Archivo de la etiqueta: producto interior

Geometría Analítica I: Producto interior y el ortogonal canónico

Por Elsa Fernanda Torres Feria

Introducción

Continuando la conexión con la geometría Euclidiana con la que empezamos, hay un concepto en la geometría analítica que se conecta con la noción de ángulo, la de distancia y la de norma en la primera geometría mencionada, el producto interior. Dentro del contenido de esta entrada esta su definición en una dimensión de $2$ o mayor, ejemplos y sus propiedades. También, se discute el concepto del vector ortogonal canónico, que en conjunción con el producto interior, sirve como herramienta para detectar ciertas características de rectas y vectores.

Producto interior

Abramos esta entrada con la definición de este nuevo concepto.

Definición. Si tenemos dos vectores $u=(u_1,u_2)$ y $v=(v_1,v_2)$ en $\mathbb{R}^2$, el producto interior (o producto punto) en $\mathbb{R}^2$ de $u$ con $v$, está dado por

$u\cdot v := (u_1,u_2) \cdot (v_1,v_2) = u_1v_1 +u_2 v_2$

Esta definición se puede expresar en dimensiones mayores.

Definición. Si tenemos dos vectores $u=(u_1,u_2, \dots, u_n)$ y $v=(v_1,v_2, \dots, v_n)$ en $\mathbb{R}^n$, el producto interior (o producto punto) en $\mathbb{R}^n$ de $u_1$ con $u_2$, está definido como

\begin{align*}
u\cdot v : &= (u_1,u_2, \dots, u_n) \cdot (v_1,v_2, \dots, v_n) \\
&= u_1v_1 +u_2 v_2+u_3 v_3 + \dots + u_n v_n \\
&= \sum _{j=1} ^{n} u_j v_j
\end{align*}

Es importante notar que el resultado del producto interior (que es una operación vectorial), es un escalar.

Ejemplos:

1. Sean los vectores $(5,3)$ y $(2,-4)$ en $\mathbb{R}^2$, el producto interior de estos es

\begin{align*}
(5,3) \cdot (2,-4)&=5(2)+3(-4)\\
&=10-12\\
&=-2
\end{align*}

2. Sean los vectores $(-3,1,-1)$ y $(-6,2,-3)$ en $\mathbb{R}^3$, el producto interior de estos es

\begin{align*}
(-3,1,-1) \cdot (-6,2,-3)&=-3(-6)+1(2)+(-1)(-3)\\
&=18+2+3\\
&=23
\end{align*}

3. Sean los vectores $(1,0,-5,2,0,1)$ y $(0,-6,0,0,2,0)$ en $\mathbb{R}^6$, el resultado de su producto interior es cero, verifica.

Ahora que hemos definido una nueva operación, nos gustaría demostrar algunas propiedades asociadas a esta.

Teorema. Para todos los vectores $u,v,w \in \mathbb{R}^n$ y para todo número $t \in \mathbb{R}$ se cumple que

  1. $u \cdot v = v \cdot u$
  2. $u \cdot (tv)=t(u\cdot v)$
  3. $u \cdot (v + w)= u \cdot v + u \cdot w$
  4. $u \cdot u \geq 0$
  5. $u \cdot u =0 \Leftrightarrow u=(0,0)$

La primera propiedad nos dice que el producto interior es conmutativo; la siguiente que la operación saca escalares; la tercera expresa que esta abre sumas; la cuarta que al hacer el producto interior de un vector consigo mismo, el resultado es siempre mayor o igual a cero la última que la igualdad a cero sólo sucede cuando el vector $u$ es el vector cero.

Demostración

Haremos la demostración para vectores en $\mathbb{R}^2$, (el caso para dimensión $n$ es análogo) y usaremos los axiomas de los números reales.

Para empezar definamos los vectores $u=(u_1,u_2)$, $v=(v_1,v_2)$ y $w=(w_1,w_2)$ en $\mathbb{R}^2$

1. P. D. $u \cdot v = v \cdot u$. Comencemos con la definición y desarrollemos a partir de ella

\begin{align*}
u \cdot v &=(u_1,u_2) \cdot (v_1,v_2)\\
&=u_1v_1+u_2v_2 \\
&=v_1u_1+v_2u_2 \\
&=(v_1,v_2) \cdot (u_1,u_2)\\
&=v \cdot u
\end{align*}

$\therefore$ $u\cdot v= v \cdot u$

2. P.D. $u \cdot (tv)=t(u\cdot v)$

\begin{align*}
u \cdot (tv)&=(u_1,u_2) \cdot t(v_1,v_2) \\
&= (u_1,u_2) \cdot (tv_1,tv_2) \\
&= u_1(tv_1)+u_2(tv_2)\\
&= t(u_1v_1+u_2v_2) \\
&=t(u_1,u_2) \cdot (v_1,v_2)\\
&= t (u \cdot v)
\end{align*}

$\therefore u \cdot (tv)=t(u\cdot v)$

3. P.D. $u \cdot (v + w)= u \cdot v + u \cdot w$

\begin{align*}
u \cdot (v + w)&=(u_1,u_2) \cdot ((v_1,v_2) + (w_1,w_2)) \\
&= (u_1,u_2) \cdot (v_1+w_1,v_2+w_2) \\
&=u_1(v_1+w_1)+u_2(v_2+w_2) \\
&=u_1v_1+u_1w_1+u_2v_2+u_2w_2 \\
&=u_1v_1+u_2v_2+u_1w_1+u_2w_2 \\
&=(u_1v_1+u_2v_2)+(u_1w_1+u_2w_2) \\
&=((u_1,u_2)\cdot(v_1,v_2)) + ((u_1,u_2) \cdot (w_1,w_2)) \\
&= u \cdot v + u \cdot w
\end{align*}

$\therefore$ $u \cdot (v + w)= u \cdot v + u \cdot w$

4 y 5. P.D. $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

\begin{align*}
u \cdot u&=(u_1,u_2) \cdot (u_1,u_2) \\
&= u_1u_1+u_2u_2\\
&= u_1^2 + u_2^2 \geq 0
\end{align*}

La última relación se da ya que es una suma de números al cuadrado y cada término por sí sólo es mayor o igual a cero.

Resulta que si $u_1 \neq 0$ ó $u_2 \neq 0$, entonces $u_1^2 + u_2^2 > 0$, por lo que el único caso en el que se da la igualdad a cero es cuando $u=(0,0)$.

$\therefore$ $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

$\square$

Lo usado en esta demostración se restringe a los axiomas de los reales y la definición del producto interior, por lo que aunque no haya mucha descripción, espero que te sea clara.

El ortogonal canónico

Definición. Sea $v=(x,y)$ un vector en $\mathbb{R}^2$, el vector ortogonal canónico a v es el vector

$v^{\perp}=(-y,x)$

Si te das cuenta, esta definición hace referencia a lo que sucede al aplicar el ortogonal a un vector. Además, esta definición define al ortogonal canónico, pero no significa que sea el único vector perpendicular (ortogonal) a $v$.

Antes de definir o probar más cosas relacionadas al ortogonal, hagamos algunas observaciones.

Observación: Si aplicamos 4 veces el ortogonal a un vector $v$, regresamos al mismo vector:


$v^{\perp}=(x,y)^{\perp}=(-y,x)$

$(-y,x)^{\perp}=(-x,-y)$

$(-x,-y)^{\perp}=(y,-x)$

$(y,-x)^{\perp}=(x,y)$

Observación: Para cualquier $v=(x,y) \in \mathbb{R}^2$, tenemos que

$v \cdot v^{\perp} =(a,b) \cdot (-b,a)=a(-b)+b(a)=-ab+ab=0$

Para continuar, usemos el producto interior para definir y probar ciertas cosas con relación al compadre ortogonal.

Definición. Diremos que dos vectores $u,v \in \mathbb{R}^2$ son perpendiculares (ortogonales) si $u \cdot v=0$.

Proposición. Sea $u \in \mathbb{R}^2$ \ ${ 0\}$. Entonces

$\{x \in \mathbb{R}^2 : x \cdot u =0\}=L_{u_{\perp}}:=\{ru^{\perp}: r \in \mathbb{R}\}$

Demostración

Como queremos comprobar una igualdad de conjuntos, hay que probar la doble contención. Comencemos con la contención $\supseteq$.

