1. P.D. $W$ tiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $A\theta_V=A0=0$.
$\therefore\theta_V\in W.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $X+Y\in W$.

Como $X,Y\in W$, $AX=AY=0$ y por lo tanto, $AX+AY=0+0=0$.
Basta recordar que por distributividad en las matrices $A(X+Y)=AX+AY$ para obtener que $A(X+Y)=0$.
$\therefore X+Y\in W.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda X\in W$.

Como $X\in W$, $AX=0$ y por lo tanto, $\lambda (AX)=0$.
Basta recordar que por propiedad del producto por escalar en matrices $A(\lambda X)=\lambda(AX)$ para obtener que $A(\lambda X)=0$
$\therefore\lambda X\in W.$

Así, concluimos que $W=\{X\in V|AX=0\}$, donde $A\in\mathcal{M}_{m\times n}(K)$, es un subespacio de $V=\mathcal{M}_{n\times 1}(K)$.

Proposición: La intersección de una familia no vacía de subespacios es un subespacio.

Demostración: Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$.

Sean $V$ un $K$ – espacio vectorial y $W=\{W_i|i\in I\}$ una familia no vacía de subespacios de $V$. Vamos a ver que $W$ cumple las tres condiciones suficientes y necesarias (por definición) para ser subespacio de $V$:

Sean $u,v\in W$, $\lambda\in K$.

  1. P.D. $W$ contiene al neutro de $V$
    $i.e.$ $\theta_V\in W.$

Sabemos que $\forall i\in I(\theta_V\in W_i)$ porque todos los $W_i$ son subespacios de $V$.
$\displaystyle\therefore\theta_V\in\bigcap_{i\in I}W_i.$

  1. P.D. La suma es cerrada en $W$
    $i.e.$ $u+v\in W$.

Dado que $u,v\in W$, $\forall i\in I(u,v\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(u+v\in W_i)$.
$\displaystyle\therefore u+v\in\bigcap_{i\in I}W_i.$

  1. P.D. El producto por escalar es cerrado en $W$
    $i.e.$ $\lambda u\in W$.

Dado que $u\in W$, $\forall i\in I(u\in W_i)$ y como todos los $W_i$ son subespacios de $V$, entonces $\forall i\in I(\lambda u\in W_i)$.
$\displaystyle\therefore\lambda u\in\bigcap_{i\in I}W_i.$

Concluimos así que $W\leqslant V.$

Tarea Moral

  1. Dado $V$ un $K$ – espacio vectorial. Sean $W_1, W_2\leqslant V$. Demuestra que si $W_1\bigcup W_2\leqslant V$, entonces $W_1\subseteq W_2$, o bien, $W_2\subseteq W_1$.
    Para lograrlo se te sugiere lo siguiente:
    • Sup. que $W_1 \nsubseteq W_2$.
    • Observamos que para cualesquiera $w_1\in W_1\backslash W_2$ y $w_2\in W_2$, tenemos que $w_1,w_2\in W_1\bigcup W_2$. Y como $W_1\bigcup W_2\leqslant V$, entonces $w_1+w_2\in W_1\bigcup W_2$. Además, gracias a la primera proposición de esta entrada, sabemos que $W_1$ y $W_2$ son $K$ – espacios vectoriales, de modo que los inversos aditivos de $w_1$ y $w_2$ son elementos de $W_1$ y $W_2$ respectivamente.
    • Ahora argumenta por qué $w_1+w_2\notin W_2$ para concluir que $w_1+w_2\in W_1$.
    • Por último argumenta por qué gracias a que $w_1+w_2\in W_1$, obtenemos que $w_2\in W_1$ para concluir que $W_2\subseteq W_1$.
  1. Sean $K=\mathbb{R}$ y $V=\{a+bx+cx^2+dx^3\mid a,b,c,d\in\mathbb{R}\}$.
    Determina si $U=\{p(x)\in V|p(1)=0\}$ y $T=\{p(x)\in V|p'(1)=0\}$ son subespacios de $V$ y encuentra $U\cap T$.

