Archivo de la etiqueta: teorema de Riesz

Álgebra Lineal II: Ortogonalidad en espacios euclideanos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, cuando hablamos del espacio dual de un espacio vectorial, definimos qué quería decir que una forma lineal y un vector fueran ortogonales. Esa noción de ortogonalidad nos ayudó a definir qué era un hiperplano de un espacio vectorial y a demostra que cualquier subespacio de dimensión $k$ de un espacio de dimensión $n$ podía ponerse como intersección de $n-k$ hiperplanos.

Hay otra noción de ortogonalidad en álgebra lineal que también ya discutimos en el primer curso: la ortogonalidad de parejas de vectores con respecto a un producto interior. En el primer curso vimos esta noción muy brevemente. Lo que haremos ahora es profundizar en esta noción de ortogonalidad. De hecho, gracias a las herramientas que hemos desarrollado podemos conectar ambas nociones de ortogonalidad.

Esta teoría la veremos de manera explícita en el caso real en la entrada. El caso en $\mathbb{C}$ queda esbozado en los ejercicios.

Definición de ortogonalidad

Comenzamos con las siguientes definiciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos vectores $x,y$ en $V$ son ortogonales (con respecto a $b$) si $b(x,y)=0$.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Sea $S$ un subconjunto de vectores de $V$. El conjunto ortogonal de $S$ (con respecto a $b$) consiste de todos aquellos vectores en $V$ que sean ortogonales a todos los vectores de $S$. En símbolos:

$$S^{\bot}:=\{v \in V : \forall s \in S, b(s,v)=0.$$

Es un buen ejercicio verificar que $S^\bot$ siempre es un subespacio de $V$. Finalmente, definimos la ortogonalidad de conjuntos.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos subconjuntos $S$ y $T$ son ortogonales (con respecto a $b$) si $S \subseteq T^{\bot}$.

En otras palabras, estamos pidiendo que todo vector de $S$ sea ortogonal a todo vector de $T$.

Observación. Si tenemos un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$, entonces tenemos la fórmula $$\norm{x+y}^2=\norm{x}^2+2\langle x,y\rangle +\norm{y}^2.$$

De esta forma, $x$ y $y$ son ortogonales si y sólo si $$\norm{x+y}^2= \norm{x}^2+\norm{y}^2.$$ Podemos pensar esto como una generalización del teorema de Pitágoras.

Descomposición en un subespacio y su ortogonal

Comenzamos esta sección con un resultado auxiliar.

Teorema. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$V=W\oplus W^\bot.$$

Demostración. Sea $\langle \cdot,\cdot \rangle$ el producto interior de $V$. Para demostrar la igualdad que queremos, debemos mostrar que $W$ y $W^\bot$ están en posición de suma directa y que $V=W+W^\bot$.

Para ver que $W$ y $W^\bot$ están en posición de suma directa, basta ver que el único elemento en la intersección es el $0$. Si $x$ está en dicha intersección, entonces $\langle x, x \rangle =0$, pues por estar en $W^\bot$ debe ser ortogonal a todos los de $W$, en particular a sí mismo. Pero como tenemos un producto interior, esto implica que $x=0$.

Tomemos ahora un vector $v\in V$ cualquiera. Definamos la forma lineal $f:W\to \mathbb{R}$ tal que $f(u)=\langle u, v \rangle$. Por el teorema de representación de Riesz aplicado al espacio vectorial $V$ y a su forma lineal $f$, tenemos que existe un (único) vector $x$ en $W$ tal que $f(u)=\langle u, x \rangle$ para cualquier $u$ en $W$.

Definamos $y=v-x$ y veamos que está en $W^\bot$. En efecto, para cualquier $u$ en $W$ tenemos:

\begin{align*}
\langle u, y\rangle &= \langle u, v-x \rangle\\
&=\langle u, v \rangle – \langle u , x \rangle\\
&=f(u)-f(u)\\
&=0.
\end{align*}

De esta manera, podemos escribir $v=x+y$ con $x\in W$ y $y\in W^\bot$.