$\supseteq$ En esta contención, queremos demostrar que cualquier vector de la forma $ru^{\perp}$ es tal que

$(ru^{\perp}) \cdot u=0$

Tomemos un vector de la forma $ru^{\perp}$ con $r \in \mathbb{R}$ y notemos que gracias a la segunda propiedad del producto interior se cumple que

$(ru^{\perp}) \cdot u = r(u^{\perp} \cdot u)= r(0)=0 $

Esto es suficiente para la demostración de la primera contención, pues hemos probado que el producto interior de cualquier vector de la forma $ru^{\perp}$ con $u$ es cero.

$\subseteq$ Para esta contención, queremos demostrar que los vectores $x$ que cumplen $x \cdot u =0$, son de la forma $x=r u^{\perp}$. Para esto, tomemos un vector $x=(r,s)$ que cumpla la primera condición y expresemos al vector $u$ con sus coordenadas $u=(u_1,u_2)$. Al realizar el producto interior obtenemos

$x \cdot u=(r,s) \cdot (u_1,u_2)=ru_1+su_2=0 $

$\Rightarrow ru_1= -su_2 \cdots (a) $

Dado que $u \neq (0,0)$, al menos una de sus entradas es distinta de cero. Supongamos que $u_1 \neq 0$, entonces podemos despejar $r$

$r=\frac{-su_2}{u_1}$

Podemos sustituir este valor en $x$ y desarrollar para obtener

\begin{align*}
x=(r,s)&=\left( \frac{-su_2}{u_1},s \right)=s\left( \frac{-u_2}{u_1}, 1 \right) \\
&=s \left( \frac{-u_2}{u_1}, \frac{u_1}{u_1} \right) \\
&=\frac{s}{u_1} \left( -u_2, u_1 \right)
\end{align*}

Y ya está el primer caso, pues sabemos que $u^{\perp}=( -u_2, u_1)$.

Así, $x \in \mathbb{R}^2$ tal que $x \cdot u=0$,es de la forma $ru^{\perp}$, con r un escalar.

En el caso en el que $u_2 \neq 0$, tenemos algo análogo. A partir de $(a)$ podemos despejar $s$

$ ru_1= -su_2$

$s=\frac{-ru_1}{u_2}$

Al sustituir en $x$ y desarrollar obtendremos que

$x=\frac{r}{-u_2}(-u_2,u_1)$

$\square$

Aplicaciones del producto punto

Para cerrar esta entrada, usemos el producto interior para describir algunas características de las rectas y vectores.

Definición. Diremos que dos líneas $l_1$ y $l_2$ son perpendiculares si al escribirlas en forma paramétrica

$l_1=\{ p_1+rq_1 : r \in \mathbb{R} \}$

$l_2=\{ p_2+rq_2 : r \in \mathbb{R} \}$

se tiene que $q_1 \cdot q_2 =0$, esto es si sus vectores dirección son ortogonales.

Proposición. Dos vectores $u$ y $v$ son paralelos si y sólo si $u$ y $v^{\perp}$ son ortogonales, es decir si $u \cdot v^{\perp}=0$.

Demostración

Ida ($\Rightarrow$). Si $u$ y $v$ son paralelos, por definición $u=cv$ con $c \in \mathbb{R}$. Como queremos que $u$ y $v^{\perp}$ sean ortogonales, realicemos su producto interior y utilicemos las propiedades de este para desarrollar

\begin{align*}
u \cdot v^{\perp}&=(cv) \cdot v^{\perp} \\
&=c(v \cdot v^{\perp}) \\
&=c(0)=0
\end{align*}

Por lo que $u$ y $v^{\perp}$ son ortogonales.

Regreso ($\Leftarrow$). Si ahora suponemos que $u$ y $v^{\perp}$ son ortogonales, pasa que

$u \cdot v^{\perp}=0$

Pero por lo visto en la proposición de la sección anterior, esto sólo pasa cuando $u=c(v^{\perp})^{\perp}$ para algún $c \in \mathbb{R}$. Si $v=(v_1,v_2)$ esto se desarrolla como

\begin{align*}
u&=c(v^{\perp})^{\perp}=c(-v_2,v_1)^{\perp}\\
&=c(-v_1,-v_2)\\
&= -cv
\end{align*}

$\therefore$ por definición de paralelismo, $u$ y $v$ son paralelos.

$\square$

Otra cosa útil del producto punto, es que cualquier recta se puede escribir en términos de este. Precisemos esto en la siguiente proposición.

Proposición. Sea la recta $l$ en su forma paramétrica

$l=\{p+rq : r \in \mathbb{R}\}$

La recta $l$ se puede escribir usando el produto punto de la siguiente manera

$l=\{x \in \mathbb{R} ^2 : q^{\perp} \cdot x=q^{\perp} \cdot p \}$

Antes de adentrarnos en la demostración, hablemos un poco de qué significa esta proposición con ayuda del siguiente interactivo aclarando que $qT$ es el vector $q{^\perp}$.

Al definir $qT$ como el vector perpendicular a la recta, tenemos que $q$ es el vector director de esta; $p$ es el punto por el que pasa la recta y $x$ representa a los puntos en ella. Como $p$ y $qt$ son fijos, entonces $qT \cdot p$ es un número constante. Si tú mueves $x$ a lo largo de la recta, veras que el producto punto $qT \cdot x$ al cual denominamos como $a$ en GeoGebra, no varia.

Es así como expresamos la recta por medio del producto punto; el conjunto de todas los $x \in \mathbb{R}^2$ tal que el producto punto con $q^{\perp}$ ($qT$ en el interactivo) es igual a $q^{\perp} \cdot p$.

Con esto claro, procedamos a la demostración.

Demostración

Como queremos demostrar que $l$ en su forma paramétrica es el mismo conjunto que el descrito por el producto punto, tenemos que explorar las dos contenciones de los conjuntos.

$\supseteq$ Tomemos $x \in \mathbb{R}^2$ tal que $q^{\perp}\cdot x =q^{\perp}\cdot p$. De esta igualdad se tiene que

\begin{align*}
0 &= q^{\perp}\cdot x – q^{\perp}\cdot p\\
&=q^{\perp}\cdot (x-p)\\
& \Rightarrow q^{\perp}\cdot (x-p) =0
\end{align*}

Dada la última igualdad, sabemos (por la primera proposición de esta entrada) que $x-p$ debe ser un múltiplo de $(q^{\perp})^{\perp}=-q$ y por lo tanto un múltiplo de $q$; por lo que para algún $s \in \mathbb{R}$ se tiene que

\begin{align*}
x-p&=sq\\
\Rightarrow x&=p+sq
\end{align*}

$\subseteq$ Ahora partamos de un punto $x=p+rq \in$ $l$ y desarrollemos su producto punto con $q^{\perp}$ para finalizar esta demostración

\begin{align*}
q^{\perp} \cdot x &= q^{\perp} \cdot (p+rq)\\
&=(q^{\perp} \cdot p) + (q^{\perp} \cdot (rq)) \\
&= q^{\perp} \cdot p
\end{align*}

Donde la última igualdad se da gracias a que $q^{\perp} \cdot (rq)=r(q^{\perp} \cdot q)=0$.

$\therefore$ Partiendo la expresión parametrica de la recta está contenida en la expresión con producto punto y viceversa y por lo tanto son el mismo conjunto (la misma recta).

$\square$

Tarea moral

  • Completa los pocos pasos que omitimos en cada demostración o ejemplo.
  • Demuestra el teorema de las propiedades del producto interior para $n=3$.
  • Calcula el producto interior de los siguientes vectores:
    • $(4,-1)$ y $(7,2)$
    • $(-2,3,0)$ y $(4,-6,0)$
    • $(-2,3,0)$ y $(-2)(-2,3,0)$
    • $(5,0,-3,0,0)$ y $(0,4,0,-2,1)$
  • Usando la definición del producto interior, demuestra que dado $ u \in \mathbb{R}^2$ se tiene que

$u \cdot x =0$, $\forall x\in \mathbb{R}^2$

si y sólo si $u=(0,0)$.

