Archivo de la etiqueta: teorema de Riesz

Álgebra lineal II: Dualidad y ortogonalidad

Introducción

En entradas anteriores mencionamos y utilizamos propiedades del espacio dual y del producto interno, en esta entrada nos enfocaremos más en la relación de las formas bilineales, (específicamente el producto interno) con este concepto.

También veremos el concepto de ortogonalidad con respecto a una forma bilineal, lo que dará paso a un teorema muy importante (El teorema de representación de Riesz) e incluso nos permitirá definir conceptos como distancia entre un conjunto y un elemento.

Dualidad

De aquí en adelante, asumiremos que $V$ es un $\mathbb{R}$-espacio vectorial, no necesariamente de dimensión finita. Definamos una función que utilizaremos mucho como sigue

Sea $b$ una forma bilineal en $V$.
\begin{align*} \varphi_b: V \rightarrow V^* \qquad \text{tal que} \qquad \varphi_b(y)=b(\cdot, y ) \end{align*}
Donde $b( \cdot , y)$ es la función que envía $x$ a $b(x,y)$, además sabemos que es lineal ya que
$b$ es bilineal, lo que significaba que es lineal en la primera entrada, por lo que pertenece a $V^*$ (el espacio dual de V, puedes leer un poco más de este y de las bases duales aquí).

Proposición

Sea $\mathcal{B}$ base de $V$ de dimensión finita, $\beta’$ su base dual y $b$ forma bilineal en $V$. Prueba que la matriz de $\varphi_b$ respecto a $\beta$ y $\beta’$ es la matriz de $b$ respecto a $\beta$.

Demostración

Sea $\beta=\{ u_1, \cdots , u_n \}$ y $\beta’=\{ u’_1, \cdots , u’_n \}$ y sea $B$ la matriz asociada a $\varphi_b$ respecto a $\beta$ y $\beta’$, primero calcularemos su $j$-esima columna.
\begin{align*} \varphi_b(u_j)=b(\cdot,u_j) \end{align*}
Como no es natural la forma de escribir $\varphi_b(u_j)$ en términos de $\beta’$, calculemos $\varphi_b(u_j)(x)$ para algún $x \in V$
\begin{align*} \varphi_b(u_j)(x)=b(x,u_j) \end{align*}
Si $x=\sum_{i=1}^nu_ix_i$, entonces
\begin{align*} \varphi_b(u_j)(x)=b(\sum_{i=1}^nu_ix_i,u_j)= \sum_{i=1}^nx_ib(u_i,u_j)\end{align*}
Por otro lado, sabemos que para cualquier $x \in V$ $u^*_i(x)=x_i$, sustituyendo esto en la igualdad anterior
\begin{align*} \varphi_b(u_j)(x)= \sum_{i=1}^nu^*_i(x)b(u_i,u_j)\end{align*}
Para cualquier $x \in V$, por lo que
\begin{align*} \varphi_b(u_j)= \sum_{i=1}^nu^*_ib(u_i,u_j)\end{align*}
así, la $j-esima$ columna es de la forma
\begin{pmatrix} b(u_1,u_j) \\
\vdots \\
b(u_n,u_j) \end{pmatrix}
Así, podemos escribir $B$ como
B=\begin{pmatrix} b(u_1,u_1) & \cdots & b(u_1,u_n) \\
\vdots & \ddots & \vdots \\
b(u_n,u_1) & \cdots & b(u_n,u_n) \end{pmatrix}
Que sabemos es la matriz de $b$ respecto a $\beta$.

$\square$

Proposición (Teorema de representación de Riesz)

Sea $V$ un espacio euclidiano (espacio vectorial sobre $\mathbb{R}$ de dimensión finita) con producto interno $<,>$. La función $\varphi_{<,>}: V \rightarrow V^*$ es un isomorfismo.

Demostración

Empecemos con la inyectividad, sea $y \in V$ tal que $\varphi_{<,>}(y)=\overline{0}$ donde $\overline{0}$ es la función constante 0, dado esto, tenemos que para cualquier $x \in V$
\begin{align*} \varphi_{<,>}(y)(x)=<x,y>=0 \end{align*}
Esto aplica en particular para sí mismo, por lo que
\begin{align*} \varphi_{<,>}(y)(y)=<y,y>=0 \end{align*}
Como $<,>$ es un producto interior, esto implica que $y=0$
Por lo que $ker(\varphi_{<,>})=\{0\}$, por lo que $\varphi_{<,>}$ es inyectiva.

