Álgebra Superior I: Sistemas de ecuaciones lineales

Por Eduardo García Caballero

Introducción

Una de las aplicaciones más importantes de los vectores y matrices tiene que ver con un tema que conociste desde la secundaria y preparatoria: los sistemas de ecuaciones.

Más específicamente, los vectores y matrices nos serán de gran utilidad para resolver sistemas de ecuaciones lineales, determinar cuándo un sistema sí tiene soluciones, y cuáles son todas sus soluciones.

Pero antes, repasemos un poco los conceptos de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Recordemos que una ecuación es una expresión en la que hay variables o valores que no conocemos. En el caso de una ecuación lineal, se trata de ecuaciones en las que todas sus variables se encuentran elevadas a la primera potencia y acompañadas únicamente por coeficientes constantes. Por ejemplo, podemos ver que las expresiones
\[
2x + 9y – z = 3,
\qquad
4w + 3000a = y + \tfrac{1}{2}x
\]
son ecuaciones lineales, mientras que las expresiones
\[
ax^2 + bx + c = 0,
\qquad
2xz = 9y
\]
no lo son, pues contienen al menos una variable elevada a exponentes distintos de $1$, o bien hay variables multiplicándose entre sí.

De manera más formal, una ecuación de lineal es una ecuación que se puede escribir de la forma
\[
a_1x_2 + a_2x_2 + \cdots + a_nx_n = b,
\]
donde $x_1, \ldots, x_n$ son variables y $a_1, \ldots, a_n, b$ son coeficientes, todos del mismo tipo (en este curso trabajaremos con coeficientes reales, pero en otros cursos podrás encontrar coeficientes de otros tipos, como son números enteros, racionales, y complejos, entre otros).

Por su parte, un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales. Por ejemplo, los siguientes son sistemas de ecuaciones lineales:
\[
\begin{cases}
2x -\tfrac{3}{2}y + 8z = 1 \\
9z + 2w + 5y = 3,
\end{cases}
\qquad
\begin{cases}
2 + 9a = 46b -5c \\
2d + 8x = \sqrt{3} \\
x + y + z = a + b + c \\
x = -y
\end{cases}
\]
Bajo esta definición, una única ecuación se puede considerar un sistema de ecuaciones lineales (con una ecuación).

Notemos que no es necesario que todas las ecuaciones compartan variables, sin embargo, generalmente esto sí sucederá. De hecho, podemos pensar que todas las variables aparecen en todas las ecuaciones. En caso de que esto no suceda, podemos considerar que las variables que no aparecen en una ecuación tienen coeficiente cero. Además, siempre podemos reordenar las variables en las ecuaciones para que en todas ellas aparezcan en el mimo orden. Por ejemplo, a continuación el sistema de ecuaciones a la izquierda lo podemos escribir como el de la derecha, sin alterarlo.

\[
\begin{cases}
2x -\tfrac{3}{2}z + 8y = 11 \\
9z + 2w + 5k = -3,
\end{cases}
\qquad
\begin{cases}
0k+0w+2x + 8y – \tfrac{3}{2}z = 11 \\
5k+2w+0x+0y+9z = -3.
\end{cases}
\]

¿Qué quiere decir resolver un sistema de ecuaciones lineales?

Como recordarás, encontrar una solución de una ecuación corresponde a encontrar valores que, al sustituirlos en las variables, hagan que la expresión sea verdadera. Por ejemplo, si tenemos la ecuación $2x-3y=0$, una solución está dada por $x=3$ y $y=2$, ya que al sustituir en efecto tenemos $(2)(3)-(3)(2)=0$. En ocasiones, una ecuación puede tener más de una solución. Por ejemplo, en este caso otra posible solución es $x=6$ y $y=4$, ya que al sustituir en efecto tenemos $(2)(6)-(3)(4)=0$. Para esta ecuación hemos encontrado entonces dos posibles soluciones. Pero aún no la hemos resuelto. Como veremos un poco más abajo, para resolverla tenemos que alcanzar una meta más grande.