  • Demuestra que para todos los vectores $ u \text{, }v \in \mathbb{R}^2$ y $\forall t \in \mathbb{R}$, se cumple que
    1. $(u+v)^{\perp}=u^{\perp}+v^{\perp}$
    2. $(tu^{\perp})=t(u^{\perp})$
    3. $u^{\perp} \cdot v^{\perp}=u \cdot v$
    4. $u^{\perp} \cdot v = -(u \cdot v^{\perp})$

Más adelante…

El producto interior fungirá como herramienta para establecer las nociones de distancia y ángulo en las siguientes entradas y particularmente para definir la forma normal de la recta en la siguiente entrada.

Seminario de Resolución de Problemas: El teorema espectral y matrices positivas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada hablaremos de matrices simétricas y de matrices positivas. Nos enfocaremos en el caso en el que sus entradas sean números reales. Ambos tipos de matrices son fundamentales en la teoría de álgebra lineal. Tanto para las matrices simétricas como para las positivas hay resultados de caracterización que podemos utilizar en varios problemas matemáticos.

El teorema espectral para matrices simétricas reales

Si $A$ es una matriz de $m\times n$, su transpuesta $^tA$ es la matriz de $n\times m$ que se obtiene de reflejar a las entradas de $A$ en su diagonal principal. Otra forma de decirlo es que si en términos de entradas tenemos $A=[a_{ij}]$, entonces $^tA=[a_{ji}]$. Una matriz y su transpuesta comparten muchas propiedades, como su determinante, su polinomio característico, su rango, sus eigenvalores, etc.

Decimos que una matriz es simétrica si es igual a su transpuesta. Una matriz es ortogonal si es invertible y $^tA = A^{-1}$. Las matrices simétricas y ortogonales con entradas reales son muy importantes y cumplen propiedades bonitas.

Teorema (teorema espectral). Si $A$ es una matriz de $n\times n$ con entradas reales y simétrica, entonces:

  • Sus eigenvalores $\lambda_1,\ldots,\lambda_n$ (contando multiplicidades), son todos reales.
  • Existe una matriz ortogonal $P$ de $n\times n$ y con entradas reales tal que si tomamos a $D$ la matriz diagonal de $n\times n$ cuyas entradas en la diagonal principal son $\lambda_1,\ldots,\lambda_n$, entonces $$A=P^{-1}DP.$$

No todas las matrices se pueden diagonalizar. Cuando una matriz sí se puede diagonalizar, entonces algunas operaciones se hacen más sencillas. Por ejemplo si $A=P^{-1}DP$ como en el teorema anterior, entonces
\begin{align*}
A^2&=(P^{-1}DP)(P^{-1}DP)\\
&=P^{-1}DDP\\
&=P^{-1}D^2P,
\end{align*}

y de manera inductiva se puede probar que $A^k=P^{-1}D^kP$. Elevar la matriz $D$ a la $k$-ésima potencia es sencillo, pues como es una matriz diagonal, su $k$-ésima potencia consiste simplemente en elevar cada una de las entradas en su diagonal a la $k$.

Problema. Sea $A$ una matriz de $n\times n$ simétrica y de entradas reales. Muestra que si $A^k = O_n$ para algún entero positivo $k$, entonces $A=O_n$.

Sugerencia pre-solución. La discusión anterior te permite enunciar la hipótesis en términos de los eigenvalores de $A$. Modifica el problema a demostrar que todos ellos son cero.

Solución. Como $A$ es simétrica y de entradas reales, entonces sus eigenvalores $\lambda_1,\ldots, \lambda_n$ son reales y es diagonalizable. Digamos que su diagonalización es $P^{-1} D P$. Tenemos que $$O_n = A^k = P^{-1} D^k P.$$ Multiplicando por la matriz $P$ a la izquierda, y la matriz $P^{-1}$ a la derecha, tenemos que $D^k=O_n$. Las entradas de $D^k$ son $\lambda_1^k,\ldots,\lambda_n^k$, y la igualdad anterior muestra que todos estos números son iguales a cero. De este modo, $$\lambda_1=\ldots=\lambda_n=0.$$

Concluimos que $D=O_n$, y que por lo tanto $A=P^{-1} O_n P = O_n$.

$\square$

Veamos ahora un bello problema que motiva una fórmula para los números de Fibonacci desde la teoría del álgebra lineal.

Problema. Toma la matriz $$A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$ Calcula las primeras potencias de $A$ a mano. Conjetura y muestra cómo es $A^n$ en términos de la sucesión de Fibonacci. A partir de esto, encuentra una fórmula para el $n$-ésimo término de la sucesión de Fibonacci.

Sugerencia pre-solución. Para empezar, haz las primeras potencias y busca un patrón. Luego, para la demostración de esa parte, procede por inducción. Hay varias formas de escribir a la sucesión de Fibonacci, usa una notación que sea cómoda.

Solución. Al calcular las primeras potencias de la matriz $A$ obtenemos:

\begin{align*}
A&=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\\
A^2&=\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\\
A^3&=\begin{pmatrix} 1 & 2 \\ 2& 3 \end{pmatrix},\\
A^4&=\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix},\\
A^5&=\begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}.
\end{align*}

Al parecer, en las entradas de $A$ van apareciendo los números de Fibonacci. Seamos más concretos. Definimos $F_0=0$, $F_1=1$ y para $n\geq 0$ definimos $$F_{n+2}=F_{n}+F_{n+1}.$$ La conjetura es que para todo entero $n\geq 1$, se tiene que $$A^n=\begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1}\end{pmatrix}.$$

Esto se puede probar por inducción. Arriba ya hicimos el caso $n=1$. Supongamos la conjetura cierta hasta un entero $n$ dado, y consideremos la matriz $A^{n+1}$. Tenemos haciendo el producto de matrices, usando la hipótesis inductiva y la recursión de Fibonacci, que

\begin{align*}
A^{n+1}&=AA^n\\
& =\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}\\
&= \begin{pmatrix} F_n & F_{n+1} \\ F_{n-1} + F_n & F_n + F_{n+1} \end{pmatrix}\\
&=\begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}.
\end{align*}

Esto termina el argumento inductivo y prueba la conjetura.

Para encontrar una fórmula para los Fibonaccis, lo que haremos ahora es usar el teorema espectral. Esto lo podemos hacer pues la matriz $A$ es de entradas reales y simétrica. Para encontrar la matriz diagonal de la factorización, necesitamos a los eigenvalores de $A$. Su polinomio característico es $$\begin{vmatrix} \lambda & -1 \\ – 1 & \lambda -1 \end{vmatrix}=\lambda^2-\lambda -1.$$

Usando la fórmula cuadrática, las raíces de este polinomio (y por tanto, los eigenvalores de $A$) son $$\frac{1\pm \sqrt{5}}{2}.$$ Por el momento, para simplificar la notación, llamemos $\alpha$ a la de signo más y $\beta$ a la raíz de signo menos. Por el teorema espectral, existe una matriz invertible $P$ de $2\times 2$ tal que $$A=P^{-1}\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P.$$

De esta forma, $$A^n = P^{-1}\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} P.$$

Aquí no es tan importante determinar concretamente $P$ ni realizar las cuentas, sino darnos cuenta de que tras realizarlas cada entrada será una combinación lineal de $\alpha^n$ y $\beta^n$ y de que los coeficientes de esta combinación lineal ya no dependen de $n$, sino sólo de las entradas de $P$. En particular, la entrada superior derecha de $A^n$ por un lado es $F_n$, y por otro lado es $r\alpha^n + s\beta ^n$.

