1.3. ESPACIOS VECTORIALES: propiedades

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Nota: Para simplificar notación (sobre todo en las demostraciones): $0_K$ será $0$; $\theta_V$ será $\theta$ y dependiendo de los elementos que se operen, serán las operaciones del campo o del espacio vectorial. Y en las justificaciones de pasos, tendremos que un número $m$ seguido $K$, hará referencia a la propiedad $m$ de la definición de campo y análogamente si el número $m$ es seguido por $V$ será la propiedad $m$ de la definición de espacio vectorial.

Recordemos que, por ahora, dado $u$ en un espacio vectorial, tenemos que $\tilde u$ denota a su inverso aditivo.

Proposición (1): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
1. $0_K \cdot_V u = \theta_V$ $\forall u \in V$
2. $\lambda \cdot_V \theta_V = \theta_V$ $\forall \lambda\in K$

Demostración: Sean $u \in V$, $\lambda\in K$.

1. Tenemos por distributividad en $V$ que $(0+0)u=0u+0u$.
Y además, por ser $0$ el neutro de $K$ y $\theta$ el neutro de $V$, $(0+0)u=0u=\theta+0u$.
Así, $0u+0u=\theta+0u$.
De donde, $\widetilde{0u}+(0u+0u)=(\theta+0u)+\widetilde{0u}$

$\begin{align*}
\Rightarrow &(\widetilde{0u}+0u)+0u=\theta+(0u+\widetilde{0u})\tag{asociat. $+_V$}\\
\Rightarrow &\theta+0u=\theta+\theta\tag{inv. ad. $V$}\\
\Rightarrow &0u=\theta\tag{neu. ad. $V$}\\
\end{align*}$

2. Tenemos por distributividad en $V$ que $\lambda(\theta+\theta)= \lambda\theta+\lambda\theta$.
Y además, por ser $\theta$ el neutro de $V$, $\lambda(\theta+\theta)=\lambda\theta$.
Así, $\lambda\theta+\lambda\theta=\lambda\theta$.
De donde, $\widetilde{\lambda\theta}+(\lambda\theta+\lambda\theta)=\lambda\theta\widetilde{\lambda\theta}$

$\begin{align*}
\Rightarrow &(\widetilde{\lambda\theta}+\lambda\theta)+\lambda\theta=\lambda\theta_V+\widetilde{\lambda\theta}\tag{asociat. $+_V$}\\
\Rightarrow &\theta+\lambda\theta=\theta\tag{inv. ad. $V$}\\
\Rightarrow &\lambda\theta=\theta\tag{neu. ad. $V$}\\
\end{align*}$

Proposición (2): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
Para todo $u \in V$, $(-1_K)\cdot_V u$ es el inverso aditivo de $u$.

Demostración: Sea $u\in V$.
Veamos que $u+(-1_K)u=\theta$

$\begin{align*}
u+(-1_K)u&=1_Ku+(-1_K)u\tag{propiedad 5. campo}\\
&=(1_K+(-1_K))u\tag{distrib. 7.1 $V$}\\
&=0u\tag{inv. ad. $K$}\\
&=\theta\tag{Prop. (1)}\\
\therefore u+(-1_K)u=\theta
\end{align*}$

Nota: Dada $u \in V$ denotaremos por $-u$ a su inverso aditivo.

Obs.* Existen resultados análogos para las dos proposiciones anteriores pero en el caso de los campos, y sus pruebas son también análogas.

Corolario: Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
$(-\lambda)u=-(\lambda u)=\lambda(-u)$ $\forall \lambda \in K$ , $\forall u \in V$

Demostración: Sean $\lambda\in K, u\in V$.
Por un lado,
\begin{align*}
\lambda(-u)&=\lambda((-1_K)u)\tag{Prop. (2)}\\
&=(\lambda(-1_K))u\tag{propiedad 6. campo}\\
&=(-\lambda)u\tag{Obs.*}\\
\therefore\lambda(-u)=(-\lambda)u
\end{align*}
Por otro lado,
\begin{align*}
(-\lambda)u&=((-1_K)\lambda)u\tag{Obs.*}\\
&=(-1_K)(\lambda u)\tag{propiedad 6. campo}\\
&=-(\lambda u)\tag{Prop. (2)}\\
\therefore (-\lambda)u=-(\lambda u)
\end{align*}

Proposición (3): Sea $K$ un campo y $V$ un $K$ – espacio vectorial.
Si $\lambda\cdot_V u = \theta_V$, entonces se cumple al menos uno de los siguientes casos:
1. $\lambda = 0_K$
2. $u = \theta_V$

Demostración: Sup. que $\lambda u=\theta$.
Tenemos dos posibilidades:
i) $\lambda=0$
ii) $\lambda\not=0$

Si se cumple i), entonces ya tenemos el caso 1.

Sup. que se cumple ii). Veamos que $u=\theta$.
Como nuestra hipótesis es que $\lambda\not=0$ y $\lambda\in K$, con $K$ un campo, entonces $\exists(\lambda^{-1})\in K$ inverso multiplicativo de $\lambda$. Así,

$\begin{align*}
\lambda u=\theta\Rightarrow &(\lambda^{-1})(\lambda u)=(\lambda^{-1})\theta\\
\Rightarrow &((\lambda^{-1})\lambda)u=(\lambda^{-1})\theta\tag{propiedad 6. esp. vect.}\\
\Rightarrow &((\lambda^{-1})\lambda)u=\theta\tag{Prop. (1)}\\
\Rightarrow &1_Ku=\theta\tag{inv. mult. $K$}\\
\Rightarrow &u=\theta\tag{propiedad 5. campo}\\
\end{align*}$

Nota: En adelante, $K$ denotará un campo.

TAREA MORAL

Sea $K$ un campo. Sea $V$ un $K$ – espacio vectorial. Demuestra que para cualesquiera $u,v,w \in V$ se cumplen las siguientes propiedades de cancelación:

  1. Si $u+v=w+v$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Podemos sumar a la derecha de cada lado de la igualdad el inverso de $v$.
    • Una vez hecho eso, utiliza la asociatividad de la suma en $V$, luego la definición del inverso de $v$ y por último la definición del neutro aditivo en $V$.
  1. Si $v+u=v+w$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Piensa en qué propiedad de la $+$ en $V$ te permite tener una ecuación de la forma que se presenta en el $1$. Una vez teniendo esa forma, por lo que ya probaste, obtienes lo que se necesitaba.
      • Observa que haciendo un proceso totalmente análogo a este inciso, se obtiene que también se cumple la cancelación si es de la forma $u+v=v+w$, o bien, de la forma $v+u=w+v$.

MÁS ADELANTE…

Ahora vamos a usar el concepto de espacio vectorial para obtener otro concepto: subespacio.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.