Archivo de la etiqueta: sistemas de ecuaciones

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Álgebra Superior I: Los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$

Por Eduardo García Caballero

Introducción

A lo largo de esta unidad nos hemos enfocado en estudiar los vectores, las operaciones entre estos y sus propiedades. Sin embargo, hasta ahora solo hemos ocupado una definición provisional de vectores —listas ordenadas con entradas reales—, pero no hemos dado una definición formal de estos. En esta entrada definiremos qué es un espacio vectorial y exploraremos algunas de las propiedades de dos ejemplos importantes de espacios vectoriales: $\mathbb{R}^2$ y $\mathbb{R}^3$-

Las propiedades de espacio vectorial

En entradas anteriores demostramos que los pares ordenados con entradas reales (es decir, los elementos de $\mathbb{R}^2$), en conjunto con la suma entrada a entrada y el producto escalar, cumplen las siguientes propiedades:

1. La suma es asociativa:
\begin{align*}
(u+v)+w &= ((u_1,u_2) + (v_1,v_2)) + (w_1,w_2) \\
&= (u_1,u_2) + ((v_1,v_2) + (w_1,w_2)) \\
&= u+(v+w).\end{align*}

2. La suma es conmutativa:
\begin{align*}u+v &= (u_1,u_2) + (v_1,v_2) \\&= (v_1,v_2) + (u_1,u_2) \\&= v+u.\end{align*}

3. Existe un elemento neutro para la suma:
\begin{align*}
u + 0 &= (u_1,u_2) + (0,0) \\&= (0,0) + (u_1,u_2) \\&= (u_1,u_2) \\&= u.
\end{align*}

4. Para cada par ordenado existe un elemento inverso:
\begin{align*}
u + (-u) &= (u_1,u_2) + (-u_1,-u_2) \\&= (-u_1,-u_2) + (u_1,u_2) \\&= (0,0) \\&= 0.
\end{align*}

5. La suma escalar se distribuye bajo el producto:
\begin{align*}
(r+s)u &= (r+s)(u_1,u_2) \\&= r(u_1,u_2) + s(u_1,u_2) \\&= ru + su.
\end{align*}

6. La suma de pares ordenados se distribuye bajo el producto escalar:
\begin{align*}
r(u + v) &= r((u_1,u_2) + (v_1,v_2)) \\&= r(u_1,u_2) + r(v_1,v_2) \\&= ru + rv.
\end{align*}

7. El producto escalar es compatible con el producto de reales:
\[
(rs)u = (rs)(u_1,u_2) = r(s(u_1,u_2)) = r(su).
\]

8. Existe un elemento neutro para el producto escalar, que justo es el neutro del producto de reales:
\[
1u = 1(u_1,u_2) = (u_1,u_2) = u.
\]

Cuando una colección de objetos matemáticos, en conjunto con una operación de suma y otra operación de producto, cumple las ocho propiedades anteriormente mencionadas, decimos que dicha colección forma un espacio vectorial. Teniendo esto en consideración, los objetos matemáticos que pertenecen a la colección que forma el espacio vectorial los llamaremos vectores.

Así, podemos ver que los pares ordenados con entradas reales, en conjunto con la suma entrada a entrada y el producto escalar, forman un espacio vectorial, al cual solemos denominar $\mathbb{R}^2$. De este modo, los vectores del espacio vectorial $\mathbb{R}^2$ son exactamente los pares ordenados con entradas reales.

Como recordarás, anteriormente también demostramos que las ternas ordenadas con entradas reales, en conjunto con su respectiva suma entrada a entrada y producto escalar, cumplen las ocho propiedades antes mencionadas (¿puedes verificarlo?). Esto nos indica que $\mathbb{R}^3$ también es un espacio vectorial, y sus vectores son las ternas ordenadas con entradas reales. En general, el que un objeto matemático se pueda considerar o no como vector dependerá de si este es elemento de un espacio vectorial.

Como seguramente sospecharás, para valores de $n$ distintos de 2 y de 3 también se cumple que $\mathbb{R}^n$ forma un espacio vectorial. Sin embargo los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$ son muy importantes pues podemos visualizarlos como el plano y el espacio, logrando así describir muchas de sus propiedades. Por esta razón, en esta entrada exploraremos algunas de las principales propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$.

Observación. Basándonos en la definición, el hecho de que una colección de elementos se pueda considerar o no como espacio vectorial depende también a las operaciones de suma y producto. Por esta razón, es común (y probablemente más conveniente) encontrar denotado el espacio vectorial $\mathbb{R}^2$ como $(\mathbb{R}^2,+,\cdot)$. Más aún, a veces será importante destacar a los elementos escalares y neutros, encontrando el mismo espacio denotado como $(\mathbb{R}^2, \mathbb{R}, +, \cdot, 0, 1)$. Esto lo veremos de manera más frecuente cuando trabajamos con más de un espacio vectorial, sin embargo, cuando el contexto nos permite saber con qué operaciones (y elementos) se está trabajando, podemos omitir ser explícitos y denotar el espacio vectorial simplemente como $\mathbb{R}^2$ o $\mathbb{R}^3$.

Combinaciones lineales

Como vimos en entradas anteriores, la suma de vectores en $\mathbb{R}^2$ la podemos visualizar en el plano como el resultado de poner una flecha seguida de otra, mientras que el producto escalar lo podemos ver como redimensionar y/o cambiar de dirección una flecha.

En el caso de $\mathbb{R}^3$, la intuición es la misma, pero esta vez en el espacio.

Si tenemos varios vectores, podemos sumar múltiplos escalares de ellos para obtener otros vectores. Esto nos lleva a la siguiente definición.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos una combinación lineal de estos vectores como el resultado de la operación
\[
r_1v_1 + r_2v_2 + \cdots + r_nv_n,
\]
donde $r_1, \ldots, r_n$ son escalares.

Ejemplo. En $\mathbb{R}^2$, las siguientes son combinaciones lineales:
\begin{align*}
4(9,-5) + 7(-1,0) + 3(-4,2) &= (17,-14), \\[10pt]
5(1,0) + 4(-1,-1) &= (1,-4), \\[10pt]
-1(1,0) + 0(-1,-1) &= (-1,0), \\[10pt]
5(3,2) &= (15,10).
\end{align*}
De este modo podemos decir que $(17,-14)$ es combinación lineal de los vectores $(9,-5)$, $(-1,0)$ y $(-4,2)$; los vectores $(1,-4)$ y $(-1,0)$ son ambos combinación lineal de los vectores $(1,0)$ y $(-1,-1)$; y $(15,10)$ es combinación lineal de $(3,2)$.

Las combinaciones lineales también tienen un significado geométrico. Por ejemplo, la siguiente figura muestra cómo se vería que $(1,-4)$ es combinación lineal de $(1,0)$ y $(-1,-1)$:

$\triangle$

Ejemplo. En el caso de $\mathbb{R}^3$, observamos que $(7,13,-22)$ es combinación lineal de los vectores $(8,1,-5)$, $(1,0,2)$ y $(9,-3,2)$, pues
\[
4(8,1,-5) + 2(1,0,2) + (-3)(9,-3,2) = (7,13,-22).
\]

$\triangle$

Espacio generado

La figura de la sección anterior nos sugiere cómo entender a una combinación lineal de ciertos vectores dados. Sin embargo, una pregunta natural que surge de esto es cómo se ve la colección de todas las posibles combinaciones lineales de una colección de vectores dados.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos al espacio generado por ellos como el conjunto de todas sus posibles combinaciones lineales. Al espacio generado por estos vectores podemos encontrarlo denotado como $\operatorname{span}(v_1, \ldots, v_n)$ o $\langle v_1, \ldots, v_n \rangle$ (aunque esta última notación a veces se suele dejar para otra operación del álgebra lineal).

¿Cómo puede verse el espacio generado por algunos vectores? Puede demostrarse que en el caso de $\mathbb{R}^2$ tenemos los siguientes casos.

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de 0 y todos los vectores se encuentran alineados. La recta será precisamente aquella formada por los múltiplos escalares de $u$.
  • Todo $\mathbb{R}^2$: esto sucede si al menos dos vectores $u$ y $v$ de nuestro conjunto no son cero y además no están alineados. Intenta convencerte que en efecto en este caso puedes llegar a cualquier vector del plano sumando un múltiplo de $u$ y uno de $v$.