Aparte, veamos que es lineal, calculemos $\varphi_{<,>}(\lambda a+b)$ con $\lambda \in \mathbb{R}$ y $a,b \in V$.
\begin{align*} \varphi_{<,>}(\lambda a + b)=<\cdot , \lambda a+ b> \end{align*}
calculando esto para cualquier $x \in V$
\begin{align*} \varphi_{<,>}(\lambda a + b)(x)=<x , \lambda a + b> \end{align*}
y sabemos que $<,>$ es lineal en la segunda entrada por lo que
\begin{align*} <x , \lambda a + b>=\lambda<x , a> + < x , b >=\lambda\varphi_{<,>}(a)(x)+\varphi_{<,>}(b)(x) \end{align*}
Por lo que
\begin{align*} \varphi_{<,>}(\lambda a + b)=\lambda\varphi_{<,>}(a)+\varphi_{<,>}(b) \end{align*}
Lo por lo tanto $\varphi_{<,>}$ es lineal, finalmente, que $\varphi_{<,>}$ sea inyectiva, lineal y que $dim(V)=dim(V^*)$ implica que $\varphi_{<,>}$ es un isomorfismo.

$\square$

Ortogonalidad

Definición

Sea $V$ y $b$ una forma bilineal en $V$.

  • Dos vectores $x,y \in V$ serán ortogonales (respecto a $b$) si $b(x,y)=0$.
  • Sea $S \subseteq V$ el conjunto ortogonal de $S$ ($S^{\bot}$) es
    \begin{align*} S^{\bot}=\{v \in V : \forall s \in S, b(s,v)=0 \}.\end{align*}
  • $S,T \subseteq V$ serán ortogonales si S \subseteq $T^{\bot}$.

Observación (Teorema de Pitágoras)

Supongamos que $<,>$ es un producto interno en $V$ con $||\cdot||$ su norma asociada (es decir $||x||=\sqrt{<x,x>}$), entonces $x,y \in V$ son ortogonales si y solo si
\begin{align*} ||x+y||^2=||x||^2+||y||^2 \end{align*}
Demostración

Se sigue directamente de la identidad
\begin{align*} ||x+y||^2=||x||^2+2<x,y>||y||^2 \end{align*}

$\square$

Proposición

Sea $V$ un espacio euclidiano y $W \subseteq V$, entonces $W \oplus W^{\bot} = V$, en particular
\begin{align*} dim(W) + dim(W^{\bot}) = dim(V) \end{align*}
Y $(W^{\bot})^{\bot}=W$

Probaremos de hecho algo aún más fuerte.

Proposición

Sea $V$ con producto interno y $W \subseteq V$ de dimensión finita. Entonces
\begin{align*} W \oplus W^{\bot} = V\end{align*}
Más aún $(W^{\bot})^{\bot}=W$

Demostración

Sea $<,>$ el producto interno de $V$, si tenemos que $x \in W \cap W^{\bot}$ tenemos que $x$ es ortogonal a $x$ por lo que
\begin{align*} <x,x>=0\end{align*}
lo que implica que $x=0$, por lo tanto $W \cap W^{\bot}= \{0\}$.

Por otro lado, sea $x \in V$ un vector cualquiera, podemos definir $f:W \rightarrow \mathbb{R}$ tal que $f(y):<x,y>$ que sabemos es una función lineal por lo que $f \in V^*$ como $W$ es de dimensión finita y tiene un producto interno (heredado de V) este cumple las hipótesis del teorema de representación de Riesz, así, sabemos que existe una única $z \in W$ tal que $f(y)=<z,y>$ para cualquier $y \in W$ de esta manera
\begin{align*} 0=f(y)-f(y)=<x,y>-<z,y>=<x-z,y>\end{align*}
Para cualquier $y \in W$ por lo que $x-z =w \in W^{\bot}$ entonces
\begin{align*} x=w+z\end{align*}
con $w \in W^{\bot}$ y $z \in W$, por lo tanto
\begin{align*} W + W^{\bot} = V\end{align*}
Y esto con el párrafo anterior implican que
\begin{align*} W \oplus W^{\bot} = V.\end{align*}

$\square$

Así la proposición más débil, se sigue directamente de esta, con la parte acerca de la dimensión implicada debido a que $W$ y $W^{\bot}$ están en posición de suma directa.

Definición

Sea $V$ con producto interno y $W \subseteq V$ de dimensión finita, la proyección ortogonal hacia $W$ es
\begin{align*} p_W:V \rightarrow W \end{align*}
Con $p_W(x)$ el único vector en $W$ tal que $x-p_W(x) \in W^{\bot}$.