¿Cómo obtenemos los valores de $\alpha$ y $\beta$? Basta substituir $n=1$ y $n=2$ para obtener un sistema de ecuaciones en $\alpha$ y $\beta$. Aquí abajo usamos que como $\alpha$ y $\beta$ son raíces de $x^2-x-1$, entonces $\alpha^2=\alpha+1$, $\beta^2=\beta+1$ y $\alpha+\beta = 1$.

$$\begin{cases}
1= F_1 = r \alpha + s \beta \\
1= F_2 = r \alpha^2 + s \beta^2 = r + s + 1.
\end{cases}$$

De aquí, obtenemos la solución
\begin{align*}
r&=\frac{1}{\alpha-\beta} = \frac{1}{\sqrt{5}}\\
s&=-r = -\frac{1}{\sqrt{5}}.
\end{align*}

Finalmente, todo este trabajo se resume a que una fórmula para los números de Fibonacci es $$F_n=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n – \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

$\square$

Matrices positivas y positivas definidas

Por definición, una matriz simétrica $A$ de $n\times n$ con entradas reales es positiva si para cualquier vector (columna) $v$ en $\mathbb{R}^n$ se tiene que $$^t v A v \geq 0.$$ Aquí $^tv$ es la transposición de $v$, es decir, el mismo vector, pero como vector fila.

Si además la igualdad se da sólo para el vector $v=0$, entonces decimos que $A$ es positiva definida. Un ejemplo sencillo de matriz positiva es la matriz $A=\begin{pmatrix} 1 & -1 \\ -1 & 1\end{pmatrix},$ pues para cualquier vector $v=(x,y)$ se tiene que $$^t v A v = x^2-2xy+y^2=(x-y)^2\geq 0.$$ Sin embargo, esta matriz no es positiva definida pues la expresión anterior se anula en vectores no cero como $(1,1)$. Como puedes verificar, un ejemplo de matriz positiva definida es $$B=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$

Las matrices reales que son positivas definidas son importantes pues caracterizan todos los productos interiores en $\mathbb{R}^n$. Una vez que se tiene un producto interior en un espacio vectorial de dimensión finita, se pueden aprovechar muchas de sus propiedades o consecuencias, por ejemplo, la desigualdad de Cauchy-Schwarz o la existencia de bases ortogonales para hacer descomposiciones de Fourier.

Para cuando se quieren resolver problemas, es muy útil conocer varias equivalencias de que una matriz sea positiva.

Equivalencias para matrices positivas

El siguiente resultado enuncia algunas de las equivalencias para que una matriz sea positiva

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Hay un resultado análogo para cuando se quiere determinar si una matriz $A$ es positiva definida. En ese caso, los eigenvalores tienen que ser todos positivos. Para los puntos $3$ y $4$ se necesita además que $B$ y $C$ sean invertibles.

Problema. Sea $A$ una matriz de $n\times n$ con entradas reales, simétrica y positiva. Muestra que si $$\text{tr}(A) = n \sqrt[n]{\det(A)},$$ entonces $A$ conmuta con cualquier matriz de $n\times n$.

Sugerencia pre-solución. Necesitarás usar que matrices similares tienen la misma traza y el mismo determinante, o una versión particular para este problema.

Solución. Las siguientes son propiedades de la traza y el determinante:

  • El determinante de una matriz diagonal es el producto de las entradas en su diagonal.
  • Si tenemos dos matrices similares, entonces tienen la misma traza.

En particular, las hipótesis implican, por el teorema espectral, que $A$ se puede diagonalizar con matrices $A=P^{-1} D P$, donde $D$ es la matriz diagonal que tiene en su diagonal principal a los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$, y $P^{-1}$ es una matriz invertible. Como $A$ y $D$ son similares, se tiene que
\begin{align*}
\text{tr}(A)=\text{tr}(D)=\lambda_1+\ldots+\lambda_n\\
\det(A)=\det(D)=\lambda_1\cdot\ldots\cdot\lambda_n.
\end{align*}

Como $A$ es positiva, entonces todos sus eigenvalores son no negativos, así que satisfacen la desigualdad MA-MG:

$$\frac{\lambda_1+\ldots+\lambda_n}{n} \geq \sqrt[n]{\lambda_1\cdot\ldots\cdot\lambda_n}.$$

Por la última hipótesis del problema, esta desigualdad es de hecho una igualdad. Pero la igualdad en MA-MG se alcanza si y sólo si todos los números son iguales entre sí. Tenemos entonces que todos los eigenvalores son iguales a un cierto valor $\lambda$, y entonces $D=\lambda I_n$. Como cualquier múltiplo escalar de la matriz identidad conmuta con cualquier matriz de $n\times n$, tendríamos entonces que

\begin{align*}
A&=P^{-1}D P \\
&=P^{-1}(\lambda I_n) P\\
&=(\lambda I_n) (P^{-1}P)\\
&=\lambda I_n.
\end{align*}

Con esto probamos que $A$ es de hecho un múltiplo de la matriz identidad, y por lo tanto conmuta con cualquier matriz de $n\times n$.

$\square$

Más problemas

Puedes encontrar más problemas del teorema espectral, de formas y matrices positivas en la Sección 10.2 y la Sección 10.8 del libro Essential Linear Algebra de Titu Andreescu.

Seminario de Resolución de Problemas: Desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Seguimos con las entradas de temas de desigualdades. Con anterioridad ya hablamos de desigualdades básicas y de desigualdades con medias. En esta ocasión estudiaremos una desigualdad muy versátil: la desigualdad de Cauchy-Schwarz.

En su versión más simple, lo que dice la desigualdad de Cauchy-Schwarz es lo siguiente.

Desigualdad (de Cauchy-Schwarz). Para cualesquiera números reales $a_1,\ldots,a_n$ y $b_1,\ldots,b_n$ se tiene que $$|a_1b_1+\ldots+a_nb_n| \leq \sqrt{a_1^2+\ldots+a_n^2} \sqrt{b_1^2+\ldots+b_n^2}.$$

Primero, veremos cómo se demuestra esta desigualdad. Luego, veremos varios problemas en los que se puede aplicar. Finalmente, hablaremos un poco de sus extensiones a espacios vectoriales.

La demostración polinomial de la desigualdad de Cauchy-Schwarz

Una forma de demostrar la desigualdad de Cauchy-Schwarz es usando inducción sobre $n$. Hay otra demostración usando polinomios. Veamos esa demostración, pues tiene la idea útil de usar argumentos polinomiales para demostrar igualdades.

Consideremos la expresión $$p(t)=\sum_{i=1}^n (a_i+b_i t)^2.$$ Como es una suma de cuadrados, esta expresión es no negativa. Haciendo los cuadrados, y desarrollando la suma, podemos escribirla de la siguiente forma, que nos dice que es un polinomio cuadrático en $t$:

\begin{align*}
\sum_{i=1}^n (a_i+b_i t)^2&=\sum_{i=1}^n \left(a_i^2 + 2a_ib_i t + b_i^2 t^2\right)\\
&=\sum_{i=1}^n a_i^2 + \left(2\sum_{i=1}^n a_ib_i \right)t + \left(\sum_{i=1}^n b_i^2\right)t^2.
\end{align*}

De esta forma $p(t)$ es un polinomio cuadrático y siempre toma valores no negativos. Así, a lo más puede tener una raíz $t$, por lo que su discriminante es menor o igual a $0$:

$$ \left(2\sum_{i=1}^n a_ib_i \right)^2-4\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right)\leq 0$$

Al pasar el segundo término sumando al otro lado y dividir entre $4$ queda

$$\left(\sum_{i=1}^n a_ib_i \right)^2\leq \left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right).$$

Al sacar raíz cuadrada de ambos lados hay que tener cuidado de poner un valor absoluto al lado izquierdo. Al hacer esto, se obtiene el resultado deseado: $$\left|\sum_{i=1}^n a_ib_i \right|\leq \sqrt{\sum_{i=1}^n a_i^2}\cdot \sqrt{\sum_{i=1}^n b_i^2}.$$

Observa que la igualdad se da si y sólo si el discriminante es $0$, lo cual sucede si y sólo si el polinomio tiene una raíz $t$. Cuando esto pasa, cada uno de los sumandos al cuadrado de $p(t)$ debe ser $0$. Así, existe un real $t$ tal que $a_i=-tb_i$ para todo $i=1,\ldots,n$. Esto lo podemos decir en términos vectoriales como que «la igualdad se da si y sólo si el vector $(a_1,\ldots,a_n)$ es un múltiplo escalar del vector $(b_1,\ldots,b_n)$ » .