En $\mathbb{R}^3$, puede mostrarse que el espacio generado se ve como alguna de las siguientes posibilidades:

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de $0$ y todos los vectores se encuentran alineados con $u$. La recta consiste precisamente de los reescalamientos de $u$.
  • Un plano: esto sucede si al menos dos vectores $u$ y $v$ no son cero y no están alineados, y además todos los demás están en el plano generado por $u$ y $v$ estos dos vectores.
  • Todo $\mathbb{R}^3$: esto sucede si hay tres vectores $u$, $v$ y $w$ que cumplan que ninguno es el vector cero, no hay dos de ellos alineados, y además el tercero no está en el plano generado por los otros dos.

Muchas veces no sólo nos interesa conocer la forma del espacio generado, sino también obtener una expresión que nos permita conocer qué vectores pertenecen a este. Una forma en la que podemos hacer esto es mediante ecuaciones.

Ejemplo. Por ejemplo, observemos que el espacio generado el vector $(3,2)$ en $\mathbb{R}^2$ corresponde a los vectores $(x,y)$ que son de la forma
\[
(x,y) = r(2,3),
\]
donde $r \in \mathbb{R}$ es algún escalar. Esto se cumple si y sólo si
\[
(x,y) = (2r,3r),
\]
lo cual a su vez se cumple si y sólo si $x$ y $y$ satisfacen el sistema de ecuaciones
\[
\begin{cases}
x = 2r \\
y = 3r
\end{cases}.
\]
Si despejamos $r$ en ambas ecuaciones y las igualamos, llegamos a que
\[
\frac{x}{2} = \frac{y}{3},
\]
de donde podemos expresar la ecuación de la recta en su forma homogénea:
\[
\frac{1}{2}x – \frac{1}{3}y = 0;
\]
o bien en como función de $y$:
\[
y = \frac{3}{2}x.
\]

$\triangle$

La estrategia anterior no funciona para todos los casos, y tenemos que ser un poco más cuidadosos.

Ejemplo. El espacio generado por $(0,4)$ corresponde a todos los vectores $(x,y)$ tales que existe $r \in \mathbb{R}$ que cumple
\begin{align*}
(x,y) &= r(0,4) \\
(x,y) &= (0,4r),
\end{align*}
es decir,
\[
\begin{cases}
x = 0 \\
y = 4r
\end{cases}.
\]
En este caso, la única recta que satisface ambas ecuaciones es la recta $x = 0$, la cual no podemos expresar como función de $y$.

En la siguiente entrada veremos otras estrategias para describir de manera analítica el espacio generado.

$\triangle$

El saber si un vector está o no en el espacio generado por otros es una pregunta que se puede resolver con un sistema de ecuaciones lineales.

Ejemplo. ¿Será que el vector $(4,1,2)$ está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$? Para que esto suceda, necesitamos que existan reales $r$ y $s$ tales que $r(2,3,1)+s(1,1,1)=(4,1,2)$. Haciendo las operaciones vectoriales, esto quiere decir que $(2r+s,3r+s,r+s)=(4,1,2)$, de donde tenemos el siguiente sistema de ecuaciones:

$$\left\{\begin{matrix} 2r+s &=4 \\ 3r+s&=1 \\ r+s &= 2.\end{matrix}\right.$$

Este sistema no tiene solución. Veamos por qué. Restando la primera igualdad a la segunda, obtendríamos $r=1-4=-3$. Restando la tercera igualdad a la primera, obtendríamos $r=2-4=-2$. Así, si hubiera solución tendríamos la contradicción $-2=r=-3$. De este modo no hay solución.

Así, el vector $(4,1,2)$ no está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$. Geométricamente, $(4,1,2)$ no está en el plano en $\mathbb{R}^3$ generado por los vectores $(2,3,1)$ y $(1,1,1)$.

$\triangle$

Si las preguntas de espacio generado tienen que ver con sistemas de ecuaciones lineales, entonces seguramente estarás pensando que todo lo que hemos aprendido de sistemas de ecuaciones lineales nos servirá. Tienes toda la razón. Veamos un ejemplo importante.

Ejemplo. Mostraremos que cualquier vector en $\mathbb{R}^2$ está en el espacio generado por los vectores $(1,2)$ y $(3,-1)$. Para ello, tomemos el vector $(x,y)$ que nosotros querramos. Nos gustaría (fijando $x$ y $y$) poder encontrar reales $r$ y $s$ tales que $r(1,2)+s(3,-1)=(x,y)$. Esto se traduce al sistema de ecuaciones

$$\left \{ \begin{matrix} r+3s&=x\\2r-s&=y. \end{matrix} \right.$$

En forma matricial, este sistema es $$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Como la matriz $\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$ tiene determinante $1(-1)-(3)(2)=-7$, entonces es invertible. ¡Entonces el sistema siempre tiene solución única en $r$ y $s$ sin importar el valor de $x$ y $y$! Hemos con ello demostrado que cualquier vector $(x,y)$ es combinación lineal de $(1,2)$ y $(3,-1)$ y que entonces el espacio generado por ambos es todo $\mathbb{R}^2$.

$\triangle$

Independencia lineal

Mientras platicábamos en la sección anterior de las posibilidades que podía tener el espcio generado de un conjunto de vectores en $\mathbb{R}^2$ y $\mathbb{R}^3$, fuimos haciendo ciertas precisiones: «que ningún vector sea cero», «que nos vectores no estén alineados», «que ningún vector esté en los planos por los otros dos», etc. La intuición es que si pasaba lo contrario a alguna de estas cosas, entonces los vectores no podían generar «todo lo posible». Si sí se cumplían esas restricciones, entonces cierta cantidad de vectores sí tenía un espacio generado de la dimensión correspondiente (por ejemplo, $2$ vectores de $\mathbb{R}^3$ no cero y no alineados sí generan un plano, algo de dimensión $2$). Resulta que todas estas restricciones se pueden resumir en una definición muy importante.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), diremos que son linealmente independientes si es imposible escribir al vector $0$ como combinación lineal de ellos, a menos que todos los coeficientes de la combinación lineal sean iguales a $0$. En otras palabras, si sucede que $$r_1v_1 + r_2v_2 + \cdots + r_nv_n=0,$$ entonces forzosamente fue porque $r_1=r_2=\ldots=r_n=0$.

Puede mostrarse que si un conjunto de vectores es linealmente independiente, entonces ninguno de ellos se puede escribir como combinación lineal del resto de vectores en el conjunto. Así, la intuición de que «generan todo lo que pueden generar» se puede justificar como sigue: como el primero no es cero, genera una línea. Luego, como el segundo no es múltiplo del primero, entre los dos generarán un plano. Y si estamos en $\mathbb{R}^3$, un tercer vector quedará fuera de ese plano (por no ser combinación lineal de los anteriores) y entonces generarán entre los tres a todo el espacio.

La independencia lineal también se puede estudiar mediante sistemas de ecuaciones lineales.

Ejemplo. ¿Serán los vectores $(3,-1,-1)$, $(4,2,1)$ y $(0,-10,-7)$ linealmente independientes? Para determinar esto, queremos saber si existen escalares $r,s,t$ tales que $r(3,-1,-1)+s(4,2,1)+t(0,-10,-7)=(0,0,0)$ en donde al menos alguno de ellos no es el cero. Esto se traduce a entender las soluciones del siguiente sistema de ecuaciones:

$$\left\{ \begin{array} 33r + 4s &= 0 \\ -r +2s -10t &= 0 \\ -r + s -7t &= 0.\end{array} \right. $$

Podemos entender todas las soluciones usando reducción Gaussiana en la siguiente matriz:

$$\begin{pmatrix} 3 & 4 & 0 & 0 \\ -1 & 2 & -10 & 0 \\ -1 & 1 & -7 & 0 \end{pmatrix}.$$

Tras hacer esto, obtenemos la siguiente matriz:

$$\begin{pmatrix}1 & 0 & 4 & 0\\0 & 1 & -3 & 0\\0 & 0 & 0 & 0 \end{pmatrix}.$$

Así, este sistema de ecuaciones tiene a $t$ como variable libre, que puede valer lo que sea. De aquí, $s=3t$ y $r=-4t$ nos dan una solución. Así, este sistema tiene una infinidad de soluciones. Tomando por ejemplo $t=1$, tenemos $s=3$ y $r=-4$. Entonces hemos encontrado una combinación lineal de los vectores que nos da el vector $(0,0,0)$. Puedes verificar que, en efecto, $$(-4)(3,-1,-1)+3(4,2,1)+(0,-10,-7)=(0,0,0).$$

Concluimos que los vectores no son linealmente independientes.

