Archivo de la etiqueta: suma directa

1.11. SUMA Y SUMA DIRECTA DE SUBESPACIOS: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

La suma entre espacios vectoriales se construye con la suma de vectores, sin embargo, al ser subespacios, lo que resulta de esta operación, dónde vive y cómo se comporta es algo que que debe analizarse de forma particular.

La suma directa, una vez que aprendemos a distinguirla y manejarla, nos permite expresar a nuestro espacio vectorial en términos de algunos de sus subespacios. De este modo es más clara la estructura que tienen todos los elementos del espacio.

SUMA DE SUBESPACIOS

Definición: Sean $V$ un $K$ – espacio vetorial y $U,W$ subespacios de $V$. La suma de $U$ y $W$ es $U+W=\{u+w|u\in U, w\in W\}$ (donde $+$ es la suma del espacio $V$).

Nota: La generalización para $U_1,U_2,…,U_m$ ($m$ subespacios de $V$) es:
$U_1+U_2+…+U_m=\{u_1+u_2+…+u_m|u_1\in U_1,u_2\in U_2,…,u_m\in U_m\}$

Propiedades

Justificación. Veamos que $U+W$ contiene a $\theta_V$ y conserva suma y producto por escalar.

Como $U,W\leqslant V$, entonces $\theta_V\in U,W$.
Así, $\theta_V =\theta_V+\theta_V\in U+W$
$\therefore \theta_V\in U+W$

Como $U,W\subseteq V$, entonces $u_1,u_2,w_1,w_2\in V$, así que $$(u_1+w_1)+\lambda (u_2+w_2)=(u_1+w_1)+(\lambda u_2 + \lambda_2 w_2)=(u_1+\lambda u_2)+(w_1+\lambda w_2 ) $$ y como $U,W\leqslant V$, entonces tanto $U$ como $W$ conservan suma y producto por escalar así que $u_1+\lambda u_2 \in U$ y $w_1+\lambda w_2 \in W$.
Por lo cual, $(u_1+w_1)+\lambda(u_2+w_2)=(u_1+\lambda u_2)+(w_1+\lambda w_2 ) \in U+W$
$\therefore (u_1+w_1)+\lambda(u_2+w_2)\in U+W$

Justificación. Recordando que $\theta_V\in U,W$ (porque $U,V\leqslant V$) tenemos que $\forall u\in U(u=u+\theta_V\in U+W)$ y $\forall w\in W(w=\theta_V+w\in U+W)$

Justificación. Sea $\tilde{V}\leqslant V$ tal que $U,W\subseteq \tilde{V}$
Sea $u+w\in U+W$ con $u\in U$ y $w\in W$.
Entonces $u\in U\subseteq \tilde{V}$ y $w\in W\subseteq \tilde{V}$.
De donde $u,w\in\tilde{V}$ y como $\tilde{V}\leqslant V$, entonces $\tilde{V}$ es cerrado bajo suma. Así, $u+w\in\tilde{V}$.
$\therefore U+W\subseteq\tilde{V}$

Teorema: Sean $V$ un $K$ – espacio vectorial y $U,W$ subespacios de $V$. Entonces $dim_K(U+W)=dim_KU+dim_KW-dim_K(U\cap W)$

Demostración: Sea $\beta=\{v_1,v_2,…,v_m\}$ una base de $U\cap W$ con $dim_K U\cap W=m$.
Podemos completar a una base de $U$ y a una base de $W$:

Sea $A=\{v_1,v_2,…,v_m,u_1,u_2,…,u_r\}$ una base de $U$.
Sea $\Gamma =\{v_1,v_2,…,v_m,w_1,w_2,…,w_s\}$ una base de $W$.

donde $dim_K U=m+r$ y $dim_K W =m+s$.

Veamos que $\Delta =A\cup\Gamma =\{v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s\}$ es base de $U+W$ con $m+r+s$ elementos.