Definición

Sea $V$ euclidiano, una función lineal $p: V \rightarrow V$ será una proyección ortogonal si existe $W$ subespacio de $V$ tal que $p$ es la proyección ortogonal hacia $W$.

Proposición

Sea $V$ con producto interno $<.>$ y $|| \cdot ||$ su norma asociada. Sea $W \subseteq V$ un subespacio de dimensión finita y sea $v \in V$. Entonces
\begin{align*}||v-p_W(v)||= min_{x \in W} ||x-v|| \end{align*}
Más aún, $p_w(v)$ es el único elemento con esta propiedad.

Demostración

Sea $x \in W$ un elemento cualquiera de $W$, primero notemos que $x – p_W(v) \in W$ y $v-p_W(v) \in W^{\bot}$, por lo que estos dos son ortogonales, así calculemos
\begin{align*} ||x-v||^2=||(x-p_W(v))+(p_W(v)-v)||^2= ||(x-p_W(v))||^2+||(p_W(v)-v)||^2 \end{align*}
esta igualdad se cumple por el teorema de Pitágoras que fue una observación aquí arriba. Continuando con esta cadena
\begin{align*} ||x-v||^2=||(x-p_W(v))||^2+||(p_W(v)-v)||^2 \geq ||(p_W(v)-v)||^2 \end{align*}
Por lo tanto $\forall x \in W$ tenemos que $||x-v|| \geq ||(p_W(v)-v)||$ más aún por definición sabemos que $p_W(v) \in W$ por lo que
\begin{align*}||v-p_W(v)||= min_{x \in W} ||x-v|| \end{align*}
Para probar la unicidad, supongamos que existe $x’ \in W$ tal que
\begin{align*}||v-x’||= min_{x \in W} ||x-v|| \end{align*}
Utilizando el procedimiento anterior tenemos que
\begin{align*} ||(p_W(v)-v)||^2=||x’-v||^2=||(x’-p_W(v))||^2+||(p_W(v)-v)||^2 \geq ||(p_W(v)-v)||^2 \end{align*}
Por lo que se debe cumplir la desigualdad y notemos que esto pasa si y solo si
\begin{align*} 0=||(x’-p_W(v))||^2 \end{align*}
Que sucede si y solo si
\begin{align*} x’=p_W(v) \end{align*}
Por lo que $p_W(v)$ es único.

$\square$

utilizando este resultado, podemos dar una definición de distancia que coincida con las definiciones que tal vez has visto en otras materias

Definición

Con la notación del teorema anterior, la distancia de $v$ a $W$ es
\begin{align*}d(v,W)=||v-p_W(v)||= min_{x \in W} ||x-v|| \end{align*}

Más adelante

En esta entrada mencionamos bases, bases duales y conjuntos ortogonales, una de las costumbres en el estudio de las matemáticas es intentar combinar resultados y definiciones con el fin de obtener resultados nuevos, por lo que no te debe de sorprender que hagamos eso mismo en las siguientes entradas.

Empezaremos en la siguiente entrada un pequeño repaso de vases ortogonales y ortonormales, así como el teorema de Gram-Schmidt. Y como es costumbre, terminaremos esta unidad revisando resultados análogos a los de estas dos entradas, pero esta vez para espacios vectoriales complejos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. ¿Podemos definir a \begin{align*} \varphi_b: V \rightarrow V^* \qquad \text{tal que} \qquad \varphi_b(x)=b(x, \cdot )? \end{align*} ¿Cambia algo en los resultados vistos?
  2. Demuestra sin utilizar la versión más fuerte de este resultado que dado $V$ un espacio euclidiano y $W \subseteq V$, entonces $W \oplus W^{\bot} = V$, en particular
    \begin{align*} dim(W) + dim(W^{\bot}) = dim(V) \end{align*} Y $(W^{\bot})^{\bot}=W$. ¿Es necesaria la hipótesis de que $W$ sea de dimensión finita?
  3. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$ encuentra a $W^{\bot}$ y define la proyección ortogonal hacia $W$, $p_W$.
  4. Encuentra el vector en $Span((1,2,1), (-1,3,-4))$ que es el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  5. Sea $V$ un espacio euclidiano y $T : V \rightarrow V $ una transformación lineal tal que $T^2=T$ prueba que T es una proyección ortogonal si y solo si $\forall x,y \in V$ $<T(x),y>=<x,T(y)>$.

Entradas relacionadas