Un problema sobre acotar el valor de una variable

Problema. Sean $a,b,c,d$ números reales tales que
\begin{align*}
a+b+c+d&=6\\
a^2+b^2+c^2+d^2&=12.
\end{align*}
¿Cuál es el máximo valor que puede tener $d$?

Sugerencia. Aplica la desigualdad de Cauchy-Schwarz a las ternas $(a,b,c)$ y $(1,1,1)$.

Solución. Aplicando la desigualdad a las ternas $(a,b,c)$ y $(1,1,1)$ obtenemos que $$|a+b+c|\leq \sqrt{a^2+b^2+c^2}\cdot{\sqrt{3}}.$$ Usando las hipótesis sobre $a,b,c,d$, tenemos que esta desigualdad es equivalente a $|6-d|\leq \sqrt{3}\cdot {\sqrt{12-d^2}$. Elevando al cuadrado de ambos lados, obtenemos las desigualdades equivalentes
\begin{align*}
36-12d+d^2&\leq 3(12-d^2)\\
36-12d+d^2&\leq 36-3d^2\\
4d^2-12d&\leq 0\\
4d(d-3)&\leq 0.
\end{align*}

Para que se satisfaga esta desigualdad, tiene que pasar o bien que simultáneamente $d\leq 0$ y $d\geq 3$ (lo cual es imposible), o bien que simultáneamente $d\geq 0$ y $d\leq 3$. En conclusión, esto acota el máximo valor posible de $d$ con $3$.

En efecto, existe una solución con $d=3$. De acuerdo al caso de igualdad de la desigualdad de Cauchy-Schwarz, debe pasar cuando $(a,b,c)$ es un múltiplo escalar de $(1,1,1)$, es decir, cuando $a=b=c$. Como $a+b+c+d=6$ y queremos $d=3$, esto forza a que $a=b=c=1$. Y en efecto, tenemos que con esta elección $$a^2+b^2+c^2+d^2=1+1+1+9=12.$$

$\square$

Aplicando Cauchy-Schwarz en un problema con el circunradio

A veces podemos aprovechar información implícita en un problema geométrico y combinarla con la desigualdad de Cauchy-Schwarz. Veamos un problema en el que sucede esto.

Problema. Sea $P$ un punto en el interior del triángulo $ABC$ y $p,q,r$ las distancias de $P$ a los lados $BC, CA, AB$ respectivamente, que tienen longitudes $a,b,c$, respectivamente. Sea $R$ el circunradio de $ABC$. Muestra que $$\sqrt{p}+\sqrt{q}+\sqrt{r} \leq \sqrt{\frac{a^2+b^2+c^2}{2R}}.$$

Sugerencia pre-solución. Necesitarás aplicar la desigualdad de Cauchy-Schwarz más de una vez. Haz una figura para entender la expresión $ap+bq+cr$. Necesitarás también la fórmula que dice que se puede calcular el área $T$ de un triángulo mediante la fórmula $$T=\frac{abc}{R}.$$

Solución. Lo primero que haremos es aplicar la desigualdad de Cauchy-Schwarz en las ternas $(\sqrt{ap},\sqrt{bq},\sqrt{cr})$ y $(1/\sqrt{a},1/\sqrt{b},1/\sqrt{c})$ para obtener $$\sqrt{p}+\sqrt{q}+\sqrt{r}\leq \sqrt{ap+bq+cr}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}.$$

Observa que $ap$ es dos veces el área de $\triangle BCP$. De manera similar, tenemos que $bq$ y $cr$ son las áreas de $\triangle CAP$ y $\triangle ABP$ respectivamente. Así, si llamamos $T$ al área de $\triangle ABC$ tenemos que $ap+bq+cr=2T$. Otra expresión para el área de $\triangle ABC$ en términos de su circunradio $R$ es $$T=\frac{abc}{4R}.$$ En otras palabras, $ap+bq+cr=\frac{abc}{2R}$.

Esto nos permite continuar con la desigualdad como sigue:
\begin{align*}
\sqrt{p}+\sqrt{q}+\sqrt{r} &\leq \sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\\
&=\sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{ab+bc+ca}{abc}}\\
&=\sqrt{\frac{ab+bc+ca}{2R}}.
\end{align*}

Esto es casi la desigualdad que queremos. Para terminar, basta mostrar que $$ab+bc+ca\leq a^2+b^2+c^2.$$ Esto se puede hacer de varias formas (intenta hacerlo usando la desigualdad MA-MG). Pero para continuar viendo la versatilidad de la desigualdad de Cauchy-Schwarz, observa que se puede deducir de ella aplicándola a las ternas $(a,b,c)$ y $(b,c,a)$.

$\square$

En el problema anterior, ¿para qué puntos $P$ se alcanza la igualdad?

Cauchy-Schwarz más allá de los números reales

Lo que está detrás de la desiguadad de Cauchy-Schwarz es en realidad la noción de producto interior en álgebra lineal. En cualquier espacio vectorial sobre los reales que tenga un producto interior $\langle \cdot, \cdot \rangle$ se satisface una desigualdad del tipo de la de Cauchy-Schwarz. No entraremos en los detalles de la teoría que se necesita desarrollar, pues eso se estudia en un curso de álgebra lineal. Sin embargo, enunciaremos el teorema y veremos una forma de aplicarlo.

Teorema (desigualdad de Cauchy-Schwarz). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$|\langle u , v\rangle|\leq \sqrt{\langle u , u\rangle}\cdot \sqrt{\langle v , v\rangle}.$$

Se puede mostrar que bajo las hipótesis del teorema la función $\norm{u}:=\langle u , u\rangle$ es una norma. Como platicamos con anterioridad, una norma satisface la desigualdad del triángulo, que en espacios vectoriales tiene un nombre especial.

Teorema (desigualdad de Minkowski). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ y $\norm{u}:=\langle u , u\rangle$, entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$\norm{u}+\norm{v}\geq \norm{u+v}.$$

Es relativamente sencillo ver que las desigualdades de Cauchy-Schwarz y de Minkowski son «equivalentes», en el sentido de que se puede mostrar una fácilmente suponiendo la otra y viceversa.

La desigualdad de Cauchy-Schwarz que usamos en las secciones anteriores es para el producto interior en $\mathbb{R}^n$ dado por $$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n) \rangle = a_1b_1+\ldots + a_nb_n,$$ al cual le llamamos el producto punto.

Si tenemos a $V$ el espacio vectorial de las funciones continuas reales en el intervalo $[0,1]$, entonces $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ es un producto interior para $V$. Esto nos puede ayudar a resolver algunos problemas.

Problema. Sea $f:[0,1]\to \mathbb{R}^+$ una función continua. Muestra que $$\left ( \int_0^1 f(x)\, dx \right) \left (\int_0^1 \frac{1}{f(x)}\, dt \right) \geq 1.$$

Sugerencia pre-solución. Aplica la desigualdad de Cauchy-Schwarz con el producto interior que discutimos antes de esta entrada.

Solución. Tomemos el producto interior $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ en el espacio vectorial de funciones reales y continuas en $[0,1]$. Como la imagen de $f$ está en los reales positivos, podemos definir la función $h:[0,1]\to \mathbb{R}^+$ dada por $h(x)=\sqrt{f(x)}$.

Tenemos que
\begin{align*}
\left \langle h, \frac{1}{h}\right \rangle &= \int_0^1 h(x)\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 1\, dx\\
&=1.
\end{align*}

Por otro lado,

\begin{align*}
\langle h, h \rangle &= \int_0^1 h(x)\cdot h(x)\, dx\\
&=\int_0^1 f(x)\, dx.
\end{align*}

y

\begin{align*}
\left\langle \frac{1}{h}, \frac{1}{h} \right\rangle&= \int_0^1 \frac{1}{h(x)}\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 \frac{1}{f(x)}\, dx
\end{align*}

La conclusión se sigue entonces de manera inmediata de la desigualdad de Cauchy-Schwarz para $\langle \cdot, \cdot \rangle$.