$\triangle$

Si la única solución que hubiéramos obtenido es la $r=s=t=0$, entonces la conclusión hubiera sido que sí, que los vectores son linealmente independientes. También podemos usar lo que hemos aprendido de matrices y determinantes en algunos casos para poder decir cosas sobre la independencia lineal.

Ejemplo. Mostraremos que los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. ¿Qué sucede si una combinación lineal de ellos fuera el vector cero? Tendríamos que $r(2,3,1)+s(0,5,2)+t(0,0,1)=(0,0,0)$, que se traduce en el sistema de ecuaciones $$\left\{ \begin{array} 2r &= 0 \\ 3r + 5s &= 0 \\ r + 2s + t &= 0. \end{array}\right.$$

La matriz asociada a este sistema de ecuaciones es $\begin{pmatrix} 2 & 0 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & 1 \end{pmatrix}$, que por ser triangular inferior tiene determinante $2\cdot 5 \cdot 1 = 10\neq 0$. Así, es una matriz invertible, de modo que el sistema de ecuaciones tiene una única solución. Como $r=s=t$ sí es una solución, esta debe ser la única posible. Así, los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. Geométricamente, ninguno de ellos está en el plano hecho por los otros dos.

$\triangle$

Bases

Como vimos anteriormente, existen casos en los que el espacio generado por vectores en $\mathbb{R}^2$ (o $\mathbb{R}^3$) no genera a todo el plano (o al espacio). Por ejemplo, en ambos espacios vectoriales, el espacio generado por únicamente un vector es una recta. Esto también puede pasar aunque tengamos muchos vectores. Si todos ellos están alineados con el vector $0$, entonces su espacio generado sigue siendo una recta también. En la sección anterior platicamos que intuitivamente el problema es que los vectores no son linealmente independientes. Así, a veces unos vectores no generan todo el espacio que pueden generar.

Hay otras ocasiones en las que unos vectores sí generan todo el espacio que pueden generar, pero lo hacen de «manera redundante», en el sentido de que uno o más vectores se pueden poner de más de una forma como combinación lineal de los vectores dados.

Ejemplo. Si consideramos los vectores $(2,1)$, $(1,0)$ y $(2,3)$, observamos que el vector $(2,3)$ se puede escribir como
\[
0(2,1)+3(1,0) + 2(2,3) = (7,6)
\]
o
\[
3(2,2) + 1(1,0) + 0(2,3)= (7,6),
\]
siendo ambas combinaciones lineales del mismo conjunto de vectores.

$\triangle$

Uno de los tipos de conjuntos de vectores más importantes en el álgebra lineal son aquellos conocidos como bases, que evitan los dos problemas de arriba. Por un lado, sí generan a todo el espacio. Por otro lado, lo hacen sin tener redundancias.

Definición. Diremos que un conjunto de vectores es base de $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) si su espacio generado es todo $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) y además son linealmente independientes.

El ejemplo de base más inmediato es el conocido como base canónica.

Ejemplo. En el caso de $\mathbb{R}^2$, la base canónica es $(1,0)$ y $(0,1)$. En \mathbb{R}^3$ la base canónica es $(1,0,0)$, $(0,1,0)$ y $(0,0,1)$.

Partiendo de las definiciones dadas anteriormente, vamos que cualquier vector $(a,b)$ en $\mathbb{R}$ se puede escribir como $a(1,0) + b(0,1)$; y cualquier vector $(a,b,c)$ en $\mathbb{R}^3$ se puede escribir como $a(1,0,0) + b(0,1,0) + c(0,0,1)$.

Más aún, es claro que los vectores $(1,0)$ y $(0,1)$ no están alineados con el origen. Y también es claro que $(1,0,0),(0,1,0),(0,0,1)$ son linealmente idependientes, pues la combinación lineal $r(1,0,0)+s(0,1,0)+t(0,0,1)=(0,0,0)$ implica directamente $r=s=t=0$.

$\triangle$

Veamos otros ejemplos.

Ejemplo. Se tiene lo siguiente:

  • Los vectores $(3,4)$ y $(-2,0)$ son base de $\mathbb{R}^2$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^2$.
  • Los vectores $(8,5,-1)$, $(2,2,7)$ y $(-1,0,9)$ son base de $\mathbb{R}^3$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^3$.

¡Ya tienes todo lo necesario para demostrar las afirmaciones anteriores! Inténtalo y haz dibujos en $\mathbb{R}^2$ y $\mathbb{R}^3$ de dónde se encuentran estos vectores.

$\triangle$

Como podemos observar, las bases de un espacio vectorial no son únicas, sin embargo, las bases que mencionamos para $\mathbb{R}^2$ coinciden en tener dos vectores, mientras que las bases para $\mathbb{R}^3$ coinciden en tener tres vectores. ¿Será cierto que todas las bases para un mismo espacio vectorial tienen la misma cantidad de vectores?

Más adelante…

En esta entrada revisamos qué propiedades debe cumplir una colección de objetos matemáticos para que sea considerado un espacio vectorial, además de que analizamos con más detalle los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$.

Como seguramente sospecharás, para otros valores de $n$ también se cumple que $\mathbb{R}^n$, en conjunto con sus respectivas suma entrada a entrada y producto escalar, forman un espacio vectorial. Sin embargo, en contraste con los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$, este espacio es más difícil de visualizar. En la siguiente entrada generalizaremos para $\mathbb{R}^n$ varias de las propiedades que aprendimos en esta entrada.

Tarea moral

  1. Realiza lo siguiente:
    • De entre los siguientes vectores, encuentra dos que sean linealmente independientes: $(10,16),(-5,-8),(24,15),(10,16),(15,24),(-20,-32)$.
    • Encuentra un vector de $\mathbb{R}^2$ que genere a la recta $2x+3y=0$.
    • Determina qué es el espacio generado por los vectores $(1,2,3)$ y $(3,2,1)$ de $\mathbb{R}^3$.
    • Da un vector $(x,y,z)$ tal que $(4,0,1)$, $(2,1,0)$ y $(x,y,z)$ sean una base de $\mathbb{R}^3$.
  2. Demuestra que $(0,0)$ es el único vector $w$ en $\mathbb{R}^2$ tal que para todo vector $v$ de $\mathbb{R}^2$ se cumple que $v+w=v=w+v$.
  3. Prueba las siguientes dos afirmaciones:
    • Tres o más vectores en $\mathbb{R}^2$ nunca son linealmente independientes.
    • Dos o menos vectores en $\mathbb{R}^3$ nunca son un conjunto generador.
  4. Sean $u$ y $v$ vectores en $\mathbb{R}^2$ distintos del vector cero. Demuestra que $u$ y $v$ son linealmente independientes si y sólo si $v$ no está en la línea generada por $u$.
  5. Encuentra todas las bases de $\mathbb{R}^3$ en donde las entradas de cada uno de los vectores de cada base sean iguales a $0$ ó a $1$.

Entradas relacionadas

Cálculo Diferencial e Integral III: Sistemas de ecuaciones lineales

Por Alejandro Antonio Estrada Franco

Introducción

En esta entrada daremos un repaso a la teoría de sistemas de ecuaciones lineales. En caso de que quieras leer una versión detallada, puedes comenzar con la entrada de Sistemas de ecuaciones lineales y sistemas homogéneos asociados que forma parte del curso Álgebra Lineal I aquí en el blog.

Nuestra motivación para este repaso comienza como sigue. Supongamos que $T:\mathbb{R}^n \rightarrow \mathbb{R}^m$ es una transformación lineal. Tomemos un vector $\bar{w}\in \mathbb{R}^m$. Es muy natural preguntarse qué vectores $\bar{v}$ hay en $\mathbb{R}^n$ tales que $T(\bar{v})=\bar{w}$, en otras palabras, preguntarse cuál es la preimagen de $\bar{w}$.

