Archivo de la etiqueta: ecuaciones lineales

Ecuaciones Diferenciales I: Método de eliminación de variables

En las matemáticas no entiendes las cosas. Te acostumbras a ellas.
– John Von Neumann

Introducción

Estamos listos para comenzar a desarrollar los distintos métodos de resolución de sistemas lineales de primer orden.

En esta entrada desarrollaremos un método relativamente sencillo, pero muy limitado, ya que en general se utiliza cuando sólo tenemos un sistema lineal de dos ecuaciones diferenciales. Este método se conoce como método de eliminación de variables y, como su nombre lo indica, lo que se intenta hacer es eliminar las variables dependientes de $t$ hasta quedarnos con sólo una, esto produce que el resultado sea una sola ecuación diferencial de orden superior (la ecuación correspondiente a la única variable dependiente que nos queda), la cual es posible resolver aplicando alguno de los métodos vistos en la unidad anterior, la solución de dicha ecuación diferencial servirá para obtener el resto de funciones solución del sistema lineal.

Es importante mencionar que para que este método sea práctico y sencillo se requiere que los coeficientes de las ecuaciones que conforman al sistema lineal sean constantes y como el problema se reduce a resolver una ecuación de orden superior es conveniente usar este método sólo cuando tenemos dos ecuaciones diferenciales en el sistema, ya que esto involucrará resolver una ecuación diferencial de segundo orden con coeficientes constantes.

Desarrollemos el método de manera general.

Método de eliminación de variables

Los sistemas de ecuaciones diferenciales que estamos estudiando son de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + \cdots + a_{1n}(t)y_{n} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + \cdots + a_{2n}(t)y_{n} + g_{2}(t) \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \cdots + a_{nn}(t)y_{n} + g_{n}(t) \label{1} \tag{1}
\end{align*}

Este método lo desarrollaremos para un sistema lineal de dos ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas. De manera general desarrollemos el caso no homogéneo, el caso homogéneo será un caso particular.

Consideremos el siguiente sistema de ecuaciones diferenciales en su forma normal.

$$\begin{align*}
y_{1}^{\prime}(t) &= a_{11}(t)y_{1} + a_{12}(t)y_{2} + g_{1}(t) \\
y_{2}^{\prime}(t) &= a_{21}(t)y_{1} + a_{22}(t)y_{2} + g_{2}(t)
\end{align*} \label{2} \tag{2}$$

Debido a que se trata de un sistema pequeño regresemos a nuestra notación usual de derivada y sean $x$ y $y$ las variables dependientes de la variable independiente $t$. Así mismo, usemos una distinta notación para los coeficientes $a_{i, j}$, $i, j \in \{1, 2\}$, de tal manera que el sistema lineal (\ref{2}) lo podamos escribir de la siguiente forma.

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by + g_{1}(t) \\
\dfrac{dy}{dt} &= cx + dy + g_{2}(t)
\end{align*}\label{3} \tag{3}$$

Con $a$, $b$, $c$ y $d$ constantes. El método que desarrollaremos es para sistema de la forma (\ref{3}).

De la primer ecuación del sistema despejamos a la variable $y$.

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \label{4} \tag{4}$$

Sustituyamos en la segunda ecuación.

$$\dfrac{d}{dt} \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] = cx + d \left[ \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax -g_{1} \right) \right] + g_{2}$$

Derivemos en el lado izquierdo y operemos en el lado derecho de la ecuación.

\begin{align*}
\dfrac{1}{b} \left[ \dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} \right] &= cx + \dfrac{1}{b} \left( d \dfrac{dx}{dt} -adx -dg_{1} \right) + g_{2} \\
\dfrac{d^{2}x}{dt^{2}} -a \dfrac{dx}{dt} -\dfrac{dg_{1}}{dt} &= bcx + d \dfrac{dx}{dt} -adx -dg_{1} + bg_{2}
\end{align*}

Reordenando los términos se tiene lo siguiente.

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc) x = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2} \label{5} \tag{5}$$

Si definimos

$$p = -(a + d), \hspace{1cm} q = (ad -bc) \hspace{1cm} y \hspace{1cm} g(t) = \dfrac{dg_{1}}{dt} -dg_{1} + bg_{2}$$

entonces el resultado (\ref{5}) se puede escribir como

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + q x = g(t) \label{6} \tag{6}$$

Con $p$ y $q$ constantes. En esta forma es claro que tenemos una ecuación diferencial lineal de segundo orden con coeficientes constantes, basta resolver la ecuación usando los métodos desarrollados en la unidad anterior para obtener la función $x(t)$. Una vez obtenida la solución de (\ref{6}) sustituimos en el despeje inicial que hicimos para $y(t)$ (\ref{4}) y resolvemos, con ello estaremos obteniendo la solución del sistema lineal (\ref{3}).

Caso homogéneo

El caso homogéneo es un caso particular del desarrollo anterior, pues el sistema a resolver es

$$\begin{align*}
\dfrac{dx}{dt} &= ax + by \\
\dfrac{dy}{dt} &= cx + dy
\end{align*}\label{7} \tag{7}$$

El desarrollo es exactamente el mismo considerando que $g_{1}(t) = 0$ y $g_{2}(t) = 0$.

Despejando a $y$ de la primer ecuación, obtenemos

$$y = \dfrac{1}{b} \left( \dfrac{dx}{dt} -ax \right) \label{8} \tag{8}$$

Sustituyendo en la segunda ecuación y siguiendo el mismo procedimiento obtendremos que la ecuación diferencial de segundo orden homogénea para $x$ es

$$\dfrac{d^{2}x}{dt^{2}} -(a + d) \dfrac{dx}{dt} + (ad -bc)x = 0 \label{9} \tag{9}$$

Si nuevamente definimos

$$p = -(a + d), \hspace{1cm} y \hspace{1cm} q = (ad -bc)$$

entonces podemos escribir

$$\dfrac{d^{2}x}{dt^{2}} + p \dfrac{dx}{dt} + qx = 0 \label{10} \tag{10}$$

Resolvamos un par de ejemplos, comencemos con un sistema lineal homogéneo.

Ejemplo: Resolver el siguiente sistema lineal homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 2x -y \\
\dfrac{dy}{dt} &= 5x -2y
\end{align*}

Solución: Comencemos por despejar a la variable $y$ de la primer ecuación.

$$y = 2x -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 2x -\dfrac{dx}{dt} \right) = 5x -2 \left( 2x -\dfrac{dx}{dt} \right)$$

Operando, se tiene

\begin{align*}
2 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 5x -4x + 2 \dfrac{dx}{dt} \\
-\dfrac{d^{2}x}{dt^{2}} &= x
\end{align*}

La ecuación de segundo orden a resolver es

$$\dfrac{d^{2}x}{dt^{2}} + x = 0$$

Por supuesto esta ecuación se puede obtener sustituyendo los coeficientes directamente en la ecuación (\ref{9}).

Resolvamos la ecuación. La ecuación auxiliar es

$$k^{2} + 1 = 0$$

cuyas raíces son $k_{1} = i$ y $k_{2} = -i$.

Recordemos que la forma de la solución para raíces complejas $k_{1} = \alpha + i \beta$ y $k_{2} = \alpha -i \beta$ es

$$x(t) =e^{\alpha t}(c_{1} \cos(\beta t) + c_{2} \sin(\beta t)) \label{11} \tag{11}$$

En nuestro caso $\alpha =0$ y $\beta = 1$, entonces la solución es

$$x(t) = c_{1} \cos(t) + c_{2} \sin(t)$$

Vemos que

$$\dfrac{dx}{dt} = -c_{1} \sin(t) + c_{2} \cos(t)$$

Sustituimos en el despeje de $y$.

\begin{align*}
y(x) &= 2(c_{1} \cos(t) + c_{2} \sin(t)) -(-c_{1} \sin(t) + c_{2} \cos(t)) \\
&= 2c_{1} \cos(t) + 2c_{2} \sin(t) + c_{1} \sin(t) -c_{2} \cos(t)
\end{align*}

Esta solución la podemos escribir de dos formas.

$$y(x) = c_{1}(2 \cos(t) + \sin(t)) + c_{2}(2 \sin(t) -\cos(t))$$

o bien,

$$y(x) = (2c_{1} -c_{2})\cos(t) + (c_{1} + 2c_{2})\sin(t)$$

Por lo tanto, la solución general del sistema homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
\cos(t) \\ 2 \cos(t) + \sin(t)
\end{pmatrix} + c_{2} \begin{pmatrix}
\sin(t) \\ 2 \sin(t) -\cos(t)
\end{pmatrix}$$

o bien,

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ 2c_{1} -c_{2}
\end{pmatrix} \cos(t) + \begin{pmatrix}
c_{2} \\ c_{1} + 2c_{2}
\end{pmatrix} \sin(t)$$

$\square$

Ahora resolvamos un sistema no homogéneo como ejemplo.