MÁS ADELANTE…

Definiremos y analizaremos un nuevo concepto que dará lugar a un nuevo subespacio muy peculiar y central en el Álgebra Lineal.

Entradas relacionadas

1.3. ESPACIOS VECTORIALES: propiedades

Por Jennyfer Paulina Bennetts Castillo

Nota: Para simplificar notación (sobre todo en las demostraciones): $0_K$ será $0$; $\theta_V$ será $\theta$ y dependiendo de los elementos que se operen, serán las operaciones del campo o del espacio vectorial. Y en las justificaciones de pasos, tendremos que un número $m$ seguido $K$, hará referencia a la propiedad $m$ de la definición de campo y análogamente si el número $m$ es seguido por $V$ será la propiedad $m$ de la definición de espacio vectorial.

Recordemos que, por ahora, dado $u$ en un espacio vectorial, tenemos que $\tilde u$ denota a su inverso aditivo.

Proposición (1): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
1. $0_K \cdot_V u = \theta_V$ $\forall u \in V$
2. $\lambda \cdot_V \theta_V = \theta_V$ $\forall \lambda\in K$

Demostración: Sean $u \in V$, $\lambda\in K$.
1. Tenemos por distributividad en $V$ que $(0+0)u=0u+0u$.
Y además, por ser $0$ el neutro de $K$ y $\theta$ el neutro de $V$, $(0+0)u=0u=\theta+0u$.
Así, $0u+0u=\theta+0u$.
De donde, $\widetilde{0u}+(0u+0u)=(\theta+0u)+\widetilde{0u}$
\begin{align*}
\Rightarrow &(\widetilde{0u}+0u)+0u=\theta+(0u+\widetilde{0u})\tag{asociat. $+_V$}\\
\Rightarrow &\theta+0u=\theta+\theta\tag{inv. ad. $V$}\\
\Rightarrow &0u=\theta\tag{neu. ad. $V$}\\
\end{align*}
2. Tenemos por distributividad en $V$ que $\lambda(\theta+\theta)= \lambda\theta+\lambda\theta$.
Y además, por ser $\theta$ el neutro de $V$, $\lambda(\theta+\theta)=\lambda\theta$.
Así, $\lambda\theta+\lambda\theta=\lambda\theta$.
De donde, $\widetilde{\lambda\theta}+(\lambda\theta+\lambda\theta)=\lambda\theta+\widetilde{\lambda\theta}$
\begin{align*}
\Rightarrow &(\widetilde{\lambda\theta}+\lambda\theta)+\lambda\theta=\lambda\theta_V+\widetilde{\lambda\theta}\tag{asociat. $+_V$}\\
\Rightarrow &\theta+\lambda\theta=\theta\tag{inv. ad. $V$}\\
\Rightarrow &\lambda\theta=\theta\tag{neu. ad. $V$}\\
\end{align*}

Proposición (2): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
Para todo $u \in V$, $(-1_K)\cdot_V u$ es el inverso aditivo de $u$.

Demostración: Sea $u\in V$.
Veamos que $u+(-1_K)u=\theta$
\begin{align*}
u+(-1_K)u&=1_Ku+(-1_K)u\tag{propiedad 5. campo}\\
&=(1_K+(-1_K))u\tag{distrib. 7.1 $V$}\\
&=0u\tag{inv. ad. $K$}\\
&=\theta\tag{Prop. (1)}\\
\therefore u+(-1_K)u=\theta
\end{align*}

Nota: Dada $u \in V$ denotaremos por $-u$ a su inverso aditivo.

Obs.* Existen resultados análogos para las dos proposiciones anteriores pero en el caso de los campos, y sus pruebas son también análogas.