Tenemos que $A$ es base de $U$, por lo que $A\subseteq U$.
Tenemos que $\Gamma$ es base de $W$, por lo que $\Delta\subseteq W$.
Así, $\Delta =A\cup\Gamma \subseteq U\cup W$. Y como $U,W\subseteq U+W$, entonces $U\cup W\subseteq U+W$.
Por lo tanto $\Delta\subseteq U+W$ y como $U+W\leqslant V$ concluimos que $\langle\Delta\rangle\subseteq U+W.$

Ahora bien, sea $u+w\in U+W$ con $u\in U$ y $w\in W$.
Entonces $u\in U=\langle A\rangle\subseteq\langle A\cup\Gamma\rangle =\langle\Delta\rangle$ y $w\in W=\langle\Gamma\rangle\subseteq\langle A\cup\Gamma\rangle =\langle\Delta\rangle$.
De donde $u,w\in\langle\Delta\rangle$ y como $\langle\Delta\rangle\leqslant V$, entonces $u+w\in\langle\Delta\rangle$.
Por lo tanto, $U+W\subseteq\langle\Delta\rangle$.

$\therefore\langle\Delta\rangle =U+W$

Veamos que la lista $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ es l.i. Como consecuencia de ello se tendrá que $\Delta$ es linealmente independiente y $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ son distintos y por lo tanto son $m+r+s$ elementos.

Sean $\kappa_1,\kappa_2,…,\kappa_m,\lambda_1,\lambda_2,…,\lambda_r,\mu_1,\mu_2,…,\mu_s\in K$ tales que:
$\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i +\sum_{i=1}^s\mu_iw_i=\theta_V$ $…(1)$

Como $W\leqslant V$, entonces $\sum_{i=1}^s\mu_iw_i\in W$ $…(2)$
Como $U=\langle A\rangle$, entonces $-\sum_{i=1}^m\kappa_iv_i-\sum_{i=1}^r\lambda_iu_i\in U$ $…(3)$

De $(1)$ tenemos que $\sum_{i=1}^s\mu_iw_i=-\sum_{i=1}^m\kappa_iv_i-\sum_{i=1}^r\lambda_iu_i$ y en consecuencia, por $(2)$ y $(3)$, concluimos que $\sum_{i=1}^s\mu_iw_i$ es un elemento que está tanto en $U$ como en $W$.

Así, $\sum_{i=1}^s\mu_iw_i\in U\cap W=\langle\beta\rangle$ y por tanto existen $\gamma_1,\gamma_2,…,\gamma_m\in K$ tales que $\sum_{i=1}^s\mu_iw_i=\sum_{i=1}^m\gamma_iv_i$ $…(4)$

De $(4)$ tenemos que $\sum_{i=1}^s\mu_iw_i-\sum_{i=1}^m\gamma_iv_i=\theta_V$, y como $\Gamma$ es l.i. por ser base, entonces $\forall i\in\{1,2,…,s\}(\mu_i=0_K)$ y $\forall i\in\{1,2,…,m\}(-\gamma_i=0_K)$. Por lo tanto, $\sum_{i=1}^s\mu_iw_i=\theta_V$ $…(5)$

De $(1)$ y $(5)$ tenemos que $\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i +\theta_V=\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i+\sum_{i=1}^s\mu_iw_i=\theta_V$. De donde $\sum_{i=1}^m\kappa_iv_i+\sum_{i=1}^r\lambda_iu_i=\theta_V$, y como $A$ es l.i. por ser base, entonces $\forall i\in\{1,2,…,m\}(\kappa_i=0_K)$ y $\forall i\in\{1,2,…,r\}(-\lambda_i=0_K)$ $…(6)$

Hemos probado que $\kappa_1,=\kappa_2=…=\kappa_m=\lambda_1=\lambda_2=…=\lambda_r=\mu_1=\mu_2=…=\mu_s=0_K$.

Así, la lista $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ es l.i. y en consecuencia $\Delta$ es un conjunto l.i. con $m+r+s$ elementos.

$\therefore\Delta$ es l.i.

Concluimos que $\Delta$ es base de $U+W$ con $m+r+s$ elementos.