$\square$

Más problemas

Puedes encontrar más problemas que usan la desigualdad de Cauchy-Schwarz en la sección 7.1 del libro Problem Solving through Problems de Loren Larson. También puedes consultar más técnicas y problemas en el libro Desigualdades de la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal I: Problemas de bases ortogonales, Fourier y proceso de Gram-Schmidt

Por Blanca Radillo

Introducción

Durante las últimas clases hemos visto problemas y teoremas que nos demuestran que las bases ortogonales son extremadamente útiles en la práctica, ya que podemos calcular fácilmente varias propiedades una vez que tengamos a nuestra disposición una base ortogonal del espacio que nos interesa. Veamos más problemas de bases ortogonales y otros resultados que nos permitirán reforzar estas ideas.

Problemas resueltos de bases ortogonales y proyecciones

Para continuar con este tema, veremos que las bases ortogonales nos permiten encontrar de manera sencilla la proyección de un vector sobre un subespacio. Primero, recordemos que si $V=W\oplus W_2$, para todo $v\in V$ podemos definir su proyección en $W$, que denotamos $\pi_W(v)$, como el único elemento en $W$ tal que $v-\pi_W(v) \in W_2$.

Debido a las discusiones sobre bases ortogonales, no es difícil ver que si $\langle w,u \rangle =0$ para todo $w\in W$, entonces $u\in W_2$. Como consecuencia de esto, tenemos el siguiente resultado:

Teorema. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior $\langle \cdot , \cdot \rangle$, y sea $W$ un subespacio de $V$ de dimensión finita. Sea $v_1,\cdots,v_n$ una base ortogonal de $W$. Entonces para todo $v\in V$ tenemos que

$\pi_W(v)=\sum_{i=1}^n \frac{\langle v,v_i \rangle}{\norm{v_i}^2} v_i .$

Demostración. Escribimos $v$ como $v=\pi_W(v)+u$ con $u\in W_2$. Por la observación previa al teorema, $\langle u,v_i \rangle =0$ para todo $i$. Además existen $a_1,\cdots,a_n$ tales que $\pi_W(v)=a_1 v_1+\cdots+a_n v_n$. Entonces

\begin{align*}
0 &= \langle u,v_i \rangle =\langle v,v_i \rangle – \langle \pi_W(v),v_i \rangle \\
&= \langle v,v_i \rangle – \sum_{j=1}^n a_j \langle v_j,v_i \rangle \\
&= \langle v,v_i \rangle – a_i \langle v_i,v_i \rangle,
\end{align*}

porque $v_1,\cdots,v_n$ es una base ortogonal. Por lo tanto, para todo $i$, obtenemos

$a_i=\frac{\langle v,v_i \rangle}{\norm{v_i}^2}.$

$\square$

Distancia de un vector a un subespacio y desigualdad de Bessel

En la clase de ayer, vimos la definición de distancia entre dos vectores. También se puede definir la distancia entre un vector y un subconjunto como la distancia entre el vector y el vector «más cercano» del subconjunto, en símbolos:

$d(v,W)=\min_{x\in W} \norm{x-v}.$

Dado que $x\in W$, $x-\pi_W(v) \in W$, y por definición de proyección $v-\pi_W(v) \in W_2$, entonces

\begin{align*}
\norm{x-v}^2 &=\norm{(x-\pi_W(v))+(\pi_W(v)-v)}^2 \\
&= \norm{x-\pi_W(v)}^2+2\langle x-\pi_W(v),\pi_W(v)-v \rangle+\norm{\pi_W(v)-v}^2 \\
&= \norm{x-\pi_W(v)}^2+\norm{\pi_W(v)-v}^2\\
&\geq \norm{\pi_W(v)-v}^2.
\end{align*}

Y dado que la proyección pertenece a $W$, la desigualdad anterior muestra que la proyección es precisamente el vector en $W$ con el que $v$ alcanza la distancia a $W$. En conclusión, $$d(v,W)=\norm{\pi_W(v)-v}.$$

Teorema. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior $\langle \cdot , \cdot \rangle$, y sea $W$ un subespacio de $V$ de dimensión finita. Sea $v_1,\ldots,v_n$ una base ortonormal de $W$. Entonces para todo $v\in V$ tenemos que

$\pi_W(v)=\sum_{i=1}^n \langle v,v_i \rangle v_i,$

y

\begin{align*}
d(v,W)^2&=\norm{v-\sum_{i=1}^n \langle v,v_i \rangle v_i }^2\\
&=\norm{v}^2-\sum_{i=1}^n \langle v,v_i \rangle^2.
\end{align*}

En particular

$\sum_{i=1}^n \langle v,v_i \rangle^2\leq \norm{v}^2.$

A esta última desigualdad se le conoce como desigualdad de Bessel.

Demostración. Por el teorema anterior y dado que $v_1,\cdots,v_n$ es una base ortonormal, obtenemos la primera ecuación. Ahora, por Pitágoras,

$d(v,W)^2=\norm{v-\pi_W(v)}^2=\norm{v}^2-\norm{\pi_W(v)}^2.$

Por otro lado, tenemos que

\begin{align*}
\norm{\pi_W(v)}^2 &=\norm{\sum_{i=1}^n \langle v,v_i \rangle v_i}^2 \\
&= \sum_{i,j=1}^n \langle \langle v,v_i \rangle v_i, \langle v,v_j \rangle v_j \rangle \\
&= \sum_{i,j=1}^n \langle v,v_i \rangle \langle v,v_j \rangle \langle v_i,v_j \rangle \\
&=\sum_{i=1}^n \langle v,v_i \rangle^2.
\end{align*}

Por lo tanto, se cumple la igualdad de la distancia. Finalmente como $d(v,W)^2 \geq 0$, inmediatamente tenemos la desigualdad de Bessel.

$\square$

Veamos ahora dos problemas más en los que usamos la teoría de bases ortonormales.

Aplicación del proceso de Gram-Schmidt

Primero, veremos un ejemplo más del uso del proceso de Gram-Schmidt.

Problema. Consideremos $V$ como el espacio vectorial de polinomios en $[0,1]$ de grado a lo más $2$, con producto interior definido por $$\langle p,q \rangle =\int_0^1 xp(x)q(x) dx.$$

Aplica el algoritmo de Gram-Schmidt a los vectores $1,x,x^2$.

Solución. Es fácil ver que ese sí es un producto interior en $V$ (tarea moral). Nombremos $v_1=1, v_2=x, v_3=x^2$. Entonces

$$e_1=\frac{v_1}{\norm{v_1}}=\sqrt{2}v_1=\sqrt{2},$$

ya que $$\norm{v_1}^2=\int_0^1 x \, dx=\frac{1}{2}.$$

Sea $z_2=v_2-\langle v_2,e_1 \rangle e_1$. Calculando, $$\langle v_2,e_1 \rangle=\int_0^1 \sqrt{2}x^2 dx=\frac{\sqrt{2}}{3}.$$ Entonces $z_2=x-\frac{\sqrt{2}}{3}\sqrt{2}=x-\frac{2}{3}.$ Esto implica que

$e_2=\frac{z_2}{\norm{z_2}}=6\left(x-\frac{2}{3}\right)=6x-4.$

Finalmente, sea $z_3=v_3-\langle v_3,e_1\rangle e_1 -\langle v_3,e_2 \rangle e_2$. Haciendo los cálculos obtenemos que

$z_3=x^2-\left(\frac{\sqrt{2}}{4}\right)\sqrt{2}-\left(\frac{1}{5}\right)(6x-4)$

$z_3=x^2-\frac{6}{5}x+\frac{3}{10}.$

Por lo tanto

$e_3=\frac{z_3}{\norm{z_3}}=10\sqrt{6}(x^2-\frac{6}{5}x+\frac{3}{10}).$

$\square$

El teorema de Plancherel y una fórmula con $\pi$

Finalmente, en este ejemplo, usaremos técnicas de la descomposición de Fourier para solucionar un problema bonito de series.

Problema. Consideremos la función $2\pi-$periódica $f:\mathbb{R}\rightarrow \mathbb{R}$ definida como $f(0)=f(\pi)=0,$ $f(x)=-1-\frac{x}{\pi}$ en el intervalo $(-\pi,0)$, y $f(x)=1-\frac{x}{\pi}$ en el intervalo $(0,\pi)$.