Corolario: Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
$(-\lambda)u=-(\lambda u)=\lambda(-u)$ $\forall \lambda \in K$ , $\forall u \in V$

Demostración: Sean $\lambda\in K, u\in V$.
Por un lado,
\begin{align*}
\lambda(-u)&=\lambda((-1_K)u)\tag{Prop. (2)}\\
&=(\lambda(-1_K))u\tag{propiedad 6. campo}\\
&=(-\lambda)u\tag{Obs.*}\\
\therefore\lambda(-u)=(-\lambda)u
\end{align*}
Por otro lado,
\begin{align*}
(-\lambda)u&=((-1_K)\lambda)u\tag{Obs.*}\\
&=(-1_K)(\lambda u)\tag{propiedad 6. campo}\\
&=-(\lambda u)\tag{Prop. (2)}\\
\therefore (-\lambda)u=-(\lambda u)
\end{align*}

Proposición (3): Sea $K$ un campo y $V$ un $K$ – espacio vectorial.
Si $\lambda\cdot_V u = \theta_V$, entonces se cumple al menos uno de los siguientes casos:
1. $\lambda = 0_K$
2. $u = \theta_V$

Demostración: Sup. que $\lambda u=\theta$.
Tenemos dos posibilidades:
i) $\lambda=0$
ii) $\lambda\not=0$

Si se cumple i), entonces ya tenemos el caso 1.

Sup. que se cumple ii). Veamos que $u=\theta$.
Como nuestra hipótesis es que $\lambda\not=0$ y $\lambda\in K$, con $K$ un campo, entonces $\exists(\lambda^{-1})\in K$ inverso multiplicativo de $\lambda$. Así,
\begin{align*}
\lambda u=\theta\Rightarrow &(\lambda^{-1})(\lambda u)=(\lambda^{-1})\theta\\
\Rightarrow &((\lambda^{-1})\lambda)u=(\lambda^{-1})\theta\tag{propiedad 6. esp. vect.}\\
\Rightarrow &((\lambda^{-1})\lambda)u=\theta\tag{Prop. (1)}\\
\Rightarrow &1_Ku=\theta\tag{inv. mult. $K$}\\
\Rightarrow &u=\theta\tag{propiedad 5. campo}\\
\end{align*}

Nota: En adelante, $K$ denotará un campo.

TAREA MORAL

Sea $K$ un campo. Sea $V$ un $K$ – espacio vectorial. Demuestra que para cualesquiera $u,v,w \in V$ se cumplen las siguientes propiedades de cancelación:

  1. Si $u+v=w+v$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Podemos sumar a la derecha de cada lado de la igualdad el inverso de $v$.
    • Una vez hecho eso, utiliza la asociatividad de la suma en $V$, luego la definición del inverso de $v$ y por último la definición del neutro aditivo en $V$.
  1. Si $v+u=v+w$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Piensa en qué propiedad de la $+$ en $V$ te permite tener una ecuación de la forma que se presenta en el $1$. Una vez teniendo esa forma, por lo que ya probaste, obtienes lo que se necesitaba.
      • Observa que haciendo un proceso totalmente análogo a este inciso, se obtiene que también se cumple la cancelación si es de la forma $u+v=v+w$, o bien, de la forma $v+u=w+v$.

MÁS ADELANTE…

Ahora vamos a usar el concepto de espacio vectorial para obtener otro concepto: subespacio.

Entradas relacionadas

1.2. ESPACIOS VECTORIALES: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

A partir del interés de establecer métodos para resolver ecuaciones de tercer grado por medio de radicales, los matemáticos se encuentran con las raíces negativas e imaginarias. El concepto de número imaginario logra superponerse al paradigma y encuentra su lugar a través de su representación geométrica.

El físico William Rowan Hamilton se interesó por establecer propiedades de las operaciones entre números complejos y sostuvo que el álgebra tenía una relación muy estrecha con la física. Motivado con esta idea, establece conjuntos de números dotados de una estructura algebraica con una representación espacial muy útil para los trabajos en física. Sus propiedades resultan similares a las que actualmente se tienen para el producto escalar y vectorial.