Finalmente sabemos que $dim_KU=m+r$, $dim_KW=m+s$ y $dim_K(U\cap W)=m.$
Además $\Delta$ es base de $U+W$ con $m+r+s$ elementos, entonces $dim_K(U+W)=m+r+s=(m+r)+(m+s)-m.$

Por lo tanto $dim_K(U+W)=dim_KU+dim_KW-dim_K(U\cap W)$

Ejemplos

Justificación. Es claro que $U_1,U_2,U_3\leqslant V$. Veamos el resultado de cada suma entre estos subespacios.
$U_1+U_2=\{(x,0)+(0,y)|x,y\in\mathbb{R}\}=\{(x,y)|x,y\in\mathbb{R}\}=V$
$U_2+U_3=\{(0,y)+(a,a)|y,a\in\mathbb{R}\}=\{(a,a+y)|a,y\in\mathbb{R}\}=\{(a,b)|a,b\in\mathbb{R}\}=V$
$U_3+U_1=\{(a,a)+(x,0)|a,x\in\mathbb{R}\}=\{(a+x,a)|a,x\in\mathbb{R}\}=\{(b,a)|b,a\in\mathbb{R}\}=V$

Verifiquemos para la suma $U_1+U_2$ el teorema previo:

Sabemos que $dim_KV=2$. Además $U_1\cap U_2=\{(0,0)\}$ y así $dim_K(U_1\cap U_2)=dim_K\{(0,0)\}=0$.
Como $\{(1,0)\}$ es base de $U_1$, entonces $dim_KU_1=1$.
Como $\{(0,1)\}$ es base de $U_2$, entonces $dim_KU_2=1$.
Así, $2=dim_KV=dim_K(U_1+U_2)=2=1+1+0=dim_KU_1+dim_KU_2-dim_K(U_1\cap U_2).$

Justificación. Dado que $dim_KV=3$ y $U+W$ es un subespacio de $V$
bastará probar entonces que $dim_K(U+W)=3$.

Como $\{(1,0,0),(0,1,0)\}$ es base de $U$, entonces $dim_KU=2$
Como $\{(0,1,0),(0,0,1)\}$ es base de $W$, entonces $dim_KW=2$
Como $\{(0,1,0)\}$ es base de $U\cap W$, entonces $dim_K(U\cap W)=1$
Así, \begin{align*}dim_K(U+W)&=dim_KU+dim_KW-dim_K(U\cap W)\\&=2+2-dim_K(U\cap W)=4-1=3,\end{align*} de donde $dim_K(U+W)=3=dim_KV$.

$\therefore U+W=V$.

SUMA DIRECTA

Definición: Sean $V$ un $K$ – espacio vetorial y $U,W$ subespacios de $V$. Decimos que $U+W$ es una suma directa si cada $v\in U+W$ se escribe como $v=u+w$ (con $u\in U,w\in W$) de forma única. En ese caso, escribiremos a $U+W$ como $U\oplus W$.

Nota: La generalización para $U_1,U_2,…,U_m$ ($m$ subespacios de $V$) es:
$U_1+U_2+…+U_m$ es suma directa si cada $v\in U_1+U_2+…+U_m$ se escribe como $v=u_1+u_2+…+u_m$ (con $u_1\in U_1,u_2\in U_2,…,u_m\in U_m\}$) de forma única. Se denotará como $U_1\oplus U_2\oplus …\oplus U_m$.

Ejemplo

Justificación. Es claro que $U,W\leqslant V$.
Sea $(a,b)\in\mathbb{R}^2$.
Entonces $a,b\in\mathbb{R}$.

Tenemos que $$(a,b)=\left( \frac{a+b}{2}+\frac{a-b}{2} ,\frac{a+b}{2}-\frac{a-b}{2}\right)=\left( \frac{a+b}{2} ,\frac{a+b}{2}\right)+\left( \frac{a-b}{2} ,-\frac{a-b}{2}\right)\in U+W,$$
de donde $\mathbb{R}^2\subseteq U+W$. Sabemos que $U+W\subseteq V$ y demostramos que $V\subseteq U+W$
$\therefore U+ W=V$

Veamos ahora que dicha suma es directa, es decir que si $u\in U, w\in W$ son tales que $(a,b)=u+w$, entonces $u,w$ son únicos. Bastará para ello verificar que la descomposición anterior de $(a,b)$ como suma de un elemento en $U$ y uno en $W$ es la única posible.