Para el caso de sistemas de ecuaciones lineales, encontrar una solución consiste en dar una asignación de valores a las variables que hagan que todas las ecuaciones sean ciertas simultáneamente. Por ejemplo, podemos verificar que los valores
\[
x = 3 \quad y =5 \quad z = -2
\]
hacen que cada una de las ecuaciones en el sistema
\[
\begin{cases}
x + 2y – z = 15 \\
4x – y + z = 5
\end{cases}
\]
se cumplan simultáneamente. Otra posible solución está dada por la asignación
\[
x = 1 \quad y =15 \quad z = 16.
\]

Cuando hablamos de resolver una ecuación o un sistema de ecuaciones no nos bastará encontrar unas cuantas soluciones que funcionen. Queremos encontrar todas las posibles soluciones.

Como ejemplo más sencillo, tratemos de encontrar todas las soluciones del sigueinte sistema con una única ecuación
\[
\begin{cases}
2x + 3y – z = 5.
\end{cases}
\]

Si despejamos $x$ en la ecuación, obtenemos
\[
x = \frac{-3y+z+5}{2}.
\]
Esto nos indica que podemos escoger valores arbitrarios de $y$ y $z$, y el valor de $x$ quedará determinado por estos valores.

Entonces, la solución de la ecuación son todas las $(x,y,z)$ tales que $x = \frac{-3y+z+5}{2}$; es decir, todas las soluciones del sistema de ecuaciones son de la forma
\[
\left( \frac{-3y+z+5}{2}, y, z \right).
\]

Otra manera de decir esto es que el conjunto de soluciones para el sistema de ecuaciones es el siguiente:

$$S:=\left\{\left( \frac{-3y+z+5}{2}, y, z \right):y,z\in \mathbb{R}\right\}.$$

Esto ahora sí resuelve el sistema, pues hemos encontrado una descripción para todas las posibles soluciones del sistema. Si tomas los valores que quieras para $y$ y $z$, podrás dar una solución. Por ejemplo, al tomar $y=1,z=2$ obtenemos la solución $(2,1,2)$, la cual puedes verificar que es una solución al sistema de ecuaciones de una ecuación con el que comenzamos. Toda posible solución está en $S$. Como $y$ y $z$ pueden valer lo que sea, las llamamos variables libres. A $x$, que queda totalmente determinada una vez fijas las variables libres, la llamamos variable pivote.

¿Qué sucede si tenemos más ecuaciones? Tratemos de encontrar todas las soluciones para el sistema de ecuaciones siguiente
\[
\begin{cases}
y+z =1 \\
3x+2y+5z&=1.
\end{cases}
\]

Podemos intentar lo mismo que arriba y fijar algún valor e intentar poner al resto en términos de ese. Pero hay que ser cuidadosos. Por ejemplo, al fijar el valor de $x$, no podremos despejar a $y$ (ni a $z$) en términos únicamente de $x$. Sin embargo, fijamos el valor de $z$, sí podemos determinar todo completamente.

Al fijar $z$, entonces $y$ queda determinado como $y = -z + 1$. Sustituyendo este valor de $y$ en la segunda ecuación, obtendremos $3x + 2(-z+1) + 5z = 1$, que equivale a $3x +3z = -1$, de donde tenemos que $x = -z -1/3 $. Entonces, podemos pensar a $z$ como la variable libre y como $y$ y $x$ dependen completamente de $z$, las pensamos como variables pivote. La descripción de las soluciones quedaría entonces como

$$R=\{(-z-1/3,-z+1,z):z\in \mathbb{R}\}.$$

Aunque ahora hemos tenido éxito con describir totalmente las soluciones de dos sistemas de ecuaciones y en ambos casos hemos tenido una infinidad de soluciones, lo cierto es que existen sistemas de ecuaciones sin solución. Por ejemplo, consideremos el sistema
\[
\begin{cases}
12x + 9y = 7 \\
4x + 3y = 8.
\end{cases}
\]
Podemos ver que cada una de las ecuaciones, de manera individual, tienen soluciones, y hasta podríamos encontrar todas las posibles soluciones (¿puedes dar un par de ejemplos de cada una?). Sin embargo, no existen valores de $x$ y $y$ que resuelvan ambas ecuaciones al mismo tiempo. Esto lo podemos observar porque, si multiplicamos la segunda ecuación por $3$, obtendremos el sistema
\[
\begin{cases}
12x + 9y = 7 \\
12x + 9y = 24.
\end{cases}
\]
Si hubiera alguna solución, podríamos igualar ambas ecuaciones y llegar a que $7=24$, una contradicción.