Los cuaterniones de Hamilton son números de la forma: $P=a+bi+cj+dk$.
Donde $a,b,c,d\in\mathbb{R}$ y $k=ij=-ji$ es una unidad imaginaria.

En el álgebra lineal el concepto de «vector» adquiere su significado más general.

ESPACIO VECTORIAL

Definición: Sean $V$ un conjunto y sea $K$ un campo (con las operaciones $+_K$ y $\cdot_K$). Sean $+_V: V \times V \longrightarrow V$ y $\cdot_V: K \times V \longrightarrow V$ operaciones. Decimos que $V,+_V,\cdot_V$ es un espacio vectorial sobre el campo $K$, o bien un $K$ – espacio vectorial (y a los elementos de $K$ les llamamos vectores), si $+_V$ y $\cdot_V$ cumplen lo siguiente:

  1. $+_V$ es asociativa
    $\forall u,v,w \in V:$
    $(\,u+_V(v+_V w)=(u+_V v)+_V w\,)$
  2. $+_V$ es conmutativa
    $\forall u,v \in V:$
    $(\,u+_V v=v+_V u\,)$
  3. Existe neutro aditivo
    $\exists \theta_V \in V:$
    $\forall u \in V (\,\theta_V +_V u = u +_V \theta_V = u\,)$
  4. Todo elemento $u \in V$ tiene inverso aditivo
    $\forall u \in V:$
    $\exists \tilde {u} \in V (\,u+_V \tilde {u} = \tilde {u} +_V u = \theta_V\,)$
  1. $\forall u \in V:$
    $1_K \cdot_V u = u$
  2. $\forall \lambda,\mu \in K \forall u \in V:$
    $\lambda\cdot_K(\mu\cdot_K u)=(\lambda\cdot_K\mu)\cdot_V u$
  3. $\cdot_V$ es distributiva
    7.1 $\forall \lambda,\mu \in K \forall u \in V:$
    $(\lambda+_K\mu)\cdot_V u = (\lambda\cdot_V u)+(\mu\cdot_V u)$
    7.2 $\forall \lambda \in K \forall u,v \in K:$
    $\lambda\cdot_V(u+v)=\lambda\cdot_V u+\lambda\cdot_V v$

Nota: Es común encontrar la expresión «$V$ es un $K$ – espacio vectorial con las operaciones $+, \cdot$» en lugar de «$V,+,\cdot$ es un $K$ – espacio vectorial», al igual que «$V$ es un $K$ – espacio vectorial» sin la referencia a las operaciones cuando se trata de las usuales (se suponen por obviedad).

Nota: Para evitar confusiones, en caso de ser necesario, denotaremos por $u+_V v$ a la suma de los vectores $u$ y $v$, y por $\lambda\cdot_V v$ al producto del escalar $\lambda$ por el vector $v$, pero una vez que nos habituemos a ellas las denotaremos simplemente por $u+v$ y $\lambda v$.

Ejemplos:

  • $\mathbb{R}^n$ es un $\mathbb{R}$ – espacio vectorial con la suma y el producto por escalar usuales.
  • $<(1,1,1)> = \{\lambda(1,1,1):\lambda \in \mathbb{R} \}$ es un $\mathbb{R}^n$ – espacio vectorial.
  • Sea $K$ campo. $\mathcal{M}_{m\times n}(K)$ (las matrices con $m$ renglones y $n$ columnas, con entradas en $K$) es un $K$ – espacio vectorial con las operaciones usuales de suma y producto por escalar.
  • Sea $K$ campo. $K[x]$ (los polinomios en $x$ con coeficientes en $K$) es un $K$ – espacio vectorial con la suma y el producto por escalar usuales.
  • Sea $K$ campo. $K^{n} = \{(x_{1}, x_{2},…,x_{n}) : x_{1},x_{2},…,x_{n} \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…,x_{n}) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…,x_{n})=(\lambda x_{1}, \lambda x_{2},…,\lambda x_{n})$
  • Sea $K$ campo. $K^{\infty} = \{(x_{1}, x_{2},…) : x_{1},x_{2},… \in K \}$ es un $K$ – espacio vectorial con la suma entrada a entrada y el producto definido como sigue:
    Sean $(x_{1},x_{2},…) \in K^{n}$, $\lambda \in K$. $\lambda \cdot (x_{1},x_{2},…)=(\lambda x_{1}, \lambda x_{2},…)$