Ejemplo: Resolver el siguiente sistema lineal no homogéneo.

\begin{align*}
\dfrac{dx}{dt} &= 4x -y + t + 1 \\
\dfrac{dy}{dt} &= 2x + y + t + 1
\end{align*}

Solución: En este caso no homogéneo se tiene que

$$g_{1}(t) = t + 1 = g_{2}(t)$$

De la primer ecuación despejamos a $y$.

$$y = 4x + t + 1 -\dfrac{dx}{dt}$$

Sustituimos en la segunda ecuación.

$$\dfrac{d}{dt} \left( 4x + t + 1 -\dfrac{dx}{dt} \right) = 2x + \left( 4x + t + 1 -\dfrac{dx}{dt} \right) + t + 1$$

En el lado izquierdo aplicamos la derivada y en el lado izquierdo operamos.

\begin{align*}
4 \dfrac{dx}{dt} + \dfrac{d}{dt}(t + 1) -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2 \\
4 \dfrac{dx}{dt} + 1 -\dfrac{d^{2}x}{dt^{2}} &= 6x -\dfrac{dx}{dt} + 2t + 2
\end{align*}

Reordenando los términos, se tiene

\begin{align*}
5 \dfrac{dx}{dt} -\dfrac{d^{2}x}{dt^{2}} &= 6x + 2t + 1 \\
-\dfrac{d^{2}x}{dt^{2}} + 5 \dfrac{dx}{dt} -6x &= 2t + 1 \\
\end{align*}

La ecuación diferencial de segundo orden no homogénea a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

Para obtener la función $x(t)$ primero resolveremos el caso homogéneo y posteriormente aplicaremos el método de coeficientes indeterminados para resolver el caso no homogéneo. Recordemos que la solución general será la superposición de ambos resultados.

$$x(t) = x_{c}(t) + x_{p}(t) \label{12} \tag{12}$$

Para el caso homogéneo la ecuación a resolver es

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = 0$$

La ecuación auxiliar es

$$k^{2} -5k + 6 = 0$$

Resolviendo para $k$ se obtiene que $k_{1} = 2$ y $k_{2} = 3$. Como las raíces son reales y distintas, la forma de la solución es

$$x_{c}(t) = c_{1}e^{k_{1}t} + c_{2}e^{k_{2}t} \label{13} \tag{13}$$

Por lo tanto, la solución complementaria es

$$x_{c}(t) = c_{1}e^{2t} + c_{2}e^{3t}$$

Ahora resolvamos la ecuación no homogénea.

$$\dfrac{d^{2}x}{dt^{2}} -5 \dfrac{dx}{dt} + 6x = -2t -1$$

En este caso la función $g$ es

$$g(x) = -2t -1$$

la cual corresponde a un polinomio de grado $1$, entonces proponemos que la solución particular tiene, de igual manera, la forma de un polinomio de grado $1$, esto es

$$x_{p}(t) = At + B$$

Con $A$ y $B$ constantes por determinar. La primera y segunda derivada están dadas como

$$\dfrac{dx_{p}}{dt} = A \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x}{dt^{2}} = 0$$

Sustituimos en la ecuación diferencial.

$$0 -5A + 6(At + B) = -2t -1$$

Reordenando, se tiene

$$6At + 6B -5A = -2t -1$$

Para que se cumpla la igualdad es necesario que ocurra lo siguiente.

\begin{align*}
6A &= -2 \\
6B -5A &= -1
\end{align*}

De la primer igualdad se obtiene que

$$A = -\dfrac{1}{3}$$

Sustituyendo este resultado en la segunda igualdad se obtiene que

$$B = \dfrac{1}{9}$$

Por lo tanto, la solución particular es

$$x_{p}(t) = -\dfrac{1}{3}t + \dfrac{1}{9}$$

Entonces concluimos que la solución general de la ecuación diferencial de segundo orden para $x$ es

$$x(t) = c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9}$$

Sustituimos este resultado en la ecuación de $y$.

$$y = 4 \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right) + t + 1 -\dfrac{d}{dt} \left( c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{1}{9} \right)$$

Operando, se tiene

$$y = 4c_{1}e^{2t} + 4c_{2}e^{3t} -\dfrac{4}{3}t + \dfrac{4}{9} + t + 1 -2c_{1}e^{2t} -3c_{2}e^{3t} + \dfrac{1}{3}$$

De donde se obtiene finalmente que la solución $y(t)$ es

$$y(x) = 2c_{1}e^{2t} + c_{2}e^{3t} -\dfrac{1}{3}t + \dfrac{16}{9}$$

Por lo tanto, la solución general del sistema lineal no homogéneo es

$$\begin{pmatrix}
x \\ y
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix}$$

$\square$

Hemos concluido con esta entrada. Este método resulta sencillo y práctico para resolver sistemas lineales de este tipo, sin embargo está limitado a sistemas pequeños y realmente estamos interesados en resolver sistemas mucho más complejos.

En las siguientes entradas desarrollaremos otros métodos más generales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y \\
    \dfrac{dy}{dt} &= 4x + 3y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y \\
    \dfrac{dy}{dt} &= 3x -2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x -4y \\
    \dfrac{dy}{dt} &= -x + 2y
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} = 2x -3y \\
    \dfrac{dy}{dt} = 3x + 2y
    \end{align*}$
  1. Resolver los siguientes sistemas lineales no homogéneos.
  • $\begin{align*}
    \dfrac{dx}{dt} &= 2x -y + 3t \\
    \dfrac{dy}{dt} &= 3x -2y + 2t + 4
    \end{align*}$
  • $\begin{align*}
    \dfrac{dx}{dt} &= x + 2y + e^{t} \\
    \dfrac{dy}{dt} &= 3x -2y + 3e^{2t} + 2
    \end{align*}$

Más adelante…

En esta entrada presentamos un método sencillo para resolver sistemas lineales compuestos por dos ecuaciones diferenciales lineales de primer orden con coeficientes constantes tanto homogéneas como no homogéneas.

En la siguiente entrada comenzaremos a desarrollar otros métodos de resolución a sistemas lineales, sin embargo estos métodos suelen ser tratados desde una perspectiva del álgebra lineal, así que será importante hacer una pequeño repaso de algunos conceptos y teoremas de álgebra lineal. Unos de los conceptos más importantes que utilizaremos es el de valores y vectores propios.

Entradas relacionadas

Ecuaciones Diferenciales I: Método de reducción de orden

La única forma de aprender matemáticas es hacer matemáticas.
– Paul Halmos

Introducción

Hemos comenzado estudiando algunas de las propiedades de las soluciones a ecuaciones diferenciales lineales homogéneas y no homogéneas de orden superior. Como mencionamos en la entrada anterior, es momento de comenzar a desarrollar los distintos métodos de resolución de ecuaciones diferenciales de orden superior, sin embargo, debido a la complejidad que surge de aumentar el orden, en esta entrada sólo consideraremos ecuaciones diferenciales de segundo orden.

En esta entrada desarrollaremos el método de reducción de orden, como su nombre lo indica, lo que haremos básicamente es hacer un cambio de variable o una sustitución adecuada que permita que la ecuación de segundo orden pase a ser una ecuación de primer orden y de esta manera aplicar alguno de los métodos vistos en la unidad anterior para resolver la ecuación.

Hay dos distintas formas de reducir una ecuación de segundo orden, la primera de ellas consiste en hacer el cambio de variable

$$z = \dfrac{dy}{dx}$$

Esta forma se aplica en ecuaciones tanto lineales como no lineales, pero deben satisfacer algunas condiciones, mientras que, por otro lado, la segunda forma se aplica sólo a ecuaciones lineales homogéneas en las que tenemos conocimiento previo de una solución no trivial. En este segundo caso, considerando que conocemos una solución $y_{1}(x)$, haremos la sustitución

$$y_{2}(x) = u(x) y_{1}(x)$$

para reducir de orden a la ecuación y al resolverla obtendremos la función $u(x)$ y, por tanto, la segunda solución $y_{2}(x)$, tal que $\{ y_{1}, y_{2} \}$ forme un conjunto fundamental de soluciones de la ecuación diferencial y de esta manera podamos establecer la solución general.

Comencemos por desarrollar la primer forma bajo un cambio de variable.

Ecuaciones reducibles a ecuaciones de primer orden

Hay cierto tipo de ecuaciones de segundo orden que pueden reducirse a una ecuación de primer orden y ser resueltas por los métodos que ya conocemos, vistos en la unidad anterior. Un primer tipo de ecuación son las ecuaciones lineales en las que la variable dependiente $y$ no aparece explícitamente.

Sabemos que una ecuación diferencial lineal no homogénea de segundo orden tiene la siguiente forma.

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \label{1} \tag{1}$$

Si la variable dependiente $y$ no se encuentra explícitamente en la ecuación, obtenemos la siguiente forma.

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} = g(x) \label{2} \tag{2}$$

Es quizá natural pensar que una forma de resolver la ecuación (\ref{2}) es integrarla dos veces, es esto lo que haremos considerando el siguiente cambio de variable.

$$z = \dfrac{dy}{dx}; \hspace{1cm} \dfrac{dz}{dx} = \dfrac{d^{2}y}{dx^{2}} \label{3} \tag{3}$$

Sea $a_{2}(x) \neq 0$, definimos las siguientes funciones.

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{g(x)}{a_{2}(x)}$$

Si sustituimos estas funciones y el cambio de variable (\ref{3}) en la ecuación (\ref{2}) lograremos reducirla a una ecuación lineal de primer orden con $z$ la variable dependiente.

$$\dfrac{dz}{dx} + P(x) z = Q(x) \label{4} \tag{4}$$

En la unidad anterior desarrollamos distintos métodos para resolver este tipo de ecuaciones. Una vez que resolvamos la ecuación (\ref{4}) y regresemos a la variable original veremos que dicho resultado nuevamente corresponde a una ecuación de primer orden que podrá ser resuelta una vez más con los métodos vistos anteriormente. Realicemos un ejemplo.

Ejemplo: Reducir de orden a la ecuación diferencial lineal de segundo orden

$$x \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} = x$$

para $x > 0$ y obtener su solución.