Sistemas de ecuaciones lineales

Continuando con la situación planteada en la introducción, si $A$ es la representación matricial de $T$ en una cierta base $\beta$, podemos contestar la pregunta planteada resolviendo la ecuación matricial $AX=B$ donde $X$, $B$ son las representaciones de los vectores $\bar{v}$, $\bar{w}$ en la base $\beta$, respectivamente. Una vez llegado a este punto, la ecuación $AX=B$ nos conduce a que se deban cumplir varias igualdades. Veamos cuáles son en términos de las entradas de $A$, $X$ y $Y$. Pensemos que $$A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix}.$$

Pensemos también que $X$ es el vector columna con entradas (incógnitas) $x_1,\ldots,x_n$, y que $B$ es el vector columna con entradas $b_1,\ldots,b_m$.

Al realizar las operaciones, la igualdad $AX=B$ se traduce en que se deban cumplir todas las siguientes ecuaciones simultáneamente:

\begin{equation}\left\{
\begin{matrix} a_{11}x_{1} + & \dots & + a_{1n}x_{n} & = b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m1}x_{1} + & \dots & + a_{mn}x_{n} & = b_{m}
\end{matrix}\right.
\label{eq:sistema}
\end{equation}

Definición. Un sistema de $m$ ecuaciones lineales con $n$ incógnitas es un sistema de ecuaciones de la forma \eqref{eq:sistema}. Como discutimos arriba, al sistema también lo podemos escribir de la forma $AX=B$. A la matriz $A$ le llamamos la matriz de coeficientes. Al vector $X$ le llamamos el vector de incógnitas.

Resolver el sistema \eqref{eq:sistema} se refiere a determinar todos los posibles valores que pueden tomar las incógnitas $x_1,\ldots,x_n$ de manera que se cumplan todas las ecuaciones dadas.

Definición. Diremos que dos sistemas de ecuaciones son equivalentes si tienen las mismas soluciones.

Un resultado importante que relaciona a los sistemas de ecuaciones con las operaciones elementales que discutimos con anterioridad es el siguiente.

Proposición. Sea $A\in M_{m,n}(\mathbb{R})$ y $e$ una operación elemental cualquiera (intercambio de renglones, reescalamiento de renglón, o transvección). Entonces el sistema de ecuaciones $AX=B$ es equivalente al sistema de ecuaciones $e(A)X=e(B)$.

En otras palabras, si comenzamos con un sistema de ecuaciones $AX=B$ y aplicamos la misma operación elemental a $A$ y a $B$, entonces obtenemos un sistema equivalente. Veamos como ejemplo un esbozo de la demostración en el caso del reescalamiento de vectores. Los detalles y las demostraciones para las otras operaciones elementales quedan como ejercicio.

Demostración. Consideremos el rescalamiento $e$ de la $j$-ésima columna de una matriz por un factor $r$. Veremos que $e(A)X=e(B)$. Tomemos

\[ A=\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B= \begin{pmatrix} b_{1} \\ \vdots \\ b_{m} \end{pmatrix}, X=\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \]

Entonces la ecuación matricial $AX=B$ nos produce el siguiente sistema de ecuaciones lineales:
\[ \left\{\begin{matrix} a_{11}x_{1}+ & \dots & +a_{1n}x_{n}=b_{1} \\ \vdots & \ddots & \vdots \\ a_{m1}x_{1}+ & \dots & +a_{mn}x_{n}=b_{m}. \end{matrix} \right.\]

Tomemos una solución del sistema: \[ X’= \begin{pmatrix} x_{1}’\\ \vdots \\ x_{n}’ \end{pmatrix} \]

La ecuación matricial $e(A)X=e(B)$ nos produce el siguiente sistema de ecuaciones: \[ \left\{\begin{matrix} a_{11}x_{1}+ & \dots & +a_{1n}x_{n}=b_{1} \\ \vdots & \ddots & \vdots \\ ra_{j1}x_{1}+ & \dots & +ra_{jn}x_{n}=rb_{j} \\ \vdots & \ddots \ & \vdots \\ a_{m1}x_{1}+ & \dots & +a_{mn}x_{n}=b_{m}. \end{matrix}\right. \]

Ahora, de cada una de las $n$ ecuaciones, excepto la $j$-ésima, sabemos que se solucionan al sustituir $x_{1}’, \dots ,x_{m}’$, resta revisar la $j$-ésima ecuación. Lo que sí sabemos de que $X’$ sea solución es que $$a_{j1}x_{1}’+ \dots +a_{jn}x_{n}’=b_{j}.$$ Así, al multiplicar por $r$ de ambos lados $ra_{j1}x_{1}’+ \dots + ra_{jn}x_{n}’=rb_{j}$. Así obtenemos que $X’$ satisface también a $e(A)X=e(B)$. Inversamente si una solución satisface al sistema $e(A)X=e(B)$ también lo hace para $AX=Y$. Te recomendamos revisar los detalles por tu cuenta.

$\square$

Soluciones a sistemas de ecuaciones lineales

La teoría de sistemas de ecuaciones lineales nos dice que tenemos tres posibles situaciones que se pueden presentar cuando estamos resolviendo un sistema de ecuaciones lineales en $\mathbb{R}$: no hay solución, hay una única solución, o tenemos infinidad de soluciones. Por ejemplo, se puede descartar que haya exactamente dos soluciones. En cuanto sucede esto, la cantidad de soluciones se dispara a una infinidad

Haremos una discusión de cuándo se presenta cada caso. De acuerdo con la sección anterior, cualquier operación elemental pasa un sistema de ecuaciones a uno equivalente. Además, de acuerdo con el teorema de reducción gaussiana, cualquier matriz puede ser llevada a la forma escalonada reducida. Así, al aplicar tanto a $A$ como a $B$ las operaciones elementales que llevan $A$ a su forma escalonada reducida $A_{red}$, llegamos a un sistema equivalente $A_{red}X=C$. El comportamiento del conjunto solución de $AX=B$ se puede leer en este otro sistema equivalente como sigue:

  1. Sin solución. El sistema $AX=B$ no tiene solución si en $A_{red}X=C$ hay una igualdad lineal del estilo $0x_{j1}+\dots +0x_{jn}=c_j$, con $c_j\neq 0$. En otras palabras, si en $A_{red}$ hay una fila $j$ de ceros y la entrada $c_j$ es distinta de cero.
  2. Infinidad de soluciones. El sistema $AX=B$ tiene una infinidad de soluciones si tiene solución, y además hay por lo menos una columna $k$ de $A_{red}$ en la que no haya pivote de ninguna fila. Esta columna $k$ corresponde a una variable libre $x_k$ que puede tomar cualquier valor, y el sistema tiene soluciones sin importar el valor que se le de a esta variable.
  3. Solución única. Un sistema de ecuaciones con solución, pero sin variables libres tiene una única solución. Esto se puede leer en la matriz $A_{red}$, pues se necesita que todas las columnas tengan un pivote de alguna fila.

Pensemos un poco a qué se deben los comportamientos anteriores. Pensemos en que ya llegamos a $A_{red}X=C$. Iremos determinando los posibles valores de las entradas de $X$ de abajo hacia arriba, es decir, en el orden $x_n, x_{n-1},\ldots, x_1$. Si $x_k$ es variable libre, pongamos el valor que sea. Si $x_k$ tiene el pivote de, digamos, la fila $j$, entonces la ecuación $j$ nos dice \[0+\dots + 0 + x_{k}+\dots +a_{jn}x_{n}=b_{j}.\] Esto nos diría que \[x_{k}=b_{j}-a_{j(k+1)}x_{k+1}-\dots -a_{jn}x_{n},\] así que hemos logrado expresar a $x_k$ en términos de las variables ya determinadas $x_{k+1},\dots x_{n}$.

Matrices equivalentes por filas

Definición. Consideremos $I\in M_{m}(\mathbb{R})$ la matriz identidad de tamaño $m$. Una matriz elemental será una matriz que se obtenga de la identidad tras aplicar una operación elemental.