$\square$

En particular, el teorema anterior nos dice que la unión disjunta de una base de $W$ y una base de $W^\bot$ es una base de $V$. Por ello, tenemos el siguiente corolario.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$\dim{W}+\dim{W^\bot}=\dim{V}.$$

Tenemos un corolario más.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$(W^\bot)^\bot=W.$$

Demostración. Tanto $W$ como $(W^\bot)^\bot$ son subespacios de $V$. Tenemos que $W\subseteq (W^\bot)^\bot$ pues cualquier elemento de $W$ es ortogonal a cualquier elemento de $W^\bot$. Además, por el corolario anterior tenemos:

\begin{align*}
\dim{W}+\dim{W^\bot}&=\dim{V}\\
\dim{W^\bot}+\dim{(W^\bot)^\bot}&=\dim{V}.
\end{align*}

De aquí se sigue que $\dim{W} = \dim{(W^\bot)^\bot}$. Así, la igualdad que queremos de subespacios se sigue si un subespacio está contenido en otro de la misma dimensión, entonces deben de ser iguales.

$\square$

Proyecciones ortogonales

Debido al teorema anterior, podemos dar la siguiente definición.

Definición. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. La proyección ortogonal hacia $W$ es la transformación lineal $p_W:V\to W$ tal que a cada $v$ en $V$ lo manda al único vector $p_W(v)$ tal que $x-p_W(v)$ está en $W^\bot$.

Dicho en otras palabras, para encontrar a la proyección de $v$ en $W$ debemos escribirlo de la forma $v=x+y$ con $x\in W$ y $y\in W^\bot$ y entonces $p_W(v)=x$.

Distancia a subespacios

Cuando definimos la distancia entre conjuntos que tienen más de un punto, una posible forma de hacerlo es considerando los puntos más cercanos en ambos conjuntos, o en caso de no existir, el ínfimo de las distancias entre ellos. Esto da buenas propiedades para la distancia. En particular, cuando queremos definir la distancia de un punto $x$ a un conjunto $S$ hacemos lo siguiente.

Definición. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $S$ un subconjunto de $V$ y $v$ un vector de $V$. Definimos la distancia de $v$ a $S$ como la menor posible distancia de $v$ hacia algún punto de $S$. En símbolos:

$$d(v,S):=\inf_{s\in S} d(v,s).$$

En general, puede ser complicado encontrar el punto que minimiza la distancia de un punto a un conjunto. Sin embargo, esto es más sencillo de hacer si el conjunto es un subespacio de un espacio con producto interior: se hace a través de la proyección al subespacio. Esto queda reflejado en el siguiente resultado.

Proposición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $W$ un subespacio de $V$ y sea $v$ un vector en $V$. Entonces $$d(v,W)=\norm{v-p_W(v)}.$$

Más aún, $p_W(v)$ es el único punto en $W$ para el cual se alcanza la distancia mínima.

Demostración. Por el teorema de descomposición en un subespacio y su ortogonal, sabemos que podemos escribir $v=x+y$ con $x$ en $W$ y con $y$ en $W^\bot$.

Tomemos cualquier elemento $w$ en $W$. Tenemos que $x-w$ está en $W$ y que $y$ está en $W^\bot$. Así, usando el teorema de Pitágoras tenemos que:

\begin{align*}
\norm{v-w}^2&=\norm{y+(x-w)}^2\\
&=\norm{y}^2+\norm{x-w}^2\\
&\geq \norm{y}^2\\
&=\norm{v-x}^2.
\end{align*}

Esto muestra que $\norm{v-w}\geq \norm{v-x}$. Como $x\in W$, esto muestra que la distancia de $v$ a $W$ en efecto se alcanza con $x=p_W(v)$, pues cualquier otra distancia es mayor o igual.

La igualdad en la cadena anterior de alcanza si y sólo si $\norm{x-w}^2=0$, lo cual sucede si y sólo si $x=w$, como queríamos.

$\square$

Más adelante…

En la siguiente entrada recordaremos varias de las ventajas que tiene contar con una base de un espacio vectorial en la que cualesquiera dos vectores sean ortogonales entre sí. Y en la entrada después de esa, recordaremos algunas hipótesis bajo las cuales podemos garantizar encontrar una de esas bases.