Problemas de bases ortogonales: Aplicando el teorema de Plancherel para una fórmula que involucra a pi.
Gráfica de la función $f$.

Usa el teorema de Plancherel para deducir las identidades de Euler

\begin{align*}
\sum_{n=1}^\infty \frac{1}{n^2} &= \frac{\pi^2}{6},\\
\sum_{n=0}^\infty \frac{1}{(2n+1)^2} & = \frac{\pi^2}{8}.
\end{align*}

Solución. Notemos que no sólo es $2\pi-$periódica, también es una función impar, es decir, $f(-x)=-f(x)$. Por lo visto en la clase del miércoles pasado tenemos que calcular

$a_0(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$

$a_k(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(kx) dx,$

$b_k(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)sen(kx) dx.$

Para no hacer más larga esta entrada, la obtención de los coeficientes de Fourier se los dejaremos como un buen ejercicio de cálculo. Para hacer las integrales hay que separar la integral en cada uno de los intervalos $[-\pi,0]$ y $[0,\pi]$ y en cada uno de ellos usar integración por partes.

El resultado es que para todo $k\geq 1$, $$a_0=0, a_k=0, b_k=\frac{2}{k\pi}.$$

Entonces por el teorema de Plancherel,

\begin{align*}
\sum_{k=1}^\infty \frac{4}{k^2\pi^2} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \\
&= \frac{1}{\pi} \left( \int_{-\pi}^0 \left(1+\frac{x}{\pi}\right)^2 dx + \int_0^\pi \left(1-\frac{x}{\pi}\right)^2 dx \right) \\
&= \frac{2}{3},
\end{align*}

teniendo que $$\sum_{k=1}^\infty \frac{1}{k^2} =\frac{2}{3}\frac{\pi^2}{4}=\frac{\pi^2}{6}.$$

Ahora para obtener la otra identidad de Euler, notemos que

\begin{align*}
\sum_{n=0}^\infty \frac{1}{(2n+1)^2} &= \sum_{n=1}^\infty \frac{1}{n^2} – \sum_{n=1}^\infty \frac{1}{(2n)^2} \\
&= \frac{\pi^2}{6}-\frac{\pi^2}{4\cdot6}= \frac{\pi^2}{8}.
\end{align*}

$\square$

Entradas relacionadas

Álgebra Lineal I: Proceso de Gram-Schmidt

Por Blanca Radillo

Introducción

Durante esta semana hemos introducido el concepto de bases ortogonales y ortonormales, así como algunas propiedades especiales. Para poder aplicar los resultados que hemos visto, es necesario insistir en que las bases sean de este tipo (ortonormales). Ahora veremos cómo encontrar bases ortonormales usando algo llamado el proceso de Gram-Schmidt.

Recordando todos los problemas anteriores de este curso, decíamos que una base es un conjunto de vectores linealmente independientes y que el número de vectores coincide con la dimensión del espacio. Pero hasta este momento no nos interesó determinar si las bases eran ortonormales o no. Si nos pusiéramos a ver si lo eran, es probable que muy pocas lo sean. Entonces surgen dos preguntas, ¿será difícil encontrar una base ortonormal de un espacio vectorial? y ¿habrá alguna manera de construir una base ortonormal?

Proceso de Gram-Schmidt

La respuesta a la primera pregunta es «no, no es difícil», y justo la respuesta de la segunda pregunta es la justificación. Dada una base cualquiera del espacio vectorial, podemos construir una base ortonormal de ese mismo espacio gracias al siguiente teorema.

Teorema (Gram-Schmidt). Sean $v_1,v_2,\cdots,v_d$ vectores linealmente independientes en un espacio vectorial $V$ sobre $\mathbb{R}$ (no necesariamente de dimensión finita), con producto interior $\langle \cdot , \cdot \rangle$. Entonces existe una única familia de vectores ortonormales $e_1,e_2,\ldots,e_d$ en $V$ con la propiedad de que para todo $k=1,2,\ldots,d$, tenemos que

\begin{align*}
\text{span}(e_1,e_2,\cdots,e_k)&=\text{span}(v_1,v_2,\cdots,v_k), \quad \text{y} \quad\\
\langle e_k,v_k \rangle&>0.
\end{align*}

Demostración. Lo haremos por inducción sobre $d$, la cantidad de vectores con la que empezamos.

La base inductiva es cuando $d=1$. Tomamos un vector $e_1\in \text{span}(v_1)$, entonces podemos escribirlo como $e_1=\lambda v_1$ para cierta $\lambda$. Si queremos que $0<\langle e_1,v_1 \rangle=\lambda\norm{v_1}^2$, entonces $\lambda>0$. Además queremos que $e_1$ tenga norma igual a 1, entonces $$1=\norm{e_1}^2=\langle e_1,e_1 \rangle=\lambda^2\norm{v_1}^2,$$ lo cual es posible si $\lambda=\frac{1}{\norm{v_1}}$. Como $e_1$ es un múltiplo escalar de $v_1$, se tiene que $\text{span}(e_1)=\text{span}(v_1)$. Además, la construcción forzó a que $e_1=\frac{1}{\norm{v_1}} v_1$ sea el único vector que satisface las condiciones del teorema.

Hagamos ahora el paso inductivo. Tomemos un entero $d\geq 2$, y supongamos que el teorema es cierto para $d-1$. Sean $v_1,v_2,\cdots,v_d$ vectores en $V$ linelmente independientes. Por hipótesis, sabemos que existe una única familia de vectores ortonormales $e_1,\cdots,e_{d-1}$ que satisfacen las condiciones del teorema respecto a la familia $v_1,\cdots,v_{d-1}$. Es suficiente con probar que existe un único vector $e_d$ tal que $e_1,\cdots,e_d$ satisface el teorema con respecto a $v_1,\cdots,v_d$, esto es
\begin{align*}
\norm{e_d}&=1,\\
\langle e_d,e_i \rangle&=0 \quad \forall 1\leq i\leq d-1,\\
\langle e_d, v_d \rangle &> 0,
\end{align*}

y

$\text{span}(e_1,\cdots,e_d)=\text{span}(v_1,\cdots,v_d),$

ya que, por hipótesis, los casos de $k<d$ se cumplen.

La idea para construir $e_d$ es tomarlo de $\text{span}(v_1,\cdots,v_d)$, expresarlo como combinación lineal de estos y encontrar condiciones necesarias y suficientes sobre los coeficientes de $e_d$ para que satisfaga las conclusiones del teorema. Hagamos esto.

Sea $e_d$ un vector tal que $e_d\in\text{span}(v_1,\cdots,v_d)$. Por ser linealmente independientes y por hipótesis $$\text{span}(v_1,\cdots,v_d)=\text{span}(e_1,\cdots,e_{d-1})+\text{span}(v_d),$$ entonces podemos escribir $e_d$ como

$e_d=\lambda v_d +\sum_{i=1}^{d-1} a_i e_i$

para algunos $\lambda,a_1,\cdots,a_{d-1}$. Si resulta que $\lambda\neq 0$, esto también implicará que $\text{span}(e_1,\cdots,e_d)=\text{span}(v_1,\cdots,v_d)$.

Ahora, dado que $e_d$ debe formar una familia ortonormal con el resto de los vectores, para todo $j=1,\cdots,d-1$, tenemos que


\begin{align*}
0&=\langle e_d,e_j \rangle\\
&=\lambda\langle v_d,e_j\rangle + \sum_{i=1}^{d-1} a_i\langle e_i,e_j \rangle\\
&=\lambda\langle v_d,e_j \rangle +a_j,
\end{align*}

entonces $a_j=-\lambda\langle v_d,e_j \rangle$. Si logramos mostrar que hay un único $\lambda$ con el que se pueda satisfacer la conclusión del teorema, el argumento anterior muestra que también hay únicos $a_1,\ldots,a_{d-1}$ y por lo tanto que hay un único vector $e_d$ que satisface el teorema.

Sustituyendo los coeficientes anteriores, obtenemos que

$e_d=\lambda\left(v_d-\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i \right).$

Notemos que si $z:=v_d-\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i$ es cero, $v_d$ estaría en $$\text{span}(e_1,\cdots,e_{d-1}) = \text{span}(v_1,\cdots,v_{d-1}),$$ contradiciendo que los vectores $v_i$’s son linealmente independientes, entonces $z\neq 0$.