Sean $u\in U, w\in W$ son tales que $(a,b)=u+w$.
Entonces $u=(x,x)$ para algún $x\in\mathbb{R}$ y $w=(y,-y)$ para algún $y\in\mathbb{R}$, donde $(a,b)=(x,x)+(y,-y)=(x+y,x-y)$.

De aquí se deduce que $a=x+y$ y $b=x-y$. Así, $a+b=2x$ y por lo tanto $x=\frac{a+b}{2}$, mientras que $a-b=2y$ y por lo tanto $y=\frac{a-b}{2}$.

$\therefore U+W$ es suma directa.
$\therefore U\oplus W=V$

Proposición: Sean $V$ un $K$ – espacio vectorial y $U,W$ subespacios de $V$. Entonces $U+W$ es suma directa si y sólo si $U\cap W=\{\theta_V\}$

Demostración: Veamos ambas implicaciones.

$\Rightarrow )$ Supongamos que $U+W$ es suma directa.

Como $U,W\leqslant V$, entonces $\theta_V\in U,W$. Por lo que $\{\theta_V\}\subseteq U\cap W$.

Sea $v\in U\cap W$.
Sabemos que $\theta_V+v,v+\theta_V\in U\oplus W$ y son formas de escribir a $v$.
Como $U+W$ es suma directa, entonces la forma de escribir a $v$ debe ser única.
Por lo tanto, $v=\theta_V$

$\therefore U\cap W=\{\theta_V\}$

$\Leftarrow )$ Supongamos que $U\cap W=\theta_V$

Sea $v\in U+W$ tal que $u_1+w_1=v=u_2+w_2$ con $u_1,u_2\in U$ y $w_1,w_2\in W$

Como $U,W\leqslant V$, entonces $u_1-u_2\in U$ y $w_2-w_1\in W$.
Como $u_1+w_1=u_2+w_2$, entonces $u_1-u_2=w_2-w_1$.
Por lo tanto, $u_1-u_2,w_2-w_1\in U\cap W=\{\theta_V\}$

Así, $u_1-u_2=\theta_V$ lo que implica que $ u_1=u_2$T ambién $w_2-w_1=\theta_V$ lo que implica que $w_2=w_1$.
Es decir, cada elementos en $U+W$ se escribe de forma única.

$\therefore U+W$ es una suma directa.

Tarea Moral

Más adelante…

A partir de la siguiente entrada, analizaremos un tipo de funciones muy especial y útil que va de espacios vectoriales a espacios vectoriales y aunque la definición sólo le pide abrir dos operaciones, esto implica muchas propiedades que otorgan a este tipo de funciones un papel central en el Álgebra lineal.

Entradas relacionadas

Álgebra Lineal II: Ortogonalidad en espacios euclideanos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, cuando hablamos del espacio dual de un espacio vectorial, definimos qué quería decir que una forma lineal y un vector fueran ortogonales. Esa noción de ortogonalidad nos ayudó a definir qué era un hiperplano de un espacio vectorial y a demuestra que cualquier subespacio de dimensión $k$ de un espacio de dimensión $n$ podía ponerse como intersección de $n-k$ hiperplanos.

Hay otra noción de ortogonalidad en álgebra lineal que también ya discutimos en el primer curso: la ortogonalidad de parejas de vectores con respecto a un producto interior. En el primer curso vimos esta noción muy brevemente. Lo que haremos ahora es profundizar en esta noción de ortogonalidad. De hecho, gracias a las herramientas que hemos desarrollado podemos conectar ambas nociones de ortogonalidad.

Esta teoría la veremos de manera explícita en el caso real en la entrada. El caso en $\mathbb{C}$ queda esbozado en los ejercicios.