Definición. Sean $A, B\in M_{m,n}(\mathbb{R})$. Diremos que $A$ es equivalente por filas a $B$ si $A$ se puede obtener al aplicar una sucesión finita de operaciones elementales a $B$.

Se puede demostrar que «ser equivalente por filas» es una relación de equivalencia en $M_{m,n}(\mathbb{R})$. Así mismo, se puede demostrar en general que si $e$ es una operación elemental, entonces $e(A)$ es exactamente la misma matriz que multiplicar la matriz elemental $e(I)$ por la izquierda por $A$, es decir, $e(A)=e(I)A$. Como tarea moral, convéncete de ambas afirmaciones.

Para realizar la demostración, quizás quieras auxiliarte de la siguiente observación. Tomemos una matriz $B\in M_{m,n}(\mathbb{R})$ y pensemos en cada columna de $B$ como un vector columna:

\[ B_{1} =\begin{pmatrix} B_{11} \\ \vdots \\ B_{m1} \end{pmatrix} \hspace{1cm} \cdots \hspace{1cm} B_{n} =\begin{pmatrix} B_{1n} \\ \vdots \\ B_{mn} \end{pmatrix}. \]

Tomemos ahora una matriz $A\in M_{p,m}$. Tras realizar las operaciones, se puede verificar que la matriz $AB$ tiene como columnas a los vectores columna $AB_1, AB_2,\ldots,AB_n$.

El siguiente teorema nos da una manera alternativa de saber si dos matrices son equivalentes por filas.

Teorema. Sean $A, B\in M_{m\times n}(\mathbb{R})$. Se tiene que $B$ es equivalente por filas a $A$ si y sólo si $B=PA$, donde $P$ es una matriz en $M_m(\mathbb{R})$ obtenida como producto de matrices elementales.

Demostración. Por la discusión anterior, si $B$ es equivalente por filas a $A$, $A$ resulta de la aplicación de una sucesión finita de operaciones elementales a $B$ o, lo que es lo mismo, resulta de una aplicación finita de productos de matrices elementales por la izquierda. Por otro lado, si $B=PA$, con $P=E_{k}\cdot … \cdot E_{1}$ producto de matrices elementales, tenemos que $E_{1}A$ es equivalente por filas a $A$, que $E_{2}(E_{1}A)$ es equivalente por filas a $E_{1}A$, que $E_{3}(E_2(E_1(A)))$ equivalente por filas a $E_2(E_1(A))$, y así sucesivamente. Usando que ser equivalente por filas es transitivo (por ser relación de equivalencia), concluimos que $B$ es equivalente por filas a $A$.

$\square$

¿Qué sucede con los determinantes y las operaciones elementales? La siguiente proposición lo resume.

Proposición. Sea $A$ una matriz en $M_n(\mathbb{R})$ con determinante $\det(A)$.

  • Si se intercambian dos filas, el determinante se vuelve $-\det(A)$.
  • Si se reescala una fila por un real $r\neq 0$, el determinante se vuelve $r\det(A)$.
  • Si se hace una transvección, el determinante no cambia.

Observa que, en particular, si $\det(A)\neq 0$, entonces sigue siendo distinto de cero al aplicar operaciones elementales.

Matrices invertibles y sistemas de ecuaciones lineales

En muchas ocasiones nos encontramos en cálculo de varias variables con funciones que van de $\mathbb{R}^n$ a sí mismo. Si la función que estamos estudiando es una transformación lineal, entonces corresponde a una matriz cuadrada en $M_n(\mathbb{R})$. En estos casos hay otro concepto fundamental que ayuda, entre otras cosas, para resolver sistemas de ecuaciones lineales: el de matriz invertible. Veremos a continuación que esto interrelaciona a las matrices, las matrices elementales, los sistemas de ecuaciones lineales y a los determinantes.

Definición. Una matriz $A$ cuadrada es invertible por la izquierda (resp. derecha) si existe una matriz $B$ tal que $BA=I$ (resp. $AB=I$). A $B$ le llamamos la inversa izquierda (resp. derecha) de $A$. A una matriz invertible por la derecha y por la izquierda, donde la inversa izquierda sea igual a la derecha, simplemente se le llama invertible.

Se puede demostrar que, cuando existe, la matriz izquierda (o derecha) es única. Esto es sencillo. Se puede demostrar también que si $B$ es inversa izquierda y $B’$ es inversa derecha, entonces $B=B’$, lo cual no es tan sencillo. Además, se cumplen las siguientes propiedades de matrices invertibles.

Proposición. Sean $A, B\in M_n(\mathbb{R})$

  1. Si $A$ es invertible, también lo es $A^{-1}$ y $(A^{-1})^{-1}=A$.
  2. Si $A$ y $B$ son invertibles, también lo es $AB$ y $(AB)^{-1}=B^{-1} A^{-1}$.

Demostración. El inciso 1 es claro; para el inciso 2 tenemos \[ (AB)(B^{-1} A^{-1})=A(BB^{-1})A^{-1}=A(I)A^{-1}=AA^{-1}=I\] \[=B^{-1}(I)B=B^{-1}(A^{-1}A)B=(B^{-1}A^{-1})(AB) \].

$\square$

Veamos ahora cómo se conecta la noción de invertibilidad con la de matrices elementales. Como parte de la tarea moral, cerciórate de que cualquiera de las tres operaciones elementales para matrices son invertibles. Es decir, para cada operación elemental, piensa en otra operación elemental que aplicada sucesivamente a la primera nos de la matriz original. Con más detalle; si denotamos con $e$ a una operación elemental (puede ser cualquiera) denotamos como $e^{-1}$ a la segunda a la cual llamaremos inversa de $e$; y estas cumplen $e(e^{-1})(A)=A=e^{-1}(e(A))$ para cualquier matriz $A$ a la que se le pueda aplicar $e$.

Proposición. Toda matriz elemental es invertible.

Demostración. Supongamos que $E$ una matriz elemental correspondiente a la operación unitaria $e$. Si $e^{-1}$ es la operación inversa de $e$ y $E_{1}=e^{-1}(I)$ tenemos: \[ EE_{1}=e(E_{1})=e(e^{-1}(I))=I,\] y así mismo tenemos \[E_{1}E=e_{1}(E)=e_{1}(e(I))=I.\] De esta manera $E$ es invertible y su inversa es $E_{1}$.

$\square$

El resultado anterior habla sólo de la invertibilidad de matrices elementales, pero podemos usar a estas para caracterizar a las matrices invertibles.

Teorema. Sea $A\in M_n(\mathbb{R})$, los siguientes enunciados son equivalentes:

  1. $A$ es invertible
  2. $A$ es equivalente por filas a la matriz identidad
  3. $A$ es producto de matrices elementales

Demostración. $1\Rightarrow 2)$. Supongamos que $A$ invertible, y usemos el teorema de reducción Gaussiana para encontrar la forma escalonada reducida $A_{red}$ de $A$ mediante una sucesión de operaciones elementales. Por el teorema de la sección de matrices equivalentes por filas, tenemos que $R=E_{k}\cdots E_{1}A$, donde $E_{k},\dots ,E_{1}$ son matrices elementales. Cada $E_{i}$ es invertible, y $A$ es invertible. Por la proposición anterior, tenemos entonces que $A_{red}$ es invertible. Se puede mostrar que entonces ninguna fila de $A_{red}$ puede consistir de puros ceros (verifícalo de tarea moral), de modo que toda fila de $A$ tiene pivote (que es igual a $1$). Como hay $n$ filas y $n$ columnas, entonces hay exactamente un $1$ en cada fila y en cada columna. A $A_{red}$ no le queda otra opción que ser la matriz identidad.

$2\Rightarrow 3)$. Si $A$ es equivalente por filas a $I$, entonces hay operaciones elementales que la llevan a $I$. Como ser equivalente por filas es relación de equivalencia, existen entonces operaciones elementales que llevan $I$ a $A$. Pero entonces justo $A$ se obtiene de $I$ tras aplicar un producto (por la izquierda) de matrices elementales. Por supuesto, en este producto podemos ignorar a $I$ (o pensarla como un reescalamiento por $1$).

$3\Rightarrow 1)$. Finalmente como cada matriz elemental es invertible y todo producto de matrices invertibles es invertible tenemos que 3 implica 1.