EJEMPLO FUNCIONES

Sea $K$ campo. $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ definidas como sigue:

Sean $f,g \in V$, $\lambda \in K$.
$f +_V g : K \longrightarrow K$
$(f +_V g )(x) = f(x) +_K g(x)$ para todo $x\in K$ donde $+_K$ es la suma en $K$.

Sean $f \in V$, $\lambda \in K$.
$\lambda \cdot_V f : K \longrightarrow K$
$(\lambda \cdot_V f )(x) =\lambda \cdot_K f(x)$ para todo $x\in K$
donde $\cdot_K$ es el producto en $K$.

DEMOSTRACIÓN

Vamos a ver que las operaciones $+_V$, $\cdot_V$ cumplen las ocho condiciones suficientes y necesarias (por definición) para que $V$ sea espacio vectorial:

Sean $f,g,h \in V$, $\lambda, \mu \in K$.
Sea $x \in K$ arbitrario.

  1. P.D. $+_V$ es asociativa
    $i. e.$ $(f +_V g) +_V h = f +_V (g +_V h)$

Obs. 1 Tenemos que $f +_V g, g +_V h \in V$. Así, $(f +_V g) +_V h, f +_V (g +_V h) \in V$. Así que sólo falta ver que $(f +_V g) +_V h$ y $f +_V (g +_V h)$ tienen la misma regla de correspondencia.

\begin{align*}
((f +_V g) +_V h)(x) &= (f +_V g)(x) +_K h(x)\tag{def. $+_V$}\\
&= (f(x) +_K g(x)) +_K h(x)\tag{def. $+_V$}\\
&= f(x) +_K (g(x) +_K h(x))\tag{asociat. $+_K$}\\
&= f(x) +_K (g +_V h)(x)\tag{def. $+_V$}\\
&= (f +_V (g +_V h))(x)\tag{def. $+_V$}\\
\therefore (f +_V g) +_V h &= f +_V (g +_V h)
\end{align*}

  1. P.D. $+_V$ es conmutativa
    $i.e.$ $f +_V g = g +_V f$

Obs. 2 Tenemos que $f +_V g, g +_V f \in V$. Así que sólo falta ver que $f +_V g$ y $g +_V f$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V g)(x) &= f(x) +_K g(x)\tag{def. $+_V$}\\
&= g(x) +_K f(x)\tag{conmutat. $+_K$}\\
&= (g +_V f)(x)\tag{def. $+_V$}\\
\therefore f +_V g &= g +_V f
\end{align*}

  1. P.D. Existe neutro aditivo
    $i.e.$ $\exists \theta_V \in V:$
    $\theta_V +_V f = f +_V \theta_V = f$

Proponemos:
$\theta_V : K \longrightarrow K$ con
$\theta_V(x) = 0_K$ para todo $x\in K$
donde $0_K$ es neutro aditivo de $K$.