Interpretación geométrica

El primer conjunto solución que encontramos arriba se puede reescribir en términos de cada variable $y$ y $z$ usando la suma y producto escalar que estudiamos en entradas anteriores de la siguiente manera:

\begin{align*}
S&=\left\{\left( \frac{-3y+z+5}{2}, y, z \right):y,z\in \mathbb{R}\right\}\\
&=\left\{y(-3/2,1,0) + z(1/2,0,1) + (5/2,0,0):y,z\in \mathbb{R}\right\}.
\end{align*}

Posiblemente hayas visto expresiones en algún curso de geometría analítica. Lo anterior es un plano en $\mathbb{R}^3$ que pasa por el punto $(5/2,0,0)$ y generado a partir de ese punto por los vectores $(-3/2,1,0)$ y $(1/2,0,1)$.

Del mismo modo, en el segundo ejemplo que vimos arriba el sistema de ecuaciones puede reescribirse como:

\begin{align*}
R&=\{(-z-1/3,-z+1,z):z\in \mathbb{R}\}\\
&=\{(-1/3,1,0)+z(-1,-1,1):z\in \mathbb{R}\},
\end{align*}

que posiblemente identifiques como la recta en $\mathbb{R}^3$ que parte del punto $(-1/3,1,0)$ y tiene dirección $(-1,-1,1)$.

Forma matricial de un sistema de ecuaciones

Como vimos en una entrada previa, dos vectores del mismo tamaño son iguales si y sólo si sus respectivas entradas son iguales. Una consecuencia de esta definición es que el sistema de ecuaciones
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se cumple si y sólo si
\[
\begin{pmatrix}
a_{11}x_1 + a_{12}x_2 + \cdots a_{1n}x_n \\
a_{21}x_1 + a_{22}x_2 + \cdots a_{2n}x_n \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots a_{mn}x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Más aún, observemos que el lado izquierdo de esta igualdad lo podemos reescribir como un producto de matriz con vector de la siguiente manera
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix},
\]
lo cual podemos denotar como
\[
Ax = b.
\]

Entonces, podemos decir que nuestro sistema tiene solución si existe un vector $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ tal que $Ax = b$, donde
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\quad
\text{y}
\quad
b
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

A la expresión $Ax=b$ le llamamos la forma matricial del sistema de ecuaciones.

Ejemplo de la utilidad de la forma matricial

La forma matricial de un sistema de ecuaciones es sumamente útil, como veremos en las siguientes entradas. Pero veamos un pequeño ejemplo de una de sus aplicaciones. Supongamos que sabemos que la matriz $A$ es invertible con inversa $A^{-1}$. Recordemos que entonces se cumple que$A^{-1}A = \mathcal{I}$. Gracias a esto, podemos comenzar con la forma matricial del sistema de ecuaciones y deducir lo siguiente:
\begin{align*}
&Ax = b \\
\Rightarrow & A^{-1}Ax = A^{-1}b \\
\Rightarrow &x = A^{-1}b.
\end{align*}

Es decir, si conocemos la matriz inversa de $A$, ¡podemos obtener de manera única el vector que resuelve el sistema de ecuaciones mediante una multiplicación de matriz por vector!

Aún cuando no hemos visto el método general para saber si una matriz tiene inversa, ya vimos previamente qué sucede con una matriz de $2\times 2$
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]

Así, verifiquemos mediante un ejemplo que el método que mostramos sirve para encontrar soluciones de sistemas de ecuaciones. Consideremos el sistema de ecuaciones
\[
\begin{cases}
2x + 8y &= 9 \\
-3x + 4y &= 2.
\end{cases}
\]

Este sistema puede ser representado en forma matricial como
\[
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
9 \\
2
\end{pmatrix}.
\]