$\square$

Ya que entendemos mejor la invertibilidad, la podemos conectar también con la existencia y unicidad de soluciones en sistemas de ecuaciones lineales.

Teorema. Sea $A\in M_{n}(\mathbb{R})$; las siguientes afirmaciones son equivalentes:

  1. $A$ es invertible.
  2. Para todo $Y$, el sistema $AX=Y$ tiene exactamente una solución $X$.
  3. Para todo $Y$, el sistema $AX=Y$ tiene al menos una solución $X$.

Demostración. $1\Rightarrow 2)$. Supongamos $A$ invertible. Tenemos que $X=A^{-1}Y$ es solución pues $AX=A(A^{-1})Y=IY=Y$. Veamos que la solución es única. Si $X$ y $X’$ son soluciones, tendríamos $AX=Y=AX’$. Multiplicando por $A^{-1}$ por la izquierda en ambos lados de la igualdad obtenemos $X=X’$.

$2\Rightarrow 3)$. Es claro pues la única solución es, en particular, una solución.

$3\Rightarrow 1)$. Tomemos los vectores canónicos $\hat{e}_1,\hat{e}_2,\ldots,\hat{e}_n$ de $\mathbb{R}^n$. Por $(3)$ tenemos que todos los sistemas $AX=\hat{e}_1, \ldots, AX=\hat{e}_n$ tienen solución. Tomemos soluciones $B_1,\ldots,B_n$ para cada uno de ellos y tomemos $B$ como la matriz con columnas $B_1,\ldots, B_n$. Por el truco de hacer el producto de matrices por columnas, se tiene que las columnas de $AB$ son $AB_1=\hat{e}_1,\ldots, AB_n=\hat{e}_n$, es decir, $AB$ es la matriz identidad.

$\square$

En la demostración anterior falta un detalle importante. ¿Puedes encontrar cuál es? Está en la demostración $3\Rightarrow 1)$. Si quieres saber cuál es y cómo arreglarlo, puedes consultar la entrada Mariposa de 7 equivalencias de matrices invertibles.

Terminamos la teoría de esta entrada con un resultado que conecta invertibilidad y determinantes.

Proposición. Sea $A\in M_{n}(\mathbb{R})$. $A$ es invertible, si y sólo si, $det(A)\neq 0$.

Demostración. Si $A$ es invertible, entonces se cumple la ecuación $I=AA^{-1}$. Aplicando determinante de ambos lados y usando que es multiplicativo: $$1=det(I)=det(AA^{-1})=det(A)det(A^{-1}).$$ Como al lado izquierdo tenemos un $1$, entonces $\det(A)\neq 0$.

Si $det(A)\neq 0$, llevemos $A$ a su forma escalonada reducida $A_{red}$. Por la observación hecha al final de la sección de matrices elementales, se tiene que $\det(A_{red})\neq 0$. Así, en cada fila tenemos por lo menos un elemento no cero. Como argumentamos anteriormente, esto implica $A_{red}=I$. Como $A$ es equivalente por filas a $I$, entonces es invertible.

$\square$

Mas adelante…

Continuaremos estableciendo herramientas de Álgebra lineal que usaremos en el desarrollo de los temas subsiguientes. En la siguiente entrada hablaremos de eigenvalores y eigenvectores. Con ellos, expondremos un método que proporciona una representación matricial sencilla simple para cierto tipos de transformaciones lineales.

Tarea moral

  1. Demuestra que la relación «es equivalente por filas» es una relación de equivalencia en $M_{m,n}(\mathbb{R})$.
  2. Sea $A\in M_{m,n}\mathbb{R}$. Verifica que para cualquier operación elemental $e$ de cualquiera de los tres tipos se cumple que $e(A)X=e(B)$ es equivalente a $AX=B$. Deberás ver que cualquier solución de uno es solución del otro y viceversa.
  3. Demuestra que si $A$ es invertible, también lo es $A^{-1}$ y que $(A^{-1})^{-1}=A$. Verifica la invertibilidad izquierda y derecha.
  4. Demuestra que cualquiera de las tres operaciones elementales para matrices son invertibles. Es decir, para cada operación elemental, hay otra que al aplicarla sucesivamente nos regresa a la matriz original.
  5. Prueba que una matriz invertible tiene por lo menos un elemento distinto de cero en cada fila, y por lo menos un elemento distinto de cero en cada columna.

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma de Jordan para nilpotentes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan para matrices nilpotentes. Demostramos una parte: la existencia de la forma canónica de Jordan. Para ello, nos enfocamos en el teorema en su versión en términos de transformaciones lineales. En esta entrada nos enfocaremos en demostrar la unicidad de la forma canónica de Jordan. Curiosamente, en este caso será un poco más cómodo trabajar con la forma matricial del teorema. Para recordar lo que queremos probar, volvemos a poner el enunciado del teorema a continuación. Lo que buscamos es ver que los enteros $k_1,\ldots, k_d$ que menciona el teorema son únicos.

Teorema. Sea $A$ una matriz nilpotente en $M_n(F)$. Entonces existen únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} y para los cuales $A$ es similar a la siguiente matriz de bloques: $$\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Nuestra estrategia para mostrar la unicidad será el estudio del rango de las potencias de $A$. Si $A$ es similar una matriz en forma canónica $J$, entonces existe $P$ invertible tal que $A=P^{-1}JP$, de donde se puede mostrar indutivamente que $A^k=P^{-1}J^kP$, mostrando que $A^k$ y $J^k$ son similares. Además, sabemos por teoría anterior que matrices similares tienen el mismo rango. De modo que si $A$ es similar a $J$ entonces todas las potencias de $A$ tienen el mismo rango que todas las potencias de $J$. Con esta idea en mente estudiaremos cómo es el rango de matrices de bloques de Jordan de eigenvalor cero.

Rango de potencias de bloques de Jordan

Claramente el rango del bloque de Jordan $J_{0,n}$ es $n-1$, pues ya está en forma escalonada reducida y tiene $n-1$ vectores distintos de cero. El siguiente resultado generaliza esta observación.

Proposición. Sea $n$ un entero positivo, $F$ un campo y $J_{0,n}$ el bloque de Jordan de eigenvalor $0$ y tamaño $n$ en $M_n(F)$. Para $k=1,\ldots,n$ se tiene que el rango de $J_{0,n}^k$ es igual a $n-k$. Para valores de $k$ más grandes, el rango es igual a cero.

Demostración. Si $e_1,\ldots,e_n$ es la base canónica de $F^n$, tenemos que $J_{0,n}e_i=e_{i-1}$ para $i=2,\ldots,n$ y $J_{0,n}e_1=0$. De manera intuitiva, la multiplicación matricial por $J_{0,n}$ va «desplazando los elementos de la base $e_1,\ldots,e_n$ a la izquierda, hasta sacarlos». De este modo, $J_{0,n}^k$ para $k=1,\ldots,n$ hace lo siguiente:

$$J_{0,n}^k e_i=\begin{cases} 0 & \text{para $k\geq i$}\\ e_{i-k} & \text{para $k\leq i-1$.}\end{cases}$$

Así, $J_{0,n}^k$ manda a la base $e_1,\ldots,e_n$ a los vectores $e_1,\ldots,e_{n-k}$ y a $k$ copias del vector cero. Como los primeros son $n-k$ vectores linealmente independientes, obtenemos que el rango de $J_{0,n}^k$ es $n-k$.

Para valores de $k$ más grandes la potencia se hace la matriz cero, así que su rango es cero.