Tarea moral

  1. Resuelve los siguientes ejercicios:
    1. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$. Encuentra a $W^{\bot}$ y define la proyección ortogonal $p_W$ hacia $W$.
    2. Encuentra el vector en $\text{Span}((1,2,1), (-1,3,-4))$ que sea el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  2. Sea $V$ un espacio euclidiano y $T : V \to V $ una transformación lineal tal que $T^2=T$. Prueba que T es una proyección ortogonal si y solo si para cualesquiera $x$ y $y$ en $V$ se tiene que $$\langle T(x),y\rangle =\langle x,T(y)\rangle.$$
  3. Resuelve los siguientes ejercicios:
    1. Demuestra que una proyección ortogonal reduce la norma, es decir, que si $T$ es una proyección ortogonal, entonces $\norm{T(v)}\leq \norm{v}$.
    2. Prueba que una proyección ortogonal únicamente puede tener como eigenvalores a $0$ ó a $1$.
  4. Demuestra que la composición de dos proyecciones ortogonales no necesariamente es una proyección ortogonal.
  5. En el teorema de descomposición, ¿es necesaria la hipótesis de tener un producto interior? ¿Qué sucede si sólo tenemos una forma bilineal, simétrica y positiva?

Entradas relacionadas

Álgebra Lineal II: Dualidad y representación de Riesz en espacios euclideanos

Por Diego Ligani Rodríguez Trejo

Introducción

En Álgebra Lineal I introdujimos el concepto de espacio dual. A grandes rasgos, era un espacio vectorial en donde estaban todas las formas lineales de un espacio hacia el campo en donde estaba definido. Por otro lado, en entradas recientes hicimos un recordatorio de qué era un producto interior. Lo que haremos ahora es relacionar ambos conceptos. Esta relación no debería ser tan inesperada, pues finalmente un producto interior es una forma bilineal, y al fijar una entrada de una forma bilineal obtenemos una forma lineal.

Lo primero que haremos es ver cómo conectar la matiz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

Nos enfocaremos únicamente a los resultados en el caso lineal. Los casos en el caso complejo son muy parecidos, y se exploran en los ejercicios.

La matriz de una transformación que «crea» formas lineales

Sea $V$ un espacio vectorial real con una forma bilineal $b$. A partir de $b$ podemos construir muchas formas lineales, a través de la función $\varphi_b:V\to V^\ast$ que asigna a cada vector $y$ de $V$ a la forma lineal $\varphi_b(y):=b(\cdot,y)$.

Podemos pensar a $\varphi_b$ como «una maquinita que genera formas lineales» que depende del vector $b$. Claramente $\varphi_b(y)$ es lineal, pues $b$ es lineal en su primera entrada. Y también claramente $\varphi_b$ es lineal, pues $b$ es lineal en su segunda entrada. En cierto sentido, la matriz correspondiente a la forma bilineal $b$ coincide con la matriz correspondiente a $\varphi_b$.

Proposición. Sea $\beta$ una base de un espacio vectorial $V$ de dimensión finita sobre los reales. Sea $\beta^\ast$ su base dual. Tomemos $b$ una forma bilineal en $V$. La matriz de $\varphi_b$ con respecto a las bases $\beta$ y $\beta’$ es igual a la matriz de $b$ con respecto a la base $\beta$.

Demostración. Llamemos a los elementos de la base $\beta$ como $u_1,\ldots,u_n$ y a los de la base $\beta^ \ast$ como $l_1,\ldots,l_n$. Para encontrar la $j$-ésima columna de la matriz de $\varphi_b$ con respecto a $\beta$ y $\beta^\ast$, debemos expresar a cada $\varphi_b(u_j)$ como combinación lineal de los elementos $l_1,\ldots,l_n$. Para hacer esto, es más sencillo ver cómo es $\varphi_b(u_j)(x)$ para cada $x\in V$ y usar que los $l_i$ «leen» las coordenadas en la base $\beta$.

Para ello, tomemos $x=\sum_{i=1}^nu_ix_i$. Tenemos lo siguiente:

\begin{align*}
\varphi_b(u_j)(x)&=b(\sum_{i=1}^nu_ix_i,u_j)\\
&= \sum_{i=1}^nx_ib(u_i,u_j)\\
&= \sum_{i=1}^n l_i(x) b(u_i,u_j).
\end{align*}

Como esto sucede para cada vector $x$, tenemos entonces que $$\varphi_b(u_j)=\sum_{i=1}^n b(u_i,u_j) l_i.$$

Pero esto es justo lo que queremos. Las entradas de la $j$-ésima columna de la matriz que representa a $\varphi_b$ son entonces los coeficientes $b(u_1,u_j),b(u_2,u_j),\ldots,b(u_n,u_j)$. Pero esas son justo las entradas de la $j$-ésima columna de la matriz que representa a $b$ en la base $\beta$.