Definición de ortogonalidad

Comenzamos con las siguientes definiciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos vectores $x,y$ en $V$ son ortogonales (con respecto a $b$) si $b(x,y)=0$.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Sea $S$ un subconjunto de vectores de $V$. El conjunto ortogonal de $S$ (con respecto a $b$) consiste de todos aquellos vectores en $V$ que sean ortogonales a todos los vectores de $S$. En símbolos:

$$S^{\bot}:=\{v \in V : \forall s \in S, b(s,v)=0\}.$$

Es un buen ejercicio verificar que $S^\bot$ siempre es un subespacio de $V$. Finalmente, definimos la ortogonalidad de conjuntos.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos subconjuntos $S$ y $T$ son ortogonales (con respecto a $b$) si $S \subseteq T^{\bot}$.

En otras palabras, estamos pidiendo que todo vector de $S$ sea ortogonal a todo vector de $T$.

Observación. Si tenemos un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$, entonces tenemos la fórmula $$\norm{x+y}^2=\norm{x}^2+2\langle x,y\rangle +\norm{y}^2.$$

De esta forma, $x$ y $y$ son ortogonales si y sólo si $$\norm{x+y}^2= \norm{x}^2+\norm{y}^2.$$ Podemos pensar esto como una generalización del teorema de Pitágoras.

Descomposición en un subespacio y su ortogonal

Comenzamos esta sección con un resultado auxiliar.

Teorema. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$V=W\oplus W^\bot.$$

Demostración. Sea $\langle \cdot,\cdot \rangle$ el producto interior de $V$. Para demostrar la igualdad que queremos, debemos mostrar que $W$ y $W^\bot$ están en posición de suma directa y que $V=W+W^\bot$.

Para ver que $W$ y $W^\bot$ están en posición de suma directa, basta ver que el único elemento en la intersección es el $0$. Si $x$ está en dicha intersección, entonces $\langle x, x \rangle =0$, pues por estar en $W^\bot$ debe ser ortogonal a todos los de $W$, en particular a sí mismo. Pero como tenemos un producto interior, esto implica que $x=0$.

Tomemos ahora un vector $v\in V$ cualquiera. Definamos la forma lineal $f:W\to \mathbb{R}$ tal que $f(u)=\langle u, v \rangle$. Por el teorema de representación de Riesz aplicado al espacio vectorial $W$ y a su forma lineal $f$, tenemos que existe un (único) vector $x$ en $W$ tal que $f(u)=\langle u, x \rangle$ para cualquier $u$ en $W$.

Definamos $y=v-x$ y veamos que está en $W^\bot$. En efecto, para cualquier $u$ en $W$ tenemos:

\begin{align*}
\langle u, y\rangle &= \langle u, v-x \rangle\\
&=\langle u, v \rangle – \langle u , x \rangle\\
&=f(u)-f(u)\\
&=0.
\end{align*}

De esta manera, podemos escribir $v=x+y$ con $x\in W$ y $y\in W^\bot$.

$\square$

En particular, el teorema anterior nos dice que la unión disjunta de una base de $W$ y una base de $W^\bot$ es una base de $V$. Por ello, tenemos el siguiente corolario.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$\dim{W}+\dim{W^\bot}=\dim{V}.$$

Tenemos un corolario más.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$(W^\bot)^\bot=W.$$

Demostración. Tanto $W$ como $(W^\bot)^\bot$ son subespacios de $V$. Tenemos que $W\subseteq (W^\bot)^\bot$ pues cualquier elemento de $W$ es ortogonal a cualquier elemento de $W^\bot$. Además, por el corolario anterior tenemos:

\begin{align*}
\dim{W}+\dim{W^\bot}&=\dim{V}\\
\dim{W^\bot}+\dim{(W^\bot)^\bot}&=\dim{V}.
\end{align*}

De aquí se sigue que $\dim{W} = \dim{(W^\bot)^\bot}$. Así, la igualdad que queremos de subespacios se sigue si un subespacio está contenido en otro de la misma dimensión, entonces deben de ser iguales.

$\square$

Proyecciones ortogonales

Debido al teorema anterior, podemos dar la siguiente definición.

Definición. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. La proyección ortogonal hacia $W$ es la transformación lineal $p_W:V\to W$ tal que a cada $v$ en $V$ lo manda al único vector $p_W(v)$ tal que $x-p_W(v)$ está en $W^\bot$.