Solución: Dividamos toda la ecuación por $x \neq 0$.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{x} \dfrac{dy}{dx} = 1$$

Hacemos el cambio de variable (\ref{3}) para obtener la forma (\ref{4}).

$$\dfrac{dz}{dx} -\dfrac{1}{x}z = 1 \label{5} \tag{5}$$

Ya no deberíamos tener problema con resolver esta ecuación. Apliquemos el método para resolver ecuaciones lineales. De la ecuación reducida (\ref{5}) notamos que

$$P(x) = -\dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = 1$$

El factor integrante, es este caso, es

$$\mu(x) = e^{\int {P(x)} dx} = e^{-\int \frac{1}{x} dx} = e^{-\ln(x)} = \dfrac{1}{x}$$

Esto es,

$$\mu(x) = \dfrac{1}{x}$$

Multipliquemos la ecuación (\ref{5}) por el factor integrante,

$$\dfrac{1}{x} \dfrac{dz}{dx} -\dfrac{z}{x^{2}} = \dfrac{1}{x}$$

e identificamos que

$$\dfrac{d}{dx} \left( \dfrac{z}{x} \right) = \dfrac{1}{x} \dfrac{dz}{dx} -\dfrac{z}{x^{2}}$$

De ambas ecuaciones se tiene

$$\dfrac{d}{dx} \left( \dfrac{z}{x} \right) = \dfrac{1}{x}$$

Ahora podemos integrar ambos lados de la ecuación con respecto a $x > 0$.

\begin{align*}
\int \dfrac{d}{dx} \left( \dfrac{z}{x} \right) dx &= \int \dfrac{1}{x} dx \\
\dfrac{z}{x} &= \ln (x) + c_{1} \\
z(x) &= x \ln (x) + xc_{1}
\end{align*}

Hemos resuelto la ecuación para la variable $z$, regresemos a la variable original para resolver la nueva ecuación de primer orden.

$$\dfrac{dy}{dx} = x \ln(x) + xc_{1} \label{6} \tag{6}$$

Esta ecuación puede ser resuelta por separación de variables en su versión simple de integración directa (la ecuación ya esta separada), integremos ambos lados de la ecuación con respecto a $x$,

\begin{align*}
\int \dfrac{dy}{dx} dx &= \int x \ln(x) dx + \int xc_{1} dx \\
y(x) &= \int x \ln(x) dx + c_{1} \dfrac{x^{2}}{2}
\end{align*}

Para resolver la integral que nos falta apliquemos integración por partes, hagamos

$$u(x) = \ln(x) \hspace{1cm} y \hspace{1cm} \dfrac{dv}{dx} = x$$

Así mismo,

$$\dfrac{du}{dx} = \dfrac{1}{x} \hspace{1cm} y \hspace{1cm} v(x) = \dfrac{x^{2}}{2}$$

Entonces,

\begin{align*}
\int{x \ln(x) dx} &= \dfrac{x^{2}}{2} \ln(x) -\int{\dfrac{x}{2} dx} \\
&= \dfrac{x^{2}}{2} \ln(x) -\dfrac{x^{2}}{4} + c_{2}
\end{align*}

Sustituimos en la función $y(x)$.

$$y(x) = \dfrac{x^{2}}{2} \ln(x) -\dfrac{x^{2}}{4} + c_{1} \dfrac{x^{2}}{2} + c_{2}$$

Por lo tanto, la solución general de la ecuación diferencial

$$x \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} = x$$

es

$$y(x) = \dfrac{x^{2}}{2} \left( \ln(x) -\dfrac{1}{2} \right) + c_{1} \dfrac{x^{2}}{2} + c_{2} \label{7} \tag{7}$$

De tarea moral verifica que es la solución general ya que el conjunto

$$S = \left\{ y_{1}(x) = \dfrac{x^{2}}{2}, y_{2}(x) = 1 \right\}$$

es un conjunto fundamental de soluciones de la ecuación homogénea asociada y

$$y_{p}(x) = \dfrac{x^{2}}{2} \left( \ln(x) -\dfrac{1}{2} \right)$$

es una solución particular de la ecuación no homogénea.

$\square$

Reducción de orden en ecuaciones no lineales

Es posible aplicar un método similar en ecuaciones de segundo orden que pueden ser tanto lineales como no son lineales, en este caso, a diferencia del caso anterior, la variable dependiente $y$ puede aparecer en la ecuación, sin embargo es necesario que la variable independiente $x$ sea la que no aparezca explícitamente. Este tipo de ecuaciones también pueden reducirse a una ecuación de primer orden, pero tomando el siguiente cambio de variable.

$$\dfrac{dy}{dx} = z; \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = z \dfrac{dz}{dy} \label{8} \tag{8}$$

Donde la segunda expresión se deduce de aplicar la regla de la cadena

$$\dfrac{d^{2}y}{dx^{2}} = \dfrac{dz}{dx} = \dfrac{dz}{dy} \dfrac{dy}{dx} = z \dfrac{dz}{dy}$$

Realicemos un ejemplo con una ecuación no lineal.

Ejemplo: Reducir de orden a la ecuación diferencial no lineal de segundo orden

$$\dfrac{d^{2}y}{dx^{2}} -2y \left( \dfrac{dy}{dx}\right)^{3} = 0$$

y obtener su solución.

Solución: Es importante notar que es no lineal debido a que la primer derivada es de tercer grado y además esta multiplicada por la función $y$, lo cual no debe ocurrir en el caso lineal.

La ecuación a resolver es

$$\dfrac{d^{2}y}{dx^{2}} -2y \left( \dfrac{dy}{dx}\right)^{3} = 0$$

Hacemos el cambio de variable (\ref{8}) y separamos variables.

\begin{align*}
z \dfrac{dz}{dy} -2yz^{3} &= 0 \\
\dfrac{dz}{dy} &= 2yz^{2} \\
\dfrac{1}{z^{2}} \dfrac{dz}{dy} &= 2y
\end{align*}

Integramos ambos lados de la ecuación con respecto a $y$.

\begin{align*}
\int{\dfrac{1}{z^{2}} \dfrac{dz}{dy} dy} &= \int{2y dy} \\
\int{\dfrac{dz}{z^{2}}} &= 2 \int{y dy} \\
-\dfrac{1}{z} &= y^{2} + c_{1} \\
z &= -\dfrac{1}{y^{2} + c_{1}}
\end{align*}

Regresamos a la variable original y separamos de nuevo las variables.

\begin{align*}
\dfrac{dy}{dx} &= -\dfrac{1}{y^{2} + c_{1}} \\
(y^{2} + c_{1}) \dfrac{dy}{dx} &= -1
\end{align*}

Integramos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int{(y^{2} + c_{1}) \dfrac{dy}{dx} dx} &= -\int{dx} \\
\int{y^{2} dy} + \int{c_{1} dy} &= -\int{dx} \\
\dfrac{y^{3}}{3} + c_{1}y &= -x + c_{2}
\end{align*}

Por lo tanto, la solución implícita de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -2y \left( \dfrac{dy}{dx}\right)^{3} = 0$$

es

$$\dfrac{y^{3}}{3} + c_{1}y = c_{2} -x$$

$\square$

Realicemos un ejemplo más con una ecuación lineal.

Ejemplo: Encontrar la solución general de la ecuación diferencial

$$4 \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$$

Solución: Como la ecuación no contiene explícitamente a la función $y$ ni a la variable independiente $x$, entonces podemos aplicar cualquier cambio de variable, ya sea (\ref{3}) u (\ref{8}). Vamos a resolverla aplicando ambos casos.

Primero consideremos el cambio de variable (\ref{8}).

\begin{align*}
4z \dfrac{dz}{dy} + z &= 0 \\
4 \dfrac{dz}{dy} &= -1 \\
\dfrac{dz}{dy} &= -\dfrac{1}{4}
\end{align*}

Integremos ambos lados de la ecuación con respecto a $y$.

\begin{align*}
\int{\dfrac{dz}{dy} dy} &= -\int{\dfrac{1}{4} dy} \\
\int{dz} &= -\dfrac{1}{4} \int{dy} \\
z &= -\dfrac{1}{4} y + c_{1}
\end{align*}

Regresemos a la variable original.

\begin{align*}
\dfrac{dy}{dx} &= -\dfrac{1}{4} y + c_{1} \\
\dfrac{dy}{dx} + \dfrac{y}{4} &= c_{1}
\end{align*}

Resolvamos esta ecuación por factor integrante.

$$\mu(x) = e^{\int {P(x)} dx} = e^{\int \frac{1}{4} dx} = e^{x/4}$$

Esto es,

$$\mu(x) = e^{x/4}$$

Multipliquemos ambos lados de la ecuación por el factor integrante.

\begin{align*}
e^{x/4} \dfrac{dy}{dx} + e^{x/4} \dfrac{y}{4} &= e^{x/4} c_{1} \\
\dfrac{d}{dx}\left( y e^{x/4} \right) &= c_{1} e^{x/4}
\end{align*}

Integramos ambos lados con respecto a $x$.

\begin{align*}
\int{\dfrac{d}{dx}\left( y e^{x/4} \right) dx} &= \int{c_{1} e^{x/4} dx} \\
y e^{x/4} &= c_{1} \int{e^{x/4} dx} \\
y e^{x/4} &= c_{1} 4 e^{x/4} + c_{2} \\
y(x) &= c_{2} e^{-x/4} + 4c_{1}
\end{align*}

Renombrando a las constantes concluimos que la solución general de la ecuación diferencial

$$4 \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$$

es

$$y(x) = k_{1} e^{-x/4} + k_{2}$$

Resolvamos de nuevo la ecuación, pero ahora aplicando el cambio de variable (\ref{3}),

\begin{align*}
4 \dfrac{dz}{dx} + z &= 0 \\
\dfrac{1}{z} \dfrac{dz}{dx} &= -\dfrac{1}{4}
\end{align*}

Integremos ambos lados con respecto a $x$.

\begin{align*}
\int{\dfrac{1}{z} \dfrac{dz}{dx} dx} &= -\int{\dfrac{1}{4} dx} \\
\int{\dfrac{dz}{z}} &= -\dfrac{1}{4}\int{dx} \\
\ln|z| &= -\dfrac{x}{4} + c_{1} \\
z &= c_{2}e^{-x/4}
\end{align*}

Con $c_{2} = e^{c_{1}}$. Regresemos a la variable original.

$$\dfrac{dy}{dx} = c_{2}e^{-x/4}$$

Integremos ambos lados con respecto a $x$.

\begin{align*}
\int{\dfrac{dy}{dx} dx} = \int{c_{2} e^{-x/4} dx} \\
\int{dy} = c_{2} \int{e^{-x/4} dx} \\
y = -c_{2}4 e^{-x/4} + c_{3}
\end{align*}

Si renombramos las constantes obtenemos nuevamente que

$$y(x) = k_{1} e^{-x/4} + k_{2}$$

$\square$

Es posible reducir una ecuación diferencial de segundo orden a una de primer orden si previamente conocemos una solución de la ecuación. Usualmente este método es mayor recurrido que el anterior y también recibe el nombre de método de reducción de orden.

Reducción de orden conocida una solución

Es posible reducir una ecuación diferencial lineal homogénea de segundo orden

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = 0 \label{9} \tag{9}$$

a una ecuación diferencial de primer orden siempre que se conozca previamente una solución no trivial $y_{1}(x)$. Recordemos de la entrada anterior que una ecuación de la forma (\ref{9}) tiene como solución general la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) \label{10} \tag{10}$$

con $y_{1}$ y $y_{2}$ funciones que forman un conjunto fundamental de soluciones en cierto intervalo $\delta$. Si conocemos $y_{1}$ podremos reducir la ecuación a una de primer orden y resolverla para obtener la solución $y_{2}$ y, por tanto, obtener la solución general.