$\square$

Rango de potencias de matrices de bloques de Jordan

¿Qué sucede si ahora estudiamos el rango de las potencias de una matriz de bloques de Jordan? Consideremos, por ejemplo, la siguiente matriz, en donde $k_1,\ldots,k_d$ son enteros positivos de suma $n$ y con $k_1\leq \ldots \leq k_d$:

$$J=\begin{pmatrix} J_{0,k_1} & 0 & \cdots & 0 \\ 0 & J_{0,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}\end{pmatrix}.$$

Por un lado, es sencillo elevar esta matriz a potencias, pues simplemente los bloques se elevan a las potencias correspondientes. En símbolos:

$$J^r=\begin{pmatrix} J_{0,k_1}^r& 0 & \cdots & 0 \\ 0 & J_{0,k_2}^r& \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{0,k_d}^r\end{pmatrix}.$$

¿Cuál es el rango de esta potencia? Nos conviene cambiar un poco de notación. En vez de considerar a los $k_i$ por separado, los agruparemos de acuerdo a su valor, que puede ir de $1$ a $n$. Así, para cada $j=1,\ldots,n$ definimos $m_j$ como la cantidad de valores $k_i$ iguales a $j$. Bajo esta notación, la igualdad $k_1+\ldots+k_d=n$ se puede reescribir como $$m_1+2m_2+3m_3+\ldots+nm_n=n.$$

Una primera observación es que el rango de $J$ es simplemente la suma de los rangos de cada una de las $J_{0,k_i}$. Cada una de éstas contribuye con rango $k_i-1$. Así, en términos de las $m_j$ tenemos lo siguiente:

\begin{align*}
\text{rango}(J)&=\sum_{i=1}^d (k_i-1)\\
&=\sum_{j=1}^n (j-1) m_j \\
&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n.
\end{align*}

De manera similar,

\begin{align*}
\text{rango}(J^r)&=\sum_{i=1}^d \text{rango}(J_{0,k_i}^r)\\
&=\sum_{j=1}^n m_j \text{rango}(J_{0,j}^r).
\end{align*}

El término $\text{rango}(J_{0,j}^r)$ lo podemos calcular con la proposición de la sección anterior, cuidando la restricción entre el tamaño y las potencias que queremos. De aquí y de la restricción original para la las $m_j$ salen todas las siguientes igualdades:

\begin{align*}
n&= 1\cdot m_1 + 2\cdot m_2 + 3 \cdot m_3 + \ldots + n \cdot m_n\\
\text{rango}(J)&=0\cdot m_1 + 1\cdot m_2 + 2 \cdot m_3 + \ldots + (n-1) \cdot m_n\\
\text{rango}(J^2)&= 0 \cdot m_1 + 0 \cdot m_2 + 1 \cdot m_3 + \ldots + (n-2)\cdot m_n\\
\text{rango}(J^3)&= 0 \cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + (n-3)\cdot m_n\\
&\vdots\\
\text{rango}(J^{n-1})&= 0\cdot m_1 + 0 \cdot m_2 + 0 \cdot m_3 + \ldots + 1 \cdot m_n.
\end{align*}

A partir de aquí el rango de $J^n$ es $0$. Esto nos da una manera de entender con mucha precisión el rango de cualquier potencia de una matriz diagonal por bloques hecha con bloques de Jordan.

Unicidad de la forma canónica de Jordan

Estamos listos para justificar la unicidad de la forma canónica de Jordan. Una matriz diagonal por bloques hecha por bloques de Jordan queda totalmente determinada por los valores de $m_j$ de la sección anterior. Supongamos que $A$ tiene como forma canónica de Jordan tanto a una matriz $J$ con valores $m_j$, como a otra matriz $J’$ con valores $m_j’$.

Como dos matrices similares cumplen que sus potencias son todas del mismo rango, entonces para cualquier $r$ de $1$ a $n-1$ se cumple que $$\text{rango}(J^r)=\text{rango}(A^r)=\text{rango}(J’^r).$$ Así, tanto $(m_1,\ldots,m_n)$ como $({m_1}’,\ldots,{m_n}’)$ son soluciones al siguiente sistema de ecuaciones en variables $x_1,\ldots,x_n$.

\begin{align*}
n&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + n \cdot x_n\\
\text{rango}(A)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (n-1) \cdot x_n\\
\text{rango}(A^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (n-2)\cdot x_n\\
\text{rango}(A^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (n-3)\cdot x_n\\
&\vdots\\
\text{rango}(A^{n-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_n.
\end{align*}

Pero este es un sistema de $n$ ecuaciones en $n$ variables y con matriz asociada de determinante $1$, así que su solución es única. Esto muestra que $(m_1,\ldots,m_n)=({m_1}’,\ldots,{m_n}’)$. Entonces, en $J$ y $J’$ aparecen la misma cantidad de bloques de cada tamaño. Como además los bloques van de tamaño menor a mayor tanto en $J$ como en $J’$, concluimos que $J=J’$.

Como consecuencia de toda esta discusión, obtenemos de hecho lo siguiente.

Corolario. Dos matrices nilpotentes son semejantes si y sólo si tienen la misma forma canónica de Jordan. Distintas formas canónicas de Jordan dan distintas clases de semejanza.

Una receta para encontrar la forma canónica de Jordan de nilpotentes

La demostración anterior no sólo demuestra la unicidad de la forma canónica de Jordan. Además, nos dice exactamente cómo obtenerla. Para ello:

  1. Calculamos todas las potencias de $A$ hasta $n-1$.
  2. Usando reducción gaussiana (o de otro modo), calculamos el rango de cada una de estas potencias.
  3. Resolvemos el sistema de ecuaciones en variables $x_j$ de la sección anterior.
  4. La forma canónica de Jordan de $A$ tiene $x_j$ bloques de tamaño $j$, que debemos colocar en orden creciente de tamaño.

Ejemplo. Consideremos la siguiente matriz en $M_7(\mathbb{R})$: $$C=\begin{pmatrix}-27 & 266 & 1 & -37 & 135 & -125 & 53\\217 & -1563 & 118 & 33 & -1251 & 1020 & 361\\236 & -1784 & 188 & 16 & -1512 & 1234 & 585\\11 & -10 & -25 & 12 & 28 & -29 & -80\\-159 & 1133 & -114 & -98 & 878 & -690 & -232\\197 & -1409 & 88 & -19 & -1151 & 952 & 348\\-230 & 1605 & -179 & -100 & 1316 & -1031 & -440\end{pmatrix}$$

Sus números son muy complicados, sin embargo, nos podemos auxiliar de herramientas computacionales para encontrar sus potencias. Soprendentemente esta es una matriz nilpotente de índice $3$ pues:

$$C^2=\begin{pmatrix}0 & -10209 & -3403 & -6806 & -6806 & 10209 & 0\\0 & 14691 & 4897 & 9794 & 9794 & -14691 & 0\\0 & 2739 & 913 & 1826 & 1826 & -2739 & 0\\0 & 7221 & 2407 & 4814 & 4814 & -7221 & 0\\0 & -14193 & -4731 & -9462 & -9462 & 14193 & 0\\0 & 10956 & 3652 & 7304 & 7304 & -10956 & 0\\0 & -11952 & -3984 & -7968 & -7968 & 11952 & 0\end{pmatrix}$$

y

$$C^3=\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}.$$

Usando reducción gaussiana, o herramientas computacionales, obtenemos que el rango de $C$ es $4$ y que el rango de $C^2$ es $2$. A partir de $k\geq 3$ obtenemos que $\text{rango}(C^k)=\text{rango}(O_7)=0$. Si queremos encontrar la forma canónica de Jordan de $C$, necesitamos entonces resolver el siguiente sistema de ecuaciones, que nos dirá cuántos bloques $x_j$ de tamaño $j$ hay:

\begin{align*}
7&= x_1+2x_2+3x_3+4x_4+5x_5+6x_6+7x_7\\
4&=x_2 + 2x_3 + 3x_4+4x_5+5x_6+6x_7\\
2&= x_3 + 2x_4+3x_5+4x_6+5x_7 \\
0&= x_4+2x_5+3x_6+4x_7\\
0 &= x_5+2x_6+3x_7\\
0&= x_6+2x_7\\
0&= x_7
\end{align*}