Obs. 3 Por construcción $\theta_V \in V$. Así, $f +_V \theta_V, \theta_V +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (\theta_V +_V f = f +_V \theta_V)$. Entonces sólo falta ver que $f +_V \theta_V$ y $f$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V \theta_V)(x) &= f(x) +_K \theta_V(x)\tag{def. $+_V$}\\
&= f(x) +_K 0_K\tag{def. $\theta_V$}\\
&= f(x)\tag{neutro ad.}\\
\therefore \theta_V +_V f = f +_V \theta_V
\end{align*}

  1. P.D. Todo elemento $f \in V$ tiene inverso aditivo
    $i.e.$ $\exists \tilde{f} \in V:$
    $f+ \tilde{f} = \tilde{f} + f = \theta_V$

Proponemos:
$\tilde{f} : K \longrightarrow K$ con
$\tilde{f}(x)=(-f(x))$ para todo $x\in K$
donde $(-f(x))$ es el inverso aditivo de $f(x) \in K$.

Obs. 4 Por construcción $\tilde{f} \in V$. Así, $f +_V \tilde{f}, \tilde{f} +_V f \in V$. Además, por $2$, se cumple que $\forall f \in V (f +_V \tilde{f} = \tilde{f} +_V f \in V)$. Entonces sólo falta ver que $f +_V \tilde{f}$ y $\theta_V$ tienen la misma regla de correspondencia.

\begin{align*}
(f +_V \tilde{f})(x) &= f(x) +_K \tilde{f}(x)\tag{def. $+_V$}\\
&= f(x) +_K (-f(x)) \tag{def. $\tilde{f}$}\\
&= 0_K\tag{inv. ad.}\\
&= \theta_V (x)\tag{def. $\theta_V$}\\
\therefore f +_V \tilde{f} = \tilde{f} +_V f = \theta_V
\end{align*}

  1. P.D. $1_K \cdot_V f = f$

Sea $1_K$ el neutro multiplicativo en $K$.

Obs. 5 Por construcción $1_K \in K$. Así, $1_K \cdot_V f \in V$. Así que sólo falta ver que $1_K \cdot_V f$ y $f$ tienen la misma regla de correspondencia.

\begin{align*}
(1_K \cdot_V f)(x) &= 1_K \cdot_K f(x)\tag{def. $\cdot_V$}\\
&= f(x)\tag{neut. mult.}\\
\therefore 1_V \cdot_V f = f
\end{align*}

  1. P.D. $\lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f$

Obs. 6 Por construcción $\mu\cdot_V f \in V$. Así, $\lambda\cdot_V(\mu\cdot_V f) \in V$. También tenemos que $\lambda\cdot_K\mu\in K,$ por lo cual $(\lambda\cdot_K\mu)\cdot_V f\in V$ Entonces sólo falta ver que $\lambda\cdot_V(\mu\cdot_V f)$ y $(\lambda\cdot_K\mu)\cdot_V f$ tienen la misma regla de correspondencia.

\begin{align*}
(\lambda\cdot_V(\mu\cdot_V f))(x) &= \lambda \cdot_K (\mu\cdot_V f)(x)\tag{def. $\cdot_V$}\\
&= \lambda\cdot_K(\mu\cdot_K f(x))\tag{def. $\cdot_V$}\\
&= (\lambda\cdot_K\mu)\cdot_K f(x)\tag{asociat. $\cdot_K$}\\
&= ((\lambda\cdot_K\mu)\cdot_V f)(x)\tag{def. $\cdot_V$}\\
\therefore \lambda\cdot_V(\mu\cdot_V f)=(\lambda\cdot_K\mu)\cdot_V f
\end{align*}

  1. P.D. Se cumple la distributividad (7.1)
    $i.e.$ $(\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)$

Obs. 7 Tenemos que $\lambda,\mu,\lambda +_K \mu \in K$. Así, $(\lambda +_K \mu)\cdot_V f, (\lambda\cdot_V f) +_V (\mu\cdot_V f) \in V$. Así que solo falta ver que $(\lambda +_K \mu)\cdot_V f$ y $(\lambda\cdot_V f) +_V (\mu\cdot_V f)$ tienen la misma regla de correspondencia.