Este método también es conocido como método de reducción de orden, pues tiene el mismo propósito que los casos anteriores, reducir de orden a una ecuación diferencial. La idea general del método es la siguiente.

Comenzaremos con el conocimiento previo de una solución no trivial $y_{1}(x)$ de la ecuación homogénea (\ref{9}) definida en un intervalo $\delta$. Lo que buscamos es una segunda solución $y_{2}(x)$, tal que $y_{1}$ y $y_{2}$ formen un conjunto fundamental de soluciones en $\delta$, es decir, que sean soluciones linealmente independientes entre sí. Recordemos que si ambas soluciones son linealmente independientes, entonces el cociente $\dfrac{y_{2}}{y_{1}}$ no es constante en $\delta$, es decir

$$\dfrac{y_{2}(x)}{y_{1}(x)} = u(x)$$

o bien,

$$y_{2}(x) = u(x) y_{1}(x) \label{11} \tag{11}$$

Como queremos encontrar $y_{2}$ y previamente conocemos $y_{1}$, entonces debemos determinar la función $u(x)$, dicha función se determina al sustituir (\ref{11}) en la ecuación diferencial dada, esto reducirá a dicha ecuación a una de primer orden donde la variable dependiente será $u$.

Desarrollemos el método de manera general para encontrar la expresión de $u(x)$ y, por tanto, de $y_{2}(x)$ y finalmente realicemos un ejemplo.

Método de reducción de orden

Este método se aplica a las ecuaciones diferenciales de la forma

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = 0$$

Si dividimos esta ecuación por $a_{2}(x) \neq 0$ obtenemos la forma estándar

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{12} \tag{12}$$

Con

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)}$$

ambas continuas en algún intervalo $\delta$. Supongamos además que $y_{1}(x)$ es una solución conocida de (\ref{12}) en $\delta$ y que $y_{1}(x) \neq 0 $ para toda $x \in \delta$. Si se define

$$y(x) = u(x) y_{1}(x)$$

derivando se tiene

$$\dfrac{dy}{dx} = u \dfrac{dy_{1}}{dx} + y_{1} \dfrac{du}{dx} \label{13} \tag{13}$$

Derivando una segunda ocasión se tiene

$$\dfrac{d^{2}y}{dx^{2}} = u \dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx} \dfrac{du}{dx} + y_{1} \dfrac{d^{2}u}{dx^{2}} \label{14} \tag{14}$$

Sustituyendo (\ref{13}) y (\ref{14}) en la forma estándar (\ref{12}) obtenemos lo siguiente.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + P\dfrac{dy}{dx} + Qy &= \left[ u \dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx} \dfrac{du}{dx} + y_{1} \dfrac{d^{2}u}{dx^{2}} \right] + P \left[ u \dfrac{dy_{1}}{dx} + y_{1} \dfrac{du}{dx} \right] + Q \left[ u y_{1}\right] \\
&= u \left[ \dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Qy_{1} \right] + y_{1} \dfrac{d^{2}u}{dx^{2}} + \left( 2 \dfrac{dy_{1}}{dx} + Py_{1} \right) \dfrac{du}{dx} \\
&= 0
\end{align*}

Como $y_{1}(x)$ es solución sabemos que

$$\dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Qy_{1} = 0$$

Entonces el resultado anterior se reduce a lo siguiente.

$$y_{1} \dfrac{d^{2}u}{dx^{2}} + \left( 2 \dfrac{dy_{1}}{dx} + Py_{1} \right) \dfrac{du}{dx} = 0 \label{15} \tag{15}$$

Consideremos el cambio de variable

$$w = \dfrac{du}{dx} \hspace{1cm} y \hspace{1cm} \dfrac{dw}{dx} = \dfrac{d^{2}y}{dx^{2}}$$

Entonces la ecuación (\ref{15}) se puede escribir como

$$y_{1} \dfrac{dw}{dx} + \left( 2 \dfrac{dy_{1}}{dx} + Py_{1} \right) w = 0 \label{16} \tag{16}$$

Esta ecuación es tanto lineal como separable. Separando las variables e integrando, se obtiene

\begin{align*}
\dfrac{1}{w}\dfrac{dw}{dx} + 2\dfrac{1}{y_{1}} \dfrac{dy_{1}}{dx} &= -P \\
\int{\dfrac{dw}{w}} + 2\int{\dfrac{dy_{1}}{y_{1}}} &= -\int{P dx} \\
\ln |w| + 2 \ln|y_{1}| + k &= -\int{P dx} \\
\ln |w y^{2}_{1}| + k &= -\int{P dx} \\
wy^{2}_{1} &= k_{1}e^{-\int{P dx}}
\end{align*}

Despejando a $w$ de la última ecuación, usando $w = \dfrac{du}{dx}$ e integrando nuevamente, se tiene

\begin{align*}
\dfrac{du}{dx} &= \dfrac{k_{1}e^{-\int{P dx}}}{y^{2}_{1}} \\
\int{du} &= \int{\dfrac{k_{1}e^{-\int{P dx}}}{y^{2}_{1}} dx} \\
u &= k_{1} \int{\dfrac{e^{-\int{P} dx}}{y^{2}_{1}} dx} + k_{2}
\end{align*}

Eligiendo $k_{1} = 1$ y $k_{2} = 0$ obtenemos la expresión para la función $u(x)$,

$$u(x) = \int{\dfrac{e^{-\int{P} dx}}{y^{2}_{1}} dx} \label{17} \tag{17}$$

Si sustituimos en

$$y(x) = y_{2}(x) = u(x)y_{1}(x)$$

obtenemos que la segunda solución de la ecuación diferencial (\ref{12}) es

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x)} dx}}{y^{2}_{1}(x)} dx} \label{18} \tag{18}$$

De tarea moral puedes probar que la función $y_{2}$ satisface la ecuación diferencial y que $y_{1}$ y $y_{2}$ son linealmente independientes en algún intervalo en el que $y_{1}$ no es cero.

Realicemos un ejemplo en el que apliquemos este método.

Ejemplo: Encontrar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 16y = 0$$

dada la solución no trivial

$$y_{1}(x) = \cos(4x)$$

Solución: En esta ocasión apliquemos directamente la expresión (\ref{18}) para obtener la solución $y_{2}(x)$.

La ecuación diferencial a resolver es

$$\dfrac{d^{2}y}{dx^{2}} + 16y = 0$$

Si la comparamos con la forma estándar (\ref{12}) notamos que

$$P(x) = 0 \hspace{1cm} y \hspace{1cm}Q(x) = 16$$

Sustituyendo en (\ref{18}), se tiene

\begin{align*}
y_{2}(x) &= \cos(4x) \int{\dfrac{e^{0}}{\cos^{2}(4x)} dx} \\
&= \cos(4x) \int{\dfrac{1}{\cos^{2}(4x)} dx}
\end{align*}

Para resolver la integral consideremos el cambio de variable $s = 4x$, $ds = 4 dx$.

$$\int{\dfrac{1}{\cos^{2}(4x)} dx} = \dfrac{1}{4} \int{\sec^{2}(s) ds}$$

Sabemos que

$$\int{\sec^{2}(s) ds} = \tan(s)$$

Así

$$y_{2}(x) = \cos(4x) \left( \dfrac{1}{4} \tan(4x) + k_{1} \right)$$

Hacemos $k_{1} = 0$.

$$y_{2}(x) = \dfrac{\cos(4x)}{4} \left( \dfrac{\sin(4x)}{\cos(4x)} \right) = \dfrac{\sin(4x)}{4}$$

Como la solución general corresponde a la combinación lineal (\ref{10}), en las constantes $c_{1}$ y $c_{2}$ se pueden englobar todas las constantes que pudieran aparecer, por ello es que podemos tomar $k_{1} = 0$ y además podemos evitar la constante $\dfrac{1}{4}$ de $y_{2}$ y considerar que

$$y_{2}(x) = \sin(4x)$$

Veamos que efectivamente satisface la ecuación diferencial.

$$\dfrac{dy_{2}}{dx} = 4 \cos(4x) \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = -16 \sin(4x)$$

Sustituyendo en la ecuación diferencial.

$$\dfrac{d^{2}y}{dx^{2}} + 16y = -16 \sin(4x) + 16 \sin(4x) = 0$$

Cumple con la ecuación diferencial, lo mismo podemos verificar con la solución dada

$$y_{1}(x) = \cos(4x)$$

Tenemos,

$$\dfrac{dy_{1}}{dx} = -4 \sin(4x) \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{1}}{dx^{2}} = -16 \cos(4x)$$

Sustituyendo en la ecuación diferencial.

$$\dfrac{d^{2}y}{dx^{2}} + 16y = -16 \cos(4x) + 16 \cos(4x) = 0$$

Como ambas soluciones son linealmente independientes, entonces forman un conjunto fundamental de soluciones. Otra forma de verificarlo es mostrando que el Wronskiano es distinto de cero y lo es ya que

$$W(y_{1}, y_{2}) = 4 \neq 0$$

Por lo tanto, la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 16y = 0$$

corresponde a la combinación lineal

$$y(x) = c_{1} \cos(4x) + c_{2} \sin(4x)$$

$\square$

Con esto concluimos esta entrada sobre un primer método para resolver algunas ecuaciones diferenciales de segundo orden. En la siguiente entrada desarrollaremos un nuevo método.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales lineales.
  • $x \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} = 0$
  • $(x-1) \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} = 0$
  1. Resolver las siguientes ecuaciones diferenciales no lineales.
  • $(y -1)\dfrac{d^{2}y}{dx^{2}} = \left( \dfrac{dy}{dx} \right)^{2} $
  • $\left( \dfrac{dy}{dx} \right)^{2} -2 \dfrac{d^{2}y}{dx^{2}} = 0$
  1. Dada una solución no trivial de las siguientes ecuaciones diferenciales, hallar la segunda solución, tal que ambas formen un conjunto fundamental de soluciones y determina la solución general.
  • $\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 0; \hspace{1cm} y_{1}(x) = e^{2x}$
  • $\dfrac{d^{2}y}{dx^{2}} -25y = 0; \hspace{1cm} y_{1}(x) = e^{5x}$
  1. Demostrar que la función $$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x)} dx}}{y^{2}_{1}(x)} dx}$$ Satisface la ecuación diferencial $$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$ Siempre que $y_{1}(x)$ sea solución de la misma ecuación.
  1. Usando el inciso anterior, demostrar que $$S = \left \{ y_{1}(x), y_{1}(x) \int{\dfrac{e^{-\int{P(x)} dx}}{y^{2}_{1}(x)} dx} \right \}$$ es un conjunto fundamental de soluciones de la ecuación diferencial $$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$

Más adelante…

En esta entrada desarrollamos un método de reducción de orden basado en un cambio de variable para ecuaciones lineales y no lineales de segundo orden que satisfacen algunas condiciones y desarrollamos el método de reducción de orden para ecuaciones diferenciales lineales homogéneas en el caso en el que previamente conocemos una solución no trivial.