$\square$

Teorema de representación de Riesz

La sección anterior explica cómo de una forma bilineal $b$ podemos obtener una «máquinita» que genera formas lineales $\varphi_b$. Si $b$ es mucho más especial (un producto interior), entonces esta maquinita es «más potente», en el sentido de que puede generar cualquier forma lineal del espacio. A este resultado se le conoce como el teorema de representación de Riesz. Aunque sus versiones más generales incluyen ciertos espacios de dimensión infinita, y el enunciado dice algo más general, en este curso nos limitaremos a enunciar y demostrar la versión en espacios vectoriales de dimensión finita.

Teorema (teorema de representación de Riesz). Sea $V$ un espacio euclidiano con producto interno $\langle \cdot, \cdot \rangle$. La función $\varphi_{\langle \cdot, \cdot \rangle}: V \rightarrow V^\ast$ es un isomorfismo.

Demostración. Debemos probar que $\varphi_{\langle \cdot, \cdot \rangle}$ es una transformación lineal biyectiva hacia $V^\ast$. Como mencionamos en la sección anterior, cada $\varphi_{\langle \cdot, \cdot \rangle}(y)$ es una forma lineal pues el producto interior es lineal en su primera entrada. Además, $\varphi_{\langle \cdot, \cdot \rangle}$ es una transformación lineal pues el producto interior es lineal en su segunda entrada.

Por los resultados que se vieron en el curso de Álgebra Lineal I, se tiene que $\dim V = \dim V^\ast$. De esta manera, basta ver que $\varphi_{\langle\cdot,\cdot \rangle}$ es inyectiva. Y para ello, basta ver que el único vector $y$ tal que $\varphi_{\langle \cdot, \cdot \rangle}(y)$ es la forma lineal cero es $y=0$.

Supongamos entonces que $\varphi_{\langle \cdot, \cdot \rangle}(y)$ es la forma lineal cero. Si este es el caso, entonces para cualquier $x$ en $V$ tendríamos que $\langle x, y \rangle = 0$. En particular, esto sería cierto para $x=y$, de modo que $\langle y, y \rangle =0$. Pero como el producto interior es positivo definido, esto implica que $y=0$.

Esto muestra que $\varphi_{\langle \cdot, \cdot \rangle}$ es inyectiva. Como es transformación lineal entre espacios de la misma dimensión, entonces es biyectiva.

$\square$

Ejemplo de representación de Riesz

Las operaciones que se hacen para calcular una forma lineal no siempre son sencillas. Lo que nos dice el teorema de representación de Riesz es que podemos tomar un «vector representante» de una forma lineal para que evaluarla corresponda «simplemente» a hacer un producto interior. Si es fácil hacer ese producto interior, entonces podemos simplificar la evaluación de la forma lineal.

Ejemplo. Tomemos $V$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más $2$. Hemos visto con anterioridad que $\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}$ dado por: $$\langle p, q \rangle = p(0)q(0)+p(1)q(1)+p(2)q(2) $$ es un producto interior.

Hemos visto también que $I:V\to \mathbb{R}$ dada por $I(p)=\int_0^1 p(x)\, dx$ es una forma lineal. El teorema de representación de Riesz nos garantiza que $I$, que es una integral definida, debería poder de «representarse» como el producto interior con un polinomio especial $q$. Esto parecen ser buenas noticias: para $I(p)$ necesitamos hacer una integral. Para hacer el producto interior, sólo son unas multiplicaciones y sumas.