Dicho en otras palabras, para encontrar a la proyección de $v$ en $W$ debemos escribirlo de la forma $v=x+y$ con $x\in W$ y $y\in W^\bot$ y entonces $p_W(v)=x$.

Distancia a subespacios

Cuando definimos la distancia entre conjuntos que tienen más de un punto, una posible forma de hacerlo es considerando los puntos más cercanos en ambos conjuntos, o en caso de no existir, el ínfimo de las distancias entre ellos. Esto da buenas propiedades para la distancia. En particular, cuando queremos definir la distancia de un punto $x$ a un conjunto $S$ hacemos lo siguiente.

Definición. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $S$ un subconjunto de $V$ y $v$ un vector de $V$. Definimos la distancia de $v$ a $S$ como la menor posible distancia de $v$ hacia algún punto de $S$. En símbolos:

$$d(v,S):=\inf_{s\in S} d(v,s).$$

En general, puede ser complicado encontrar el punto que minimiza la distancia de un punto a un conjunto. Sin embargo, esto es más sencillo de hacer si el conjunto es un subespacio de un espacio con producto interior: se hace a través de la proyección al subespacio. Esto queda reflejado en el siguiente resultado.

Proposición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $W$ un subespacio de $V$ y sea $v$ un vector en $V$. Entonces $$d(v,W)=\norm{v-p_W(v)}.$$

Más aún, $p_W(v)$ es el único punto en $W$ para el cual se alcanza la distancia mínima.

Demostración. Por el teorema de descomposición en un subespacio y su ortogonal, sabemos que podemos escribir $v=x+y$ con $x$ en $W$ y con $y$ en $W^\bot$.

Tomemos cualquier elemento $w$ en $W$. Tenemos que $x-w$ está en $W$ y que $y$ está en $W^\bot$. Así, usando el teorema de Pitágoras tenemos que:

\begin{align*}
\norm{v-w}^2&=\norm{y+(x-w)}^2\\
&=\norm{y}^2+\norm{x-w}^2\\
&\geq \norm{y}^2\\
&=\norm{v-x}^2.
\end{align*}

Esto muestra que $\norm{v-w}\geq \norm{v-x}$. Como $x\in W$, esto muestra que la distancia de $v$ a $W$ en efecto se alcanza con $x=p_W(v)$, pues cualquier otra distancia es mayor o igual.

La igualdad en la cadena anterior de alcanza si y sólo si $\norm{x-w}^2=0$, lo cual sucede si y sólo si $x=w$, como queríamos.

$\square$

Más adelante…

En la siguiente entrada recordaremos varias de las ventajas que tiene contar con una base de un espacio vectorial en la que cualesquiera dos vectores sean ortogonales entre sí. Y en la entrada después de esa, recordaremos algunas hipótesis bajo las cuales podemos garantizar encontrar una de esas bases.

Tarea moral

  1. Resuelve los siguientes ejercicios:
    1. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$. Encuentra a $W^{\bot}$ y define la proyección ortogonal $p_W$ hacia $W$.
    2. Encuentra el vector en $\text{Span}((1,2,1), (-1,3,-4))$ que sea el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  2. Sea $V$ un espacio euclidiano y $T : V \to V $ una transformación lineal tal que $T^2=T$. Prueba que T es una proyección ortogonal si y solo si para cualesquiera $x$ y $y$ en $V$ se tiene que $$\langle T(x),y\rangle =\langle x,T(y)\rangle.$$
  3. Resuelve los siguientes ejercicios:
    1. Demuestra que una proyección ortogonal reduce la norma, es decir, que si $T$ es una proyección ortogonal, entonces $\norm{T(v)}\leq \norm{v}$.
    2. Prueba que una proyección ortogonal únicamente puede tener como eigenvalores a $0$ ó a $1$.
  4. Demuestra que la composición de dos proyecciones ortogonales no necesariamente es una proyección ortogonal.
  5. En el teorema de descomposición, ¿es necesaria la hipótesis de tener un producto interior? ¿Qué sucede si sólo tenemos una forma bilineal, simétrica y positiva?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»