En la siguiente entrada estudiaremos otro método para resolver un tipo particular de ecuaciones diferenciales, éstas son las ecuaciones diferenciales lineales homogéneas con coeficientes constantes, de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = 0$$

Con $a, b$ y $c$ constantes.

Entradas relacionadas

Ecuaciones Diferenciales l: Ecuación de Bernoulli y ecuación de Riccati

“Obvio” es la palabra más peligrosa del mundo en matemáticas.
– E. T. Bell

Introducción

Con esta entrada concluiremos el desarrollo de métodos de resolución de ecuaciones diferenciales de primer orden.

Presentaremos dos ecuaciones diferenciales no lineales más, conocidas como ecuación diferencial de Bernoulli y ecuación diferencial de Riccati en honor a sus formuladores Jacob Bernoulli y Jacopo Francesco Riccati, respectivamente.

Ecuación diferencial de Bernoulli

La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden formulada por Jacob Bernoulli en el siglo XVll.

Definición: La ecuación diferencial

$$a_{1}(x)\dfrac{dy}{dx} + a_{0}(x) y = g(x) y^{n} \label{1} \tag{1}$$

donde $n$ es cualquier número real, se llama ecuación de Bernoulli.

Si a la ecuación de Bernoulli la dividimos por la función $a_{1}(x) \neq 0$, obtenemos

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)} y^{n}$$

Definimos las siguientes funciones.

$$P(x)=\dfrac{a_{0}(x)}{a_{1}(x)} \hspace{1cm} y \hspace{1cm} Q(x)=\dfrac{g(x)}{a_{1}(x)} \label{2} \tag{2}$$

Entonces una ecuación de Bernoulli se puede reescribir como

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n} \label{3} \tag{3}$$

La ecuación (\ref{3}) es también una definición común de ecuación de Bernoulli.

Notemos que si $n = 0$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal no homogénea.

$$\dfrac{dy}{dx} + P(x) y = Q(x) \label{4} \tag{4}$$

Y si $n = 1$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal homogénea.

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= Q(x) y \\
\dfrac{dy}{dx} + [P(x) -Q(x)] y &= 0 \\
\end{align*}

Si definimos

$$R(x) = P(x) -Q(x)$$

entonces

$$\dfrac{dy}{dx} + R(x) y = 0 \label{5} \tag{5}$$

Las ecuaciones (\ref{4}) y (\ref{5}) ya las sabemos resolver.

Nuestro objetivo será resolver la ecuación de Bernoulli para el caso en el que $n \neq 0$ y $n \neq 1$.

Una propiedad de las ecuaciones de Bernoulli es que la sustitución

$$u(x) = y^{1 -n} \label{6} \tag{6}$$

la convierte en una ecuación lineal, de tal manera que podremos resolverla usando algún método de resolución visto para ecuaciones diferenciales lineales.

Consideremos la ecuación de Bernoulli en la forma (\ref{3}).

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Dividimos toda la ecuación por $y^{n} \neq 0$.

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} + P(x) y^{1-n} = Q(x) \label{7} \tag{7}$$

La derivada de la función (\ref{6}) es

$$\dfrac{du}{dx} = (1 -n) y^{-n} \dfrac{dy}{dx} = (1 -n) \dfrac{1}{y^{n}} \dfrac{dy}{dx}$$

de donde,

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n} \dfrac{du}{dx} \label{8} \tag{8}$$

Sustituyamos (\ref{6}) y (\ref{8}) en la ecuación (\ref{7}).

$$\dfrac{1}{1-n} \dfrac{du}{dx} + P(x)u = Q(x) \label{9} \tag{9}$$

Multipliquemos por $1 -n$ en ambos lados de la ecuación.

$$\dfrac{du}{dx} + (1 -n)P(x)u = (1 -n)Q(x)$$

Definimos las funciones

$$R(x) = (1 -n)P(x) \hspace{1cm} y \hspace{1cm} S(x) = (1 -n)Q(x)$$

En términos de estas funciones la ecuación (\ref{9}) se puede escribir de la siguiente forma.

$$\dfrac{du}{dx} + R(x)u = S(x) \label{10} \tag{10}$$

Este resultado corresponde a una ecuación diferencial lineal de primer orden no homogénea y, por tanto, puede ser resuelta aplicando el algoritmo descrito para resolver ecuaciones diferenciales lineales.

Los pasos que se recomiendan seguir para resolver una ecuación diferencial de Bernoulli se presentan a continuación.

Método para resolver ecuaciones de Bernoulli

  1. El primer paso es escribir a la ecuación de Bernoulli en la forma (\ref{3}).
  1. Dividimos toda la ecuación por $y^{n}$ y consideramos el cambio de variable $u = y^{1 -n}$, así como la respectiva derivada $$\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$$
  1. Sustituimos $$y^{1 -n} = u \hspace{1cm} y \hspace{1cm} \dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n}\dfrac{du}{dx}$$ en la ecuación resultante del paso anterior y haciendo un poco de álgebra podremos reducir la ecuación de Bernoulli en una ecuación lineal de primer orden no homogénea.
  1. Resolvemos la ecuación resultante usando el método de resolución de ecuaciones diferenciales lineales lo que nos permitirá obtener la función $u(x)$.
  1. Regresamos a la variable original para obtener finalmente la solución $y(x)$.

Realicemos un ejemplo en el que apliquemos estos pasos.

Ejemplo: Resolver la ecuación de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

Solución: El primer paso es escribir la ecuación de Bernoulli en la forma (\ref{3}).

\begin{align*}
3(1 + x^{2}) \dfrac{dy}{dx} &= 2xy (y^{3} -1) \\
\dfrac{dy}{dx} & =\dfrac{2xy (y^{3} -1)}{3(1 + x^{2})} \\
\dfrac{dy}{dx} &= \dfrac{2xy^{4}}{3(1 + x^{2})} -\dfrac{2xy}{3(1 + x^{2})} \\
\dfrac{dy}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) y &= \left( \dfrac{2x}{3(1 + x^{2})} \right) y^{4}
\end{align*}

La última relación muestra a la ecuación en la forma (\ref{3}) con $n = 4$, ahora dividamos toda la ecuación por $y^{4}$.

$$\dfrac{1}{y^{4}} \dfrac{dy}{dx} + \left( \dfrac{2x}{3(1+x^{2})} \right) y^{-3} = \dfrac{2x}{3(1 + x^{2})} \label{11} \tag{11}$$

Consideremos la sustitución

$$u = y^{1 -n} = y^{1 -4} = y^{-3} = \dfrac{1}{y^{3}}$$

y

$$\dfrac{du}{dx} = -3 y^{-4} \dfrac{dy}{dx}$$

De donde,

$$\dfrac{1}{y^{4}} \dfrac{dy}{dx} = -\dfrac{1}{3} \dfrac{du}{dx} \hspace{1cm} y \hspace{1cm} y^{-3} = u$$

Sustituimos estos resultados en la ecuación (\ref{11}).

\begin{align*}
-\dfrac{1}{3} \dfrac{du}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) u &= \dfrac{2x}{3(1 + x^{2})} \\
\dfrac{du}{dx} +\left( -\dfrac{2x}{1 + x^{2}} \right) u &= -\dfrac{2x}{1 + x^{2}} \label{12} \tag{12}
\end{align*}

La última ecuación es una expresión en la forma (\ref{10}). Con esto hemos logrado reducir la ecuación de Bernoulli en una ecuación diferencial lineal de primer orden no homogénea.

Establecemos las siguientes funciones.

$$R(x) = -\dfrac{2x}{1 + x^{2}} \hspace{1cm} y \hspace{1cm} S(x) = -\dfrac{2x}{1 + x^{2}}$$

A partir de aquí aplicamos el método de resolución de ecuaciones diferenciales lineales.

La ecuación ya se encuentra en su forma canónica. Determinemos el factor integrante dado por

$$\mu (x) = e^{\int {R(x)dx}} \label{13} \tag{13}$$

Resolvamos la integral del exponente omitiendo la constante de integración.

\begin{align*}
\int {R(x)dx} &= -\int \dfrac{2x}{1 + x^{2}} dx \\
&= -\ln|1 + x^{2}|
\end{align*}

Por lo tanto,

$$\mu (x) = e^{-\ln|1 + x^{2}|} = \dfrac{1}{1+x^{2}}$$

Multipliquemos a la ecuación (\ref{12}) por el factor integrante.

$$\dfrac{1}{1 + x^{2}} \dfrac{du}{dx} -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right) u = -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right)$$

Identificamos que el lado izquierdo de la ecuación es la derivada del producto del factor integrante $\mu(x)$ por la función $u(x)$, de esta manera

$$\dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) = -\dfrac{2x}{(1 + x^{2})^{2}}$$

Integramos ambos lados de la ecuación con respecto a $x$. Por tratarse del último paso sí consideramos a la constante de integración.

$$\int \dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) dx = -\int \dfrac{2x}{(1 + x^{2})^{2}} dx$$

En el lado izquierdo aplicamos el teorema fundamental del cálculo y en el lado derecho consideramos la sustitución $a(x) = 1 + x^{2}$ para resolver la integral. El resultado que se obtiene es

\begin{align*}
\dfrac{u}{1 + x^{2}} &= \dfrac{1}{1 + x^{2}} + c \\
u &= 1 + (1 + x^{2})c \\
\end{align*}

Regresamos a la variable original $u = y^{-3}$.

$$\dfrac{1}{y^{3}} = 1 + (1 + x^{2})c$$

Por lo tanto, la solución general (implícita) de la ecuación diferencial de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

es

$$y^{3}(x) = \dfrac{1}{1 + (1 + x^{2}) c}$$

$\square$

Ahora revisemos la ecuación de Riccati.