Ahora como queremos que $1=\norm{e_d}=|\lambda| \norm{z}$, esto implica que $|\lambda|=\frac{1}{\norm{z}}$.

Como además queremos que $\langle e_d,v_d \rangle >0$ y

$\langle e_d,v_d\rangle =\left\langle e_d,\frac{e_d}{\lambda}+\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i \right\rangle=\frac{1}{\lambda},$

se deduce que $\lambda$ es único y está determinado por $\lambda=\frac{1}{\norm{z}}.$ Por lo tanto existe (y es único) el vector $e_d$ que satisface el teorema.

$\square$

Este proceso de construcción es mejor conocido como el proceso de Gram-Schmidt. La demostración da a la vez un algoritmo que nos permite encontrar bases ortogonales (y de hecho ortonormales). Veremos ejemplos de esto en la siguiente sección. Antes de eso, enunciaremos formalmente una de las conclusiones más importantes del teorema anterior.

Recuerda que un espacio Euclideano es un espacio vectorial de dimensión finita sobre $\mathbb{R}$ y con un producto interior. Podemos aplicar el proceso de Gram-Schmidt a cualquier base $v_1,\ldots,v_d$ de un espacio Euclideano $V$ y al final obtendremos una familia $e_1,\ldots,e_d$ de vectores ortonormales. Como sabemos que las familias de vectores ortonormales son linealmente independientes, y tenemos $d$ vectores, concluimos que $e_1,\ldots,e_d$ es una base ortonormal. En resumen, tenemos el siguiente resultado.

Corolario. Todo espacio Euclideano tiene una base ortonormal.

Ejemplos de aplicación del proceso de Gram-Schmidt

A continuación veremos algunos ejemplos que nos ayuden a clarificar más este algoritmo.

Ejemplo 1. Sean $v_1,v_2,v_3$ vectores en $\mathbb{R}^3$ (con el producto interior estándar) definidos por

$v_1=(1, 1, 0), \quad v_2=( 1, 1, 1), \quad v_3=( 1, 0, 1)$.

Es fácil ver que estos vectores son linealmente independientes. Entonces construyamos según el proceso de Gram-Schmidt la familia ortonormal de vectores $e_1,e_2,e_3$. Tenemos que

$e_1=\frac{v_1}{\norm{v_1}}=\frac{v_1}{\sqrt{2}}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$.

Ahora, tomando $z_2=v_2-\langle v_2,e_1\rangle e_1$, tenemos que $e_2$ está definido como $\frac{z_2}{\norm{z_2}}$, entonces

\begin{align*}
z_2&=(1,1,1)-\left[(1,1,1)\cdot \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)\right]\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) \\
&=(1,1,1)-\left[\frac{2}{\sqrt{2}}\right]\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) \\
&=(1,1,1)-(2/2,2/2,0)\\
&=(1,1,1)-(1,1,0)=(0,0,1).
\end{align*}

Esto implica que $e_2=\frac{1}{1}(0,0,1)=(0,0,1)$. Finalmente tomando $z_3=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2$, sabemos que $e_3=\frac{z_3}{\norm{z_3}}$. Entonces

\begin{align*}
z_3&=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2 \\
&=(1,0,1)-\left(\frac{1}{2},\frac{1}{2},0\right)-(0,0,1) \\
&=\left(\frac{1}{2},-\frac{1}{2},0\right).
\end{align*}

Por lo tanto

$e_3=\frac{1}{\sqrt{1/2}}\left(\frac{1}{2}, -\frac{1}{2},0\right)=\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0\right).$

$\square$

Ejemplo 2. Sea $V$ el espacio de polinomios en $[0,1]$ con coeficientes reales de grado a lo más 2, con el producto interior

$\langle p,q \rangle =\int_0^1 p(x)q(x) dx.$

Sean $v_1=1$, $v_2=1+x$, $v_3=1+x^2$ vectores en $V$ que claramente son linealmente independientes. Encontraremos los vectores que nos da el proceso de Gram-Schmidt.

Primero calculemos

$\norm{v_1}^2=\int_0^1 1 dx= 1$,

entonces $e_1=\frac{v_1}{\norm{v_1}}=v_1=1$. Ahora calculemos $z_2$:

\begin{align*}
z_2&=v_2-\langle v_2,e_1 \rangle e_1 \\
&=1+x- \int_0^1 (1+x)dx=1+x-\left(1+\frac{1}{2}\right) \\
&=x-\frac{1}{2}.
\end{align*}

Haciendo la integral $$\int_0^1 \left(x-\frac{1}{2}\right)^2 dx$$ se obtiene que $\norm{z_2}=\sqrt{\frac{1}{12}}$, entonces $e_2=\sqrt{12}\left(x-\frac{1}{2}\right)$.

Por último, hay que calcular $z_3$ así como su norma. Primero,

\begin{align*}
z_3&=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2 \\
&=(1+x^2)-\int_0^1 (1+x^2)dx – 12\left(x-\frac{1}{2}\right)\int_0^1 (1+x^2)\left(x-\frac{1}{2}\right)dx \\
&=1+x^2-\left(1+\frac{1}{3}\right)-12\left(x-\frac{1}{2}\right)\left(\frac{1}{12}\right) \\
&=x^2-\frac{1}{3}-x+\frac{1}{2} \\
&=x^2-x+\frac{1}{6},
\end{align*}

y luego, con la integral $$\int_0^1 \left(x^2-x+\frac{1}{6}\right)^2 dx$$ se calcula que $\norm{z_3}=\frac{1}{6\sqrt{5}}$, por lo tanto $e_3=6\sqrt{5}\left(x^2-x+\frac{1}{6}\right)$.

$\square$

Aunque no es un proceso muy eficiente, nos garantiza que podemos encontrar una base ortonormal para cualquier espacio vectorial (con producto interior). Ya con una base ortonormal, podemos usar la descomposición de Fourier de la cual hablamos la entrada anterior y con ella todas las consecuencias que tiene.

Si quieres ver muchos más ejemplos del proceso en $\mathbb{R}^n$, puedes usar una herramienta en línea que te permite ver el proceso paso a paso en el conjunto de vectores que tu elijas. Una posible página es el Gram-Schmid Calculator de eMathHelp.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  • Verifica que con el valor $\lambda$ que se encontró en la demostración del teorema de Gram-Schmidt en efecto se obtiene un vector $e_d$ que satisface todas las conclusiones que se desean.
  • Revisa que los vectores que se obtuvieron en los ejemplos de aplicación del proceso de Gram-Schmidt en efecto son bases ortogonales de los espacios correspondientes.
  • Aplica el proceso de Gram-Schmidt a los polinomios $1$, $x$, $x^2$ en el espacio Euclideano de los polinomios reales de grado a lo más dos y producto interior $$\langle p, q \rangle = p(0)q(0)+p(1)q(1)+p(2)q(2).$$
  • Aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,1,1,1)\\ (0,1,1,1)\\ (0,0,1,1)\\ (0,0,0,1)\end{align*} de $\mathbb{R}^4$ con el producto interior canónico (el producto punto).
  • Usa el Gram-Schmidt Calculator de eMathHelp para ver paso a paso cómo se aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,2,1,1,-1)\\ (0,0,1,0,0)\\ (2,0,0,1,1)\\ (0,2,0,0,1)\\ (-3,0,0,1,0)\end{align*} de $\mathbb{R}^5$.

Más adelante…

En esta última entrada teórica de la unidad 3, vimos el método de Gram-Schmidt para construir una base ortonormal, que es un proceso algorítmico que parte de tener una base de un espacio y al final calcula una base ortonormal. También se vieron algunos ejemplos de la aplicación de este proceso para espacios vectoriales finitos como $\mathbb{R}^3$ y el espacio de polinomios en [0,1] de grado a lo más 2. Aunque no es una manera muy eficaz para encontrar una base ortonormal, sí te garantiza que lo que construye es una.

En la próxima entrada veremos ejercicios resueltos de los temas que hemos estado estudiando a lo largo de esta semana. 

Entradas relacionadas