\begin{align*}
((\lambda +_K \mu)\cdot_V f)(x) &= (\lambda +_K \mu)\cdot_K f(x)\tag{def. $+_V$}\\
&= (\lambda\cdot_K f(x)) +_K (\mu\cdot_K f(x))\tag{distrib.}\\
&= ((\lambda\cdot_V f)(x)) +_K ((\mu\cdot_V f)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda\cdot_V f) +_V (\mu\cdot_V f))(x))\tag{def. $\cdot_V$}\\
\therefore (\lambda +_K \mu)\cdot_V f=(\lambda\cdot_V f) +_V (\mu\cdot_V f)
\end{align*}

  1. P.D. Se cumple la distributividad (7.2)
    $i.e.$ $\lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)$

Obs. 8 Tenemos que $\lambda \cdot_V (f +_V g), \lambda \cdot_V f, \lambda \cdot_V g \in V$. Así, $(\lambda \cdot_V f) +_V(\lambda \cdot_V g) \in V$. Entonces sólo falta ver que $\lambda \cdot_V (f +_V g)$ y $(\lambda \cdot_V f) +_V(\lambda \cdot_V g)$ tienen la misma regla de correspondencia.

\begin{align*}
(\lambda \cdot_V (f +_V g))(x) &= \lambda \cdot_K (f +_V g)(x)\tag{def. $\cdot_V$}\\
&= \lambda \cdot_K (f(x) +_K g(x))\tag{def. $+_V$}\\
&= (\lambda \cdot_K f(x)) +_K (\lambda \cdot_K g(x))\tag{distrib.}\\
&= ((\lambda \cdot_V f)(x)) +_K ((\lambda \cdot_V g)(x))\tag{def. $\cdot_V$}\\
&= ((\lambda \cdot_V f) +_V (\lambda \cdot_V g))(x)\tag{def. $+_V$}\\
\therefore \lambda \cdot_V (f +_V g)= (\lambda \cdot_V f) +_V(\lambda \cdot_V g)
\end{align*}

Por lo tanto $V=\{f|f:K \longrightarrow K\}$ es un $K$ – espacio vectorial con las operaciones $+_V$ y $\cdot_V$ trabajadas.

TAREA MORAL

  1. Encuentra un $K$ campo dentro de los ejemplos de la entrada anterior con el cual $\mathcal{M}_{m\times n}(K)$ sea un $K$ – espacio vectorial con una cantidad finita de elementos. Si $K$ no es concreto, exhibe un caso particular de ese campo y una vez que lo hagas, muestra todos los elementos del espacio vectorial obtenido.
  1. Demuestra que el neutro aditivo de $V$, un $K$ – espacio vectorial, es único.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sabemos por la definición de espacio vectorial, que existe $\theta_V$ neutro.
    • Primero sup. que existe ${\theta_V}’ \in V$ que también lo es. Con el objetivo de demostrar que $\theta_V = {\theta_V}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\theta_V = \theta_V +_V {\theta_V}’ = {\theta_V}’$
  1. Demuestra que los inversos aditivos en $V$ son únicos.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sea $u \in V$. Sabemos por la definición de campo, que existe $\tilde{u} \in V$ inverso aditivo de $u$.
    • Primero sup. que existe $\tilde{u}’ \in V$ que también lo es. Con el objetivo de demostrar que $\tilde{u} = \tilde{u}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $\tilde{u} = \tilde{u} +_V \theta_V = \tilde{u} + (u + \tilde{u}’) = (\tilde{u} + u) + \tilde{u}’$
    • Completa la demostración con las igualdades necesarias y justifícalas.

MÁS ADELANTE…

Ahora analizaremos algunas propiedades de los espacios vectoriales, una de ellas nos dice quién es el elemento neutro dado el espacio vectorial. Además de dos identidades del elemento neutro.

Entradas relacionadas