Ecuación diferencial de Riccati

La ecuación de Riccati es una ecuación diferencial ordinara no lineal de primer orden, inventada y desarrollada en el siglo XVlll por el matemático italiano Jacopo Francesco Riccati.

Definición: La ecuación diferencial

$$\dfrac{dy}{dx} = q_{0}(x) + q_{1}(x) y +q_{2}(x) y^{2} \label{14} \tag{14}$$

se llama ecuación de Riccati.

Resolver la ecuación de Riccati requiere del conocimiento previo de una solución particular de la ecuación, llamemos a dicha solución $\hat{y}(x)$. Si hacemos la sustitución

$$y(x) = \hat{y}(x) + u(x) \label{15} \tag{15}$$

La ecuación de Riccati adquiere la forma de una ecuación de Bernoulli, de tarea moral comprueba este hecho. Ya vimos que para resolver una ecuación de Bernoulli debemos reducirla a una ecuación lineal no homogénea, así que veamos directamente cómo reducir una ecuación de Riccati a una ecuación lineal no homogénea.

Sea $\hat{y}(x)$ una solución particular de la ecuación de Riccati y consideremos la sustitución

$$y(x) = \hat{y}(x) + \dfrac{1}{u(x)} \label{16} \tag{16}$$

Derivemos esta ecuación.

$$\dfrac{dy}{dx} = \dfrac{d\hat{y}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{17} \tag{17}$$

Como $\hat{y}(x)$ es una solución de la ecuación de Riccati, entonces satisface la ecuación diferencial.

$$\dfrac{d\hat{y}}{dx} = q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} \label{18} \tag{18}$$

Sustituyendo (\ref{18}) en (\ref{17}) obtenemos la siguiente ecuación.

$$\dfrac{dy}{dx} = q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{19} \tag{19}$$

Ahora podemos igualar la ecuación (\ref{19}) con la ecuación de Riccati (\ref{14}).

\begin{align*}
q_{0}(x) + q_{1}(x) y +q_{2}(x) y^{2} &= q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
q_{1}(x) y +q_{2}(x) y^{2} &= q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x) \hat{y} -q_{1}(x) y + q_{2}(x) \hat{y}^{2} -q_{2}(x) y^{2} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x)(\hat{y} -y) + q_{2}(x)(\hat{y}^{2} -y^{2})
\end{align*}

En la última relación sustituimos la función (\ref{16}).

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x) \left[ \hat{y} -\left( \hat{y} + \dfrac{1}{u} \right) \right] + q_{2}(x) \left [ \hat{y}^{2} -\left( \hat{y} + \dfrac{1}{u} \right) ^{2} \right ] \\
&= q_{1}(x) \left( \hat{y} -\hat{y} -\dfrac{1}{u} \right) + q_{2}(x) \left( \hat{y}^{2} -\hat{y}^{2} -2 \hat{y} \dfrac{1}{u} -\dfrac{1}{u^{2}} \right) \\
&= q_{1}(x) \left( -\dfrac{1}{u} \right ) + q_{2}(x) \left( -2\dfrac{\hat{y}}{u} -\dfrac{1}{u^{2}} \right) \\
&= -\dfrac{q_{1}(x)}{u} -2 q_{2}(x) \dfrac{\hat{y}}{u} -\dfrac{q_{2}(x)}{u^{2}}
\end{align*}

Esto es,

$$\dfrac{1}{u^{2}} \dfrac{du}{dx} = -\dfrac{q_{1}(x)}{u} -2 q_{2}(x) \dfrac{\hat{y}}{u} -\dfrac{q_{2}(x)}{u^{2}}$$

Multipliquemos ambos lados de la ecuación por $u^{2}$.

\begin{align*}
\dfrac{du}{dx} &= -q_{1}(x)u -2q_{2}(x) \hat{y} u -q_{2}(x) \\
\dfrac{du}{dx} &= -\left( q_{1}(x) + 2q_{2}(x) \hat{y} \right) u -q_{2}(x)
\end{align*}

Vemos que

$$\dfrac{du}{dx} + \left( q_{1}(x) + 2q_{2}(x) \hat{y} \right) u = -q_{2}(x) \label{20} \tag{20}$$

Definamos las funciones

$$R(x) = q_{1}(x) + 2q_{2}(x) \hat{y}(x) \hspace{1cm} y \hspace{1cm} S(x) = -q_{2}(x)$$

Por lo tanto, la ecuación (\ref{20}) queda de la siguiente forma.

$$\dfrac{du}{dx} + R(x) u = S(x) \label{21} \tag{21}$$

Queda demostrado que la sustitución (\ref{16}) convierte a la ecuación de Riccati en una ecuación diferencial lineal y, por tanto, puede ser resuelta con el método de resolución de ecuaciones lineales.

Como es usual, enunciemos la serie de pasos que se recomienda seguir para resolver las ecuaciones diferenciales de Riccati.

Método para resolver ecuaciones de Riccati

  1. El primer paso es escribir a la ecuación de Riccati en la forma (\ref{14}) y estar seguros de que conocemos previamente una solución particular $\hat{y}(x)$ de la ecuación.
  1. Como queremos reducir la ecuación de Riccati en una ecuación lineal no homogénea consideramos la sustitución $$y(x) = \hat{y}(x) + \dfrac{1}{u(x)}$$ con $\hat{y}(x)$ la solución particular dada.

    Si se deseara reducirla a una ecuación de Bernoulli se hace la sustitución $$y(x) = \hat{y}(x) + u(x)$$
  1. Debido a que $\hat{y}(x)$ es solución de la ecuación de Riccati, el siguiente paso es derivar la sustitución $y = \hat{y} + \dfrac{1}{u}$ y en el resultado sustituir $\dfrac{d\hat{y}}{dx}$ por la ecuación de Riccati para la solución particular, esto es

$$\dfrac{dy}{dx} = \dfrac{d\hat{y}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} = \left[ q_{1}(x) + q_{2}(x) \hat{y} + q_{3}(x) \hat{y}^{2} \right] -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

  1. Igualamos la ecuación anterior con la ecuación de Riccati original en la forma (\ref{14}) y hacemos la sustitución $$y(x) = \hat{y}(x) + \dfrac{1}{u(x)}$$
  1. Hecho lo anterior y haciendo un poco de álgebra podremos reducir la ecuación de Riccati en una ecuación lineal de primer orden y así aplicar el método de resolución para este tipo de ecuaciones.
  1. Una vez obtenida la función $u(x)$ la sustituimos en $y(x)$ para obtener la solución deseada.

Realicemos un ejemplo para poner en practica este método.

Ejemplo: Resolver la ecuación de Riccati

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

dada la solución particular $\hat{y} = \dfrac{2}{x}$.

Solución: La ecuación diferencial prácticamente se encuentra en la forma de la ecuación (\ref{14}), sólo para que sea claro escribimos

$$\dfrac{dy}{dx} = \left( -\dfrac{4}{x^{2}} \right) + \left( -\dfrac{1}{x} \right) y + y^{2}$$

Comencemos por verificar que la solución particular dada efectivamente satisface la ecuación de Riccati. Por un lado,

$$\dfrac{d \hat{y}}{dx} = -\dfrac{2}{x^{2}}$$

Por otro lado,

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{\hat{y}}{x} + \hat{y}^{2} &= -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} \\
&= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} \\
&= -\dfrac{2}{x^{2}}
\end{align*}

En efecto,

$$\dfrac{d \hat{y}}{dx} = -\dfrac{4}{x^{2}} -\dfrac{\hat{y}}{x} + \hat{y}^{2} = -\dfrac{2}{x^{2}}$$

El siguiente paso es hacer la sustitución (\ref{16}).

$$y(x) = \hat{y}(x) + \dfrac{1}{u(x)} = \dfrac{2}{x} + \dfrac{1}{u}$$

De acuerdo a (\ref{19}), tenemos

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

Igualemos este resultado con la ecuación de Riccati original.

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2} &= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
-\dfrac{y}{x} + y^{2} &= \dfrac{2}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{y}{x} -y^{2}
\end{align*}

En la última ecuación sustituimos $y = \dfrac{2}{x} + \dfrac{1}{u}$.

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{1}{x} \left( \dfrac{2}{x} + \dfrac{1}{u} \right) -\left( \dfrac{2}{x} + \dfrac{1}{u} \right)^{2} \\
&= \dfrac{2}{x^{2}} + \dfrac{2}{x^{2}} + \dfrac{1}{xu} -\left( \dfrac{4}{x^{2}} + \dfrac{4}{xu} + \dfrac{1}{u^{2}} \right) \\
&= \dfrac{4}{x^{2}} + \dfrac{1}{xu} -\dfrac{4}{x^{2}} -\dfrac{4}{xu} -\dfrac{1}{u^{2}} \\
&= -\dfrac{3}{xu} -\dfrac{1}{u^{2}} \\
\end{align*}

De donde,

$$\dfrac{du}{dx} + \dfrac{3}{x}u = -1$$

Esta expresión tiene la forma de una ecuación diferencial lineal (\ref{21}), de donde podemos determinar que

$$R(x) = \dfrac{3}{x} \hspace{1cm} y \hspace{1cm} S(x) = -1$$

La ecuación de Riccati ha sido reducida a una ecuación lineal no homogénea, ahora apliquemos el método de resolución de ecuaciones diferenciales lineales.