Para resolverlo lo mejor es proceder «de abajo hacia arriba». Las últimas cuatro ecuaciones nos dicen que $x_7=x_6=x_5=x_4=0$. Así, el sistema queda un poco más simple, como:

\begin{align*}
7&= x_1+2x_2+3x_3\\
4&=x_2 + 2x_3\\
2&= x_3.
\end{align*}

De la última igualdad, tenemos $x_3=2$, lo que nos dice que la forma canónica de Jordan tendría dos bloques de tamaño $3$. Sustituyendo en la penúltima igualdad obtenemos que $4=x_2+4$, de donde $x_2=0$. Así, no tendremos ningún bloque de tamaño $2$. Finalmente, sustituyendo ambos valores en la primera igualdad obtenemos que $7=x_1+0+6$. De aquí obtenemos $x_1=1$, así que la forma canónica de Jordan tendrá un bloque de tamaño $1$. En resumen, la forma canónica de Jordan es la matriz $$\begin{pmatrix} J_{0,1} & 0 & 0 \\ 0 & J_{0,3} & 0 \\ 0 & 0 & J_{0,3}\end{pmatrix}.$$ Explícitamente, ésta es la siguiente matriz:

$$\begin{pmatrix} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Para verla un poco más «como de bloques» la podemos reescribir de la siguiente manera:

$$\left(\begin{array}{c|ccc|ccc} 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 1 & 0 & 0 & 0 & 0 \\ 0& 0 & 0 & 1 & 0 & 0 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0& 0 & 0 & 0 & 0 & 1 & 0 \\ 0& 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

$\triangle$

Más adelante…

Hemos demostrado la existencia y unicidad de la forma canónica de Jordan para matrices nilpotentes. Este es un resultado interesante por sí mismo. Sin embargo, también es un paso intermedio para un resultado más general. En las siguientes entradas hablaremos de una versión más general del teorema de Jordan, para matrices tales que su polinomio característico se descomponga totalmente en el campo en el que estemos trabajando.

Tarea moral

  1. Considera la siguiente matriz: $$M=\begin{pmatrix}11 & 11 & -11 & -11\\-1 & -1 & 1 & 1\\3 & 3 & -3 & -3\\7 & 7 & -7 & -7\end{pmatrix}.$$
    1. Muestra que $M$ es una matriz nilpotente y determina su índice.
    2. ¿Cuál es la forma canónica de Jordan de $M$?
  2. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{5}(F)$ de índice $2$.
  3. Describe las posibles formas canónicas de Jordan para una matriz nilpotente $A \in M_{7}(F)$ de rango $5$.
  4. Encuentra de manera explícita la inversa de la siguiente matriz en $M_n(\mathbb{R})$ y usa esto para dar de manera explícita la solución al sistema de ecuación en las variables $x_i$ que aparece en la entrada: $$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 0 & 0 & 1 & \cdots & n-3 & n-2 \\ & \vdots & & \ddots & & \vdots\\ 0 & 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 1\end{pmatrix}.$$
  5. Sea $A$ una matriz nilpotente en $M_n(\mathbb{R})$. Muestra que las matrices $A$ y $5A$ son similares entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden

Por Eduardo Vera Rosales

Introducción

Vamos a concluir la tercera unidad del curso revisando el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, en su forma general, es decir, para sistemas lineales y no lineales que satisfagan las hipótesis del teorema. Hasta el momento únicamente demostramos el teorema de existencia y unicidad para sistemas lineales con coeficientes constantes, pero es importante demostrar la versión general al igual que hicimos para las ecuaciones de primer orden.

Lo primero que veremos es que un sistema de ecuaciones de la forma $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ se puede escribir en forma abreviada como sigue: $$\dot{\textbf{X}}(t)=\textbf{F}(t,\textbf{X}(t))$$ donde $\textbf{F}$ es el vector conformado por las funciones $F_{i}$ del sistema, con $i \in \{1,…,n\}$. Si además agregamos la condición inicial $\textbf{X}(t_{0})=\textbf{Y}$, entonces podemos ver que el sistema se reduce a una expresión muy similar al problema de condición inicial $$\frac{dy}{dt}=f(t,y(t)) \,\,\,\,\, ; \,\,\,\,\, y(t_{0})=y_{0}$$ salvo que ahora $\textbf{X}$ es una función que toma valores en $\mathbb{R}^{n}$, y $\textbf{F}$ es una función de $\mathbb{R}^{n+1}$ a $\mathbb{R}^{n}$.

Afortunadamente la mayoría de los lemas y teoremas que usamos para demostrar el teorema de existencia y unicidad para ecuaciones de primer orden se pueden extender a funciones de varias variables, por lo que la demostración será muy similar a la demostración de este último teorema.

Antes de iniciar te dejo la entrada correspondiente al teorema de existencia y unicidad de Picard, para que te familiarices con él y te sea más fácil ver los videos de esta entrada.

El teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Ecuación integral asociada

Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, analizamos las similitudes que existen con el teorema de existencia y unicidad de Picard, y vemos que resolver el problema de condición inicial es equivalente a resolver la ecuación integral $$\textbf{X}(t)=\textbf{Y}+\int_{t_{0}}^{t} \textbf{F}(s, \textbf{X}(s)) \, ds.$$

Demostración de la existencia de la solución al problema de condición inicial

Demostramos la existencia de una solución al problema de condición inicial estudiando bajo qué circunstancias converge uniformemente la sucesión de iteraciones de Picard del problema. En dado caso que esto último suceda, la función a la cual convergen las iteraciones será solución a la ecuación integral del video anterior.

Demostración de la unicidad de la solución al problema de condición inicial

Concluimos la demostración del teorema probando la unicidad de la solución al problema de condición inicial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Sea $\textbf{F}(t,\textbf{X}(t))$ continua en un dominio $E \subseteq \mathbb{R}^{n+1}$ que contenga a $(t_{0},\textbf{Y})$. Demuestra que $\textbf{X}(t)$ es solución al problema de condición inicial $$\dot{\textbf{X}}(t)=\textbf{F}(t,\textbf{X}(t)) \,\,\,\,\, ; \,\,\,\,\, \textbf{X}(t_{0})=\textbf{Y}$$ si y sólo si es solución a la ecuación integral $$\textbf{X}(t)=\textbf{Y}+\int_{t_{0}}^{t} \textbf{F}(s,\textbf{X}(s)) \, ds.$$
  • Considera el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \textbf{X} + \begin{pmatrix} t \\ t \end{pmatrix} \,\,\,\,\, ; \,\,\,\,\, \textbf{X}(0)=\begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$ Calcula las iteraciones de Picard correspondientes al problema. ¿Convergen a alguna función? En caso afirmativo, muestra que dicha función es solución al problema de condición inicial.
  • Supongamos que $\textbf{F}(t,\textbf{X}(t))$ es continua en $$R:=\{(t,x_{1},…,x_{n}) \in \mathbb{R}^{n+1} : |t-t_{0}| \leq a, \lVert \textbf{X}(t) – \textbf{Y} \rVert \leq b, \, \, a, b \in \mathbb{R}\}.$$ Demuestra que existe $M > 0$ y $h \in \mathbb{R}$ tal que $$\lVert \textbf{X}^{n}(t)-Y \rVert \leq M |t-t_{0}|, \forall n \in\mathbb{N}, \forall t \in I_{h} \subseteq \mathbb{R}.$$ Recuerda que $\textbf{X}^{n}(t)$ es la $n$-ésima iteración de Picard correspondientes al problema de condición inicial que estudiamos a lo largo de la entrada. (Hint: La prueba es similar al lema análogo que probamos en este video para el teorema de existencia y unicidad de Picard).
  • Consideremos el problema de condición inicial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0 \,\,\,\,\, ; \,\,\,\,\, y(t_{0})=y_{0} \,\,\,\,\, ; \,\,\,\,\, \frac{dy}{dt}(t_{0})=y_{1}$$ con $a,b,c$ constantes. ¿Si el sistema de ecuaciones asociado satisface el teorema de existencia y unicidad, entonces el problema de condición inicial original tiene una única solución?

Más adelante

Con este teorema finalizamos la tercera unidad del curso. En la cuarta unidad comenzaremos con la teoría cualitativa de los sistemas de ecuaciones de primer orden.

Veremos que los sistemas tienen puntos de equilibrio, los clasificaremos según su estabilidad. En virtud de esto vamos a analizar el comportamiento de las soluciones cerca de puntos de equilibrio y dibujaremos el plano fase de un sistema.

Abordaremos sistemas no lineales, y aunque no los resolveremos explícitamente, veremos el comportamiento de sus soluciones cerca de sus puntos de equilibrio.

Finalmente, veremos algunos sistemas que satisfacen propiedades interesantes, como los sistemas Hamiltonianos, los disipativos, entre otros.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»