Como recordarás de entradas pasadas, la matriz inversa de $\begin{pmatrix} 2 & 8 \\ -3 & 4 \end{pmatrix}$ es
\[
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}^{-1}
=
\frac{1}{2\cdot4 – 8\cdot(-3)}
\begin{pmatrix}
4 & -8 \\
3 & 2
\end{pmatrix}
=
\frac{1}{32}
\begin{pmatrix}
4 & -8 \\
3 & 2
\end{pmatrix}
=
\begin{pmatrix}
1/8 & -1/4 \\
3/32 & 1/16
\end{pmatrix}.
\]

Entonces si multiplicamos esta por matriz por la izquierda a ambos lados de la ecuación
\[
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
9 \\
2
\end{pmatrix},
\]
obtendremos
\begin{align*}
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
&=
\begin{pmatrix}
9 \\
2
\end{pmatrix}
\\[5pt]
\begin{pmatrix}
1/8 & -1/4 \\
3/32 & 1/16
\end{pmatrix}
\begin{pmatrix}
2 & 8 \\
-3 & 4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
&=
\begin{pmatrix}
1/8 & -1/4 \\
3/32 & 1/16
\end{pmatrix}
\begin{pmatrix}
9 \\
2
\end{pmatrix}
\\[5pt]
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
&=
\begin{pmatrix}
5/8 \\
31/32
\end{pmatrix},
\end{align*}
lo que equivale a $x = 5/8$, $y = 31/32$; la solución del sistema. ¡Verifica que es solución!

Más adelante…

En esta entrada repasamos los conceptos y definiciones sobre sistemas de ecuaciones lineales, y nos adentramos a ver cómo existe una relación directa entre los sistemas de ecuaciones lineales y el producto de una matriz por un vector, así como que las matrices invertibles guardan relación con la solución del sistema.

Que la matriz asociada a un sistema de ecuaciones sea invertible en realidad no pasa tanto, y se tienen que desarrollar métodos más generales para resolver sistemas de ecuaciones. En la siguiente entrada conoceremos un algoritmo que nos permitirá resolver sistemas de ecuaciones con una cantidad arbitraria de variables y ecuaciones, y determinar exactamente cómo se ven todas las soluciones.

Tarea moral

  1. Usa el método de las variables libres y las variables pivote para describir al conjunto solución del siguiente sistema de ecuaciones y descríbelo geométricamente. Tendrás que elegir apropiadamente el orden en el que vas fijando las variables.
    \begin{cases}
    w+2x + 8y + 3z&= 0 \\
    -3x + 4y + z&= -1\\
    x+z&=2.\\
    \end{cases}
  2. Usa el método de la inversa para resolver los siguientes tres sistemas de ecuaciones:
    \[
    \begin{cases}
    2x + 8y &= 4 \\
    -3x + 4y &= 1,
    \end{cases} \quad \begin{cases}
    2x + 8y &= 3 \\
    -3x + 4y &= -2,
    \end{cases} \quad \begin{cases}
    2x + 8y &= 1 \\
    -3x + 4y &= -1.
    \end{cases}
    \]
  3. Intenta usar el método de las variables libres y pivote en el siguiente sistema de ecuaciones y explica qué dificultad tiene intentar usarlo directamente:
    \[
    \begin{cases}
    x + y &= 4 \\
    y+z &= 1\\
    z+x&=2.
    \end{cases}
    \]
    ¿Cómo describirías a un sistema de ecuaciones en el cuál se puede hacer el método de variables libres y pivote cómodamente?
  4. Considera un sistema de ecuaciones en forma matricial $Ax=b$. Demuestra que si $x$ y $x’$ son soluciones a este sistema, entonces $\frac{x+x’}{2}$ también lo es. Explica cómo puedes usar esto para a partir de dos soluciones $x$ y $x’$ distintas conseguir una infinidad de soluciones. Concluye que cualquier sistema de ecuaciones lineales o bien no tiene solución, o bien tiene una única solución, o bien tiene una infinidad de soluciones.
  5. Encuentra una matriz no invertible $A$ y un vector $b$ tales que el sistema de ecuaciones $Ax=b$ sí tenga solución. En ese sistema que diste, ¿la solución es única o puedes encontrar otra?

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.