Calculemos el factor integrante $\mu(x) = e^{\int R(x)dx}$.

$$\int {R(x)dx} = \int {\dfrac{3}{x}dx} = 3\ln|x|$$

El factor integrante es

$$\mu (x) = e^{3 \ln|x|} = x^{3}$$

Multipliquemos la ecuación diferencial por el factor integrante.

\begin{align*}
x^{3} \dfrac{du}{dx} + x^{3} \left( \dfrac{3}{x} \right ) u &= -x^{3} \\
x^{3} \dfrac{du}{dx} + 3x^{2}u &= -x^{3}
\end{align*}

Identificamos que el lado izquierdo de la ecuación corresponde a la derivada del producto entre el factor integrante $\mu(x)$ y la función $u(x)$, entonces

$$\dfrac{d}{dx} \left( x^{3}u \right) = -x^{3}$$

Integramos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int {\dfrac{d}{dx} \left( x^{3}u \right) dx} &= \int {-x^{3}dx} \\
x^{3}u &= -\dfrac{x^{4}}{4} + c \\
u(x) &= -\dfrac{x}{4} + \dfrac{c}{x^{3}}
\end{align*}

Ya determinamos el valor de $u(x)$, ahora sólo lo sustituimos en la función $y = \dfrac{2}{x} + \dfrac{1}{u}$.

Por lo tanto, la solución general de la ecuación de Bernoulli

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

es

$$y(x) = \dfrac{2}{x} + \dfrac{1}{\dfrac{c}{x^{3}} -\dfrac{x}{4}} = \dfrac{2}{x} + \dfrac{4x^{3}}{4c -x^{4}}$$

$\square$

Hemos concluido con el estudio de las ecuaciones diferenciales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones de Bernoulli.
  • $\dfrac{dy}{dx} + \dfrac{1}{x}y = \dfrac{2}{3}x^{4}y^{4}$
  • $3x \dfrac{dy}{dx} -2y = x^{3}y^{-2}$
  • $x^{2} \dfrac{dy}{dx} -2xy = 3y^{4} \hspace{0.8cm}$ con la condición inicial $\hspace{0.5cm} y(1) = \dfrac{1}{2}$
  1. Resolver las siguientes ecuaciones de Riccati.
  • $x^{3} \dfrac{dy}{dx} = x^{4}y^{2} -2x^{2}y -1 \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} \hat{y} = \dfrac{1}{x^{2}}$
  • $\dfrac{dy}{dx} = xy^{2} + y + \dfrac{1}{x^{2}} \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} \hat{y} = -\dfrac{1}{x}$
  1. Demostrar que la sustitución $$y(x) = \hat{y}(x) + u(x)$$ convierte a una ecuación de Riccati en una ecuación de Bernoulli. $\hat{y}(x)$ es una solución particular de la ecuación de Riccati.

Más adelante…

Con esta entrada concluimos el estudio de las ecuaciones diferenciales de primer orden, a lo largo de la unidad vimos una descripción cualitativa y posteriormente una descripción analítica en la que desarrollamos varios métodos para resolver ecuaciones diferenciales de primer orden tanto lineales como no lineales.

Antes de pasar a la siguiente unidad y comenzar con el estudio de las ecuaciones diferenciales de segundo orden, es importante hacer un estudio con mayor detalle sobre el teorema de existencia y unicidad ya que es este teorema el que justifica toda la teoría que hemos desarrollado a lo largo de la unidad.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Método de reducción de orden

Introducción

En la entrada anterior estudiamos las propiedades más importantes que cumple el conjunto de soluciones a una ecuación lineal homogénea de segundo orden, que tienen la forma $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0.$$ Si encontramos dos soluciones $y_{1}(t)$, $y_{2}(t)$ tales que formen un conjunto fundamental en un mismo intervalo $I$, entonces $y(t)=c_{1}y_{1}(t)+c_{2}y_{2}(t)$ será la solución general a la ecuación diferencial en $I$.

A continuación, vamos a suponer que conocemos una solución $y_{1}(t)$ a la ecuación, y desarrollaremos un método, conocido como reducción de orden, que nos permitirá encontrar una segunda solución $y_{2}(t)$ de tal manera que $\{y_{1}(t), y_{2}(t)\}$ formen un conjunto fundamental de soluciones.

Reducción de orden

En el video desarrollamos de manera general el método de reducción de orden, dada una solución $y_{1}(t)$, y suponiendo que la solución general es de la forma $u(t)y_{1}(t)$ para cierta función $u$, y posteriormente aplicamos este método para resolver un ejemplo en particular.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $y_{1}(t)$ es solución a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ entonces $$y_{1} \int \frac{1}{y_{1}^{2}} e^{-\int p(t) \, dt} \, dt $$ también es solución a la ecuación.
  • Prueba que $$\{y_{1}, y_{1} \int \frac{1}{y_{1}^{2}} e^{-\int p(t) \, dt} \, dt \}$$ es un conjunto fundamental de soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0.$$
  • Encuentra la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=0$$ por el método de reducción de orden, si $y_{1}(t)=e^{-t}$ es una solución a la ecuación.
  • Encuentra la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+16y=0$$ por el método de reducción de orden, si $y_{1}(t)=\cos{4t}$ es una solución a la ecuación.

Más adelante

En la próxima entrada continuaremos estudiando ecuaciones lineales homogéneas de segundo orden, en particular, estudiaremos el caso cuando las funciones $a_{i}(t)$, $i \in \{0,1,2\}$ en la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$$ son todas constantes. A este tipo de ecuaciones les llamamos ecuaciones lineales homogéneas de segundo orden con coeficientes constantes.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad – Método de variación de parámetros

Las leyes de la naturaleza no son más que los pensamientos matemáticos de Dios.
– Euclides

Introducción

Hemos comenzado a desarrollar métodos de resolución de ecuaciones diferenciales lineales de primer orden. El tipo de ecuaciones que queremos resolver es

$$\dfrac{dy}{dx} + P(x) y = Q(x) \label{1} \tag{1}$$

En la entrada anterior vimos que la solución general $y(x)$ es la suma de la solución homogénea $y_{h}(x)$, más la solución particular $y_{p}(x)$.

$$y(x) = y_{h}(x) + y_{p}(x) \label{2} \tag{2}$$

La solución homogénea está dada como

$$y_{h}(x) = k e^{- \int P(x) dx} = \dfrac{k}{\mu (x)} \label{3} \tag{3}$$

Mientras que la solución particular tiene la forma

$$y_{p}(x) = e^{- \int{P(x) dx}} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right) \label{4} \tag{4}$$

Donde $\mu (x)$ es el factor integrante

$$\mu(x) = e^{\int{P(x) dx}} \label{5} \tag{5}$$

Así, la solución general de la ecuación diferencial (\ref{1}) es

$$y(x) = k e^{-\int{P(x) dx}} + e^{-\int{P(x) dx}} \left(\int{e^{\int{P(x) dx}}Q(x) dx}\right) \label{6} \tag{6}$$

O de forma más compacta

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + k \right) \label{7} \tag{7}$$

En la entrada anterior mencionamos que hay dos métodos distintos para la obtención de la solución particular, ya presentamos el método por factor integrante, en este entrada vamos a desarrollar el método conocido como variación de parámetros.

Método de variación de parámetros

Sabemos que la solución de la ecuación diferencial homogénea

$$\dfrac{dy}{dx} + P(x) y = 0 \label{8} \tag{8}$$

es

$$y_{h}(x) = k e^{- \int P(x) dx}$$

Este resultado nos incita a suponer que para la ecuación no homogénea

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

la solución particular puede tener la forma

$$y_{p}(x) = k(x) e^{- \int P(x) dx} \label{9} \tag{9}$$

En donde $k$ pasa a ser una función dependiente de $x$. El método de variación de parámetros consiste en determinar justamente la expresión explícita de $k(x)$.

Sustituyamos la solución propuesta (\ref{9}) en la ecuación no homogénea.

\begin{align*}
\dfrac{dy_{p}}{dx} + P(x) y_{p} &= \dfrac{d}{dx} \left(k e^{- \int P(x) dx} \right) + P(x) k e^{- \int P(x) dx} \\
&= \left[k \dfrac{d}{dx} \left( e^{- \int P(x) dx} \right) + \dfrac{dk}{dx} e^{- \int P(x) dx}\right] + P(x) k e^{- \int P(x) dx} \\
&= – k P(x) e^{- \int P(x) dx} + \dfrac{dk}{dx} e^{- \int P(x) dx} + k P(x) e^{- \int P(x) dx} \\
&= \dfrac{dk}{dx} e^{- \int P(x) dx} \\
&= Q(x)
\end{align*}

De la última igualdad obtenemos que

$$\dfrac{dk}{dx} = e^{\int P(x) dx} Q(x) \label{10} \tag{10}$$

Integremos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int{\left( \dfrac{dk}{dx} \right) dx} &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
k(x) + c &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
\end{align*}

Si consideramos $c = 0$ obtenemos que la forma explícita de $k(x)$ es

$$k(x) = \int{ e^{\int P(x) dx} Q(x) dx} \label{11} \tag{11}$$

Sustituyamos este resultado en la solución particular (\ref{9}).

$$y_{p}(x) = \left( \int{e^{\int P(x) dx} Q(x) dx} \right) e^{- \int P(x) dx} \label{12} \tag{12}$$

Si consideramos el factor integrante (\ref{5}) esta función la podemos escribir como

$$y_{p}(x) = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} \right) \label{13} \tag{13}$$

Hemos obtenido la misma expresión que usando el método por factor integrante visto en la entrada anterior.

Algunas consideraciones

La solución completa (o solución general) de la ecuación diferencial lineal (\ref{1}) es la suma de la solución homogénea $y_{h}(x)$, más la solución particular $y_{p}(x)$, es importante reconocer este hecho ya que en muchas ocasiones la ecuación homogénea, y por tanto la solución homogénea, serán muy relevantes si estamos estudiando algún fenómeno real. Sin embargo, cuando nuestro objetivo es obtener la solución completa no es necesario obtener ambas soluciones por separado para después sumarlas, sino que podemos intentar obtener directamente la solución general, esto está directamente relacionado con la omisión de constantes de integración que hemos hecho, así que es momento de explicar qué está ocurriendo con estas constantes.

Es posible desarrollar los métodos por factor integrante y variación de parámetros manteniendo las constantes de integración, aunque los cálculos se vuelven más extensos, sin embargo al final todas las constantes que resulten se pueden agrupar en una sola constante $C$, es así que en ambos métodos siempre llegaremos al resultado

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + C \right) \label{14} \tag{14}$$

Donde $C$ es la constante resultante de juntar todas las constantes de integración que pudieran aparecer en el proceso.