El polinomio «mágico» que funciona en este caso es el polinomio $q(x)=-\frac{x^2}{2}+\frac{3}{4}x+\frac{5}{12}$. Puedes verificar que:

\begin{align*}
q(0)&=\frac{5}{12}\\
q(1)&=\frac{2}{3}\\
q(2)&=-\frac{1}{12}.
\end{align*}

De esta manera, si hacemos el producto interior con cualquier otro polinomio $p(x)=ax^2+bx+c$ obtenemos:

\begin{align*}
\langle p, q \rangle &= p(0)q(0) + p(1)q(1)+p(2)q(2)\\
&= c\cdot \frac{5}{12} + (a+b+c)\cdot \frac{2}{3} + (4a+2b+c) \cdot \left(-\frac{1}{12}\right)\\
&=\frac{a}{3}+\frac{b}{2}+c.
\end{align*}

Si por otro lado hacemos la integral, obtenemos:

\begin{align*}
\int_0^1 ax^2 + bx + c \, dx &= \left. \left(\frac{ax^3}{3}+\frac{bx^2}{2}+cx \right)\right|_0^1\\
&=\frac{a}{3}+\frac{b}{2}+c.
\end{align*}

En ambos casos se obtiene lo mismo.

$\square$

Se podría tener una discusión más profunda para explicar cómo se obtuvo el polinomio $q$ del ejemplo anterior. Sin embargo, dejaremos la experimentación de esto para los ejercicios. Por ahora, la mayor ventaja que le encontraremos al teorema de representación de Riesz es la garantía teórica de que dicho vector que representa a una forma lineal dado un producto interior siempre existe en los espacios euclideanos.

Más adelante…

Hemos enunciado y demostrado una versión del teorema de Riesz para espacios euclieanos. Este teorema tiene versiones más generales en el contexto de espacios de Hilbert. Así mismo, una versión más extensa del teorema de Riesz nos dice cómo es la norma del vector que representa a un producto interior. Estos resultados son muy interesantes, pero quedan fuera del alcance de este curso. Es posible que los estudies si llevas un curso de análisis funcional.

Un poco más adelante, en la Unidad 3, usaremos el teorema de representación de Riesz para definir a las transformaciones adjuntas, a las simétricas y a las ortogonales. Por ahora, nos enfocaremos en estudiar más definiciones y propiedades en espacios euclideanos. La siguiente definición que repasaremos es la de ortogonalidad para vectores y para espacios vectoriales. Es un concepto que se estudia por encima en Álgebra Lineal I, pero ahora tenemos herramientas para poder decir más.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. ¿Podemos definir a $\varphi_b: V \rightarrow V^*$ en la otra entrada? Es decir, como la función tal que $\varphi_b(x)=b(x,\cdot)$? Si hacemos esto, ¿cambian en algo los resultados que vimos?
  2. Considera el espacio vectorial de matrices en $M_n(\mathbb{R})$. Anteriormente vimos que $b(A,B)=\text{tr}(\text{ }^t A B)$ es un producto interior y que sacar traza es una forma lineal. De acuerdo al teorema de representación de Riesz, debe haber una matriz $T$ que representa a la traza, es decir, tal que $\text{tr}(A)=b(A,T)$. ¿Quién es esta matriz $T$? Ahora, si tomamos la transformación que manda una matriz $A$ a la suma de las entradas en su antidiagonal, esto también es una forma lineal. ¿Quién es la matriz que representa a esta forma lineal con el producto interior dado?
  3. Enuncia y demuestra un teorema de igualdad de formas matriciales para el caso de formas sesquilineales. ¿Necesitas alguna hipótesis adicional?
  4. Enuncia y demuestra un teorema de representación de Riesz para espacios hermitianos. Deberás tener cuidado, pues el vector que representa a una forma lineal tendrá que estar en la coordenada que conjuga escalares. ¿Por qué?
  5. ¿Será cierto el teorema de representación de Riesz si la forma bilineal no es un producto interior? Identifica dónde falla la prueba que dimos. Luego, construye un contraejemplo para ver que la hipótesis de que $b$ sea positiva definida es fundamental. Es decir, encuentra un espacio vectorial $V$ real con una forma bilineal simétrica y positiva $b$, en donde exista una forma lineal $l$ tal que sea imposible encontrar un vector $y$ tal que para todo $x$ en $V$ se tenga que $l(x)=b(x,y)$. Sugerencia. Parace que hay muchos cuantificadores. Intenta dar un contraejemplo lo más sencillo posible, por ejemplo, en $\mathbb{R}^2$.

Entradas relacionadas