El resultado (\ref{14}) corresponde a la solución general que hemos obtenido anteriormente, es decir, si en ambos métodos mantenemos a las constantes de integración podemos obtener la solución general. Lo que nosotros hicimos anteriormente fue que la constante $k$ de la ecuación (\ref{7}) la asociábamos a la solución homogénea (\ref{3}), de manera que al sumar ambas soluciones ya obteníamos la solución general, pero en realidad también se puede obtener de ambos métodos manteniendo a las constantes. Decidimos hacerlo así porque es importante el papel que pueden tomar por separado las soluciones homogénea y particular en algunas situaciones, además de que omitir las constantes evitó hacer cálculos extensos en ambos métodos.

Finalmente, como ya mencionamos antes, no se recomienda resolver ecuaciones diferenciales usando las formulas obtenidas para las soluciones, sino aplicar cada paso del método correspondiente, sin embargo, a continuación presentamos una serie de pasos que se recomiendan seguir para la resolución de ecuaciones diferenciales lineales de primer orden.

Método para resolver ecuaciones lineales

Si bien es cierto que ya conocemos las formas explícitas de las soluciones de las ecuaciones diferenciales lineales, es conveniente seguir una serie de pasos para resolverlas. Dichos pasos se describen a continuación.

  1. Escribir la ecuación lineal en la forma canónica

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

  1. Calcular el factor integrante $\mu (x)$ mediante la formula

$$\mu (x) = e^{\int{P(x) dx}}$$

  1. Multiplicar a la ecuación diferencial en su forma canónica por el factor integrante en ambos lados de la ecuación.

$$\mu (x) \dfrac{dy}{dx} + \mu (x) P(x) y = \mu (x) Q(x)$$

  1. Identificar que el lado izquierdo de la ecuación es la derivada de $\mu(x)$ por $y(x)$ y sustituir.

$$\dfrac{d}{dx} (\mu y) = \mu (x) Q(x)$$

  1. Integrar la última ecuación y dividir por $\mu (x)$ para obtener finalmente la solución general $y(x)$. En la última integración debemos considerar a la constante de integración.

Esta serie de pasos nos permiten obtener directamente la solución general de la ecuación diferencial lineal es por ello que en el último paso sí debemos considerar a la constante de integración, dicha constante representa el resultado de juntar todas las contantes que podremos omitir en pasos intermedios.

Realicemos un ejemplo en el que apliquemos este algoritmo de resolución.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

Solución: El primer paso es escribir a la ecuación diferencial en la forma canónica.

\begin{align*}
\left( x^{2} +1 \right) \dfrac{dy}{dx} &= x^{2} + 2x -1 -4xy \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1 -4xy}{x^{2} +1} \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1}{x^{2} +1} -\left( \dfrac{4x}{x^{2} +1} \right) y
\end{align*}

La forma canónica es

$$\dfrac{dy}{dx} + \left( \dfrac{4x}{x^{2} +1} \right) y = \dfrac{x^{2} + 2x -1}{x^{2} +1}$$

Identificamos que

$$P(x) = \dfrac{4x}{x^{2} +1} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{x^{2} + 2x -1}{x^{2} +1}$$

El segundo paso es determinar el factor integrante.

$$\mu(x) = e^{\int{P(x) xd}} = e^{\int{\left( \dfrac{4x}{x^{2} +1} \right) dx}}$$

Resolvamos la integral omitiendo la constante de integración.

\begin{align*}
\int{\dfrac{4x}{x^{2} +1} dx} &= 4 \int{\dfrac{x}{x^{2} +1} dx} \\
&= \dfrac{4}{2} \ln{\left( x^{2} + 1 \right)} \\
&= 2 \ln{\left(x^{2} + 1\right)} \\
&= \ln{\left( x^{2} + 1\right)^{2}}
\end{align*}

Sustituimos en el factor integrante.

\begin{align*}
\mu (x) = e^{\ln{\left( x^{2} + 1\right)^{2}}} = \left( x^{2} + 1\right)^{2}
\end{align*}

Por tanto, el factor integrante es

$$\mu (x) = ( x^{2} + 1)^{2}$$

El tercer paso es multiplicar a la ecuación diferencial en su forma canónica por el factor integrante en ambos lados.

\begin{align*}
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + \left( x^{2} + 1\right)^{2} \left( \dfrac{4x}{x^{2} +1} \right) y &= \left( x^{2} + 1\right)^{2} \left(\dfrac{x^{2} + 2x -1}{x^{2} +1}\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= \left( x^{2} + 1\right) \left(x^{2} + 2x -1\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= x^{4} + 2x^{3} +2x -1
\end{align*}

El cuarto paso es identificar que

$$\dfrac{d}{dx}(\mu (x) y(x)) = \dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = \left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y$$

Así que ahora podemos escribir

$$\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = x^{4} + 2x^{3} +2x -1$$

El quinto y último paso es integrar esta relación por ambos lados con respecto a $x$ considerando a la constante de integración.

\begin{align*}
\int{\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) dx} &= \int{\left( x^{4} + 2x^{3} +2x -1\right)}dx \\
y \left( x^{2} + 1\right)^{2} + k &= \int{\left( x^{4} + 2x^{3} +2x -1\right)} dx
\end{align*}

Resolvamos la integral.

\begin{align*}
\int{\left( x^{4} + 2x^{3} +2x -1\right)} dx &= \int{x^{4} dx} + \int{2x^{3} dx} + \int{2x dx} -\int{dx} \\
&= \dfrac{x^{5}}{5} + 2\left(\dfrac{x^{4}}{4}\right) + 2 \left(\dfrac{x^{2}}{2}\right) -x \\
&= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x
\end{align*}

Omitimos todas las constantes de esta integral. Sustituyendo este resultado obtenemos

\begin{align*}
y \left( x^{2} + 1\right)^{2} + k &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x \\
y\left( x^{2} + 1\right)^{2} &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \\
y(x) &= \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \right)
\end{align*}

Por lo tanto, la solución general de la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

es

$$y(x) = \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K\right)$$

Donde $K$ es la constante que engloba a todas las contantes de integración que omitimos.

$\square$

Para concluir el análisis de las ecuaciones diferenciales lineales de primer orden, presentaremos el teorema de existencia y unicidad para este tipo de ecuaciones.

Teorema de existencia y unicidad

Ya presentamos el teorema de existencia y unicidad para ecuaciones diferenciales de primer orden, podemos usar este resultado para justificar el teorema de existencia y unicidad para el caso de las ecuaciones diferenciales lineales de primer orden.

Teorema: Consideremos la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Si $P(x)$ y $Q(x)$ son funciones continuas en un intervalo $\delta \in \mathbb{R}$, entonces existe una única función $\gamma (x)$ tal que satisface el problema de valor inicial (PVI):

$$\dfrac{dy}{dx} + P(x) y = Q(x), \hspace{0.8cm} y(x_{0}) = y_{0}, \hspace{0.8cm} x_{0} \in \delta, \hspace{0.8cm} y_{0} \in Im(y).$$

Demostración: Consideremos la ecuación diferencial

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Reescribamos esta ecuación en su forma normal.

$$\dfrac{dy}{dx} = Q(x) -P(x) y$$

Definimos

$$f(x, y) = Q(x) -P(x) y \label{15} \tag{15}$$

De manera que

$$\dfrac{dy}{dx} = f(x, y) \label{16} \tag{16}$$

Debido a que en un intervalo de solución $\delta$ debe satisfacerse que $P(x)$ y $Q(x)$ sean continuas, entonces tenemos garantizado que (\ref{15}) es continua y por tanto $\dfrac{\partial f}{\partial y}$ también lo es, con esto estamos cumpliendo las hipótesis del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden que establecimos anteriormente, aplicando dicho teorema obtenemos que entonces existe algún intervalo $\delta_{0}: (x_{0} -h, x_{0} + h)$, $h > 0$, contenido en $\delta$, y una función única $\gamma (x)$, definida en $\delta_{0}$, que satisface la condición inicial $y(x_{0}) = y_{0}$.

$\square$

Apliquemos este resultado a la solución general. Consideremos la condición inicial $y(x_{0}) = y_{0}$ y la solución general de la ecuación diferencial no homogénea (\ref{1})

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} + k \right)$$

Apliquemos la condición inicial.

$$y_{0} = y(x_{0}) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx} \Bigg|_{x = x_{0}} + k \right) \label{17} \tag{17}$$

De este resultado se puede despejar a $k$ obteniendo un único valor, digamos $k = k_{0}$, por lo tanto la función

$$\gamma (x) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx} + k_{0} \right) \label{18} \tag{18}$$

es solución del problema de valor inicial. Así, para cada $x_{0} \in \delta_{0}$, encontrar una solución particular de la ecuación (\ref{1}) es exactamente lo mismo que encontrar un valor adecuado de $k$ en la ecuación (\ref{17}), es decir, a toda $x_{0} \in \delta_{0}$ le corresponde un distinto $k$.

Con esto damos por concluido el desarrollo de métodos para resolver ecuaciones diferenciales lineales de primer orden, en la siguiente entrada comenzaremos a desarrollar métodos para resolver ecuaciones diferenciales de primer orden que no son lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. De acuerdo al algoritmo para resolver ecuaciones diferenciales lineales de primer orden, encontrar la solución general de las siguientes ecuaciones diferenciales.
  • $3\dfrac{y}{x} -8 + 3\dfrac{dy}{dx} = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$
  • $\dfrac{dy}{dx} + \cos(x) (y -1) = 0$
  1. Una vez que se conoce la solución general de la ecuación diferencial
    $$x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$$
    Resolver los siguientes problemas de valor inicial y analizar cada situación considerando el teorema de existencia y unicidad.
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = y_{0}, \hspace{1cm} y_{0} > 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(x_{0}) = y_{0}, \hspace{1cm} x_{0} > 0, \hspace{0.3cm} y_{0} > 0$

    ¿Que se puede concluir al respecto?.

Más adelante…

Ya sabemos resolver ecuaciones diferenciales lineales de primer orden tanto homogéneas como no homogéneas y conocemos el teorema de existencia y unicidad que justifica los métodos que hemos desarrollado.

En la siguiente entrada comenzaremos a desarrollar métodos para resolver ecuaciones diferenciales de primer orden no lineales.

Entradas relacionadas