Archivo de la etiqueta: minko

Seminario de Resolución de Problemas: Desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Seguimos con las entradas de temas de desigualdades. Con anterioridad ya hablamos de desigualdades básicas y de desigualdades con medias. En esta ocasión estudiaremos una desigualdad muy versátil: la desigualdad de Cauchy-Schwarz.

En su versión más simple, lo que dice la desigualdad de Cauchy-Schwarz es lo siguiente.

Desigualdad (de Cauchy-Schwarz). Para cualesquiera números reales $a_1,\ldots,a_n$ y $b_1,\ldots,b_n$ se tiene que $$|a_1b_1+\ldots+a_nb_n| \leq \sqrt{a_1^2+\ldots+a_n^2} \sqrt{b_1^2+\ldots+b_n^2}.$$

Primero, veremos cómo se demuestra esta desigualdad. Luego, veremos varios problemas en los que se puede aplicar. Finalmente, hablaremos un poco de sus extensiones a espacios vectoriales.

La demostración polinomial de la desigualdad de Cauchy-Schwarz

Una forma de demostrar la desigualdad de Cauchy-Schwarz es usando inducción sobre $n$. Hay otra demostración usando polinomios. Veamos esa demostración, pues tiene la idea útil de usar argumentos polinomiales para demostrar igualdades.

Consideremos la expresión $$p(t)=\sum_{i=1}^n (a_i+b_i t)^2.$$ Como es una suma de cuadrados, esta expresión es no negativa. Haciendo los cuadrados, y desarrollando la suma, podemos escribirla de la siguiente forma, que nos dice que es un polinomio cuadrático en $t$:

\begin{align*}
\sum_{i=1}^n (a_i+b_i t)^2&=\sum_{i=1}^n \left(a_i^2 + 2a_ib_i t + b_i^2 t^2\right)\\
&=\sum_{i=1}^n a_i^2 + \left(2\sum_{i=1}^n a_ib_i \right)t + \left(\sum_{i=1}^n b_i^2\right)t^2.
\end{align*}

De esta forma $p(t)$ es un polinomio cuadrático y siempre toma valores no negativos. Así, a lo más puede tener una raíz $t$, por lo que su discriminante es menor o igual a $0$:

$$ \left(2\sum_{i=1}^n a_ib_i \right)^2-4\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right)\leq 0$$

Al pasar el segundo término sumando al otro lado y dividir entre $4$ queda

$$\left(\sum_{i=1}^n a_ib_i \right)^2\leq \left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right).$$

Al sacar raíz cuadrada de ambos lados hay que tener cuidado de poner un valor absoluto al lado izquierdo. Al hacer esto, se obtiene el resultado deseado: $$\left|\sum_{i=1}^n a_ib_i \right|\leq \sqrt{\sum_{i=1}^n a_i^2}\cdot \sqrt{\sum_{i=1}^n b_i^2}.$$

Observa que la igualdad se da si y sólo si el discriminante es $0$, lo cual sucede si y sólo si el polinomio tiene una raíz $t$. Cuando esto pasa, cada uno de los sumandos al cuadrado de $p(t)$ debe ser $0$. Así, existe un real $t$ tal que $a_i=-tb_i$ para todo $i=1,\ldots,n$. Esto lo podemos decir en términos vectoriales como que «la igualdad se da si y sólo si el vector $(a_1,\ldots,a_n)$ es un múltiplo escalar del vector $(b_1,\ldots,b_n)$ » .

Un problema sobre acotar el valor de una variable

Problema. Sean $a,b,c,d$ números reales tales que
\begin{align*}
a+b+c+d&=6\\
a^2+b^2+c^2+d^2&=12.
\end{align*}
¿Cuál es el máximo valor que puede tener $d$?

Sugerencia. Aplica la desigualdad de Cauchy-Schwarz a las ternas $(a,b,c)$ y $(1,1,1)$.

Solución. Aplicando la desigualdad a las ternas $(a,b,c)$ y $(1,1,1)$ obtenemos que $$|a+b+c|\leq \sqrt{a^2+b^2+c^2}\cdot{\sqrt{3}}.$$ Usando las hipótesis sobre $a,b,c,d$, tenemos que esta desigualdad es equivalente a $|6-d|\leq \sqrt{3}\cdot {\sqrt{12-d^2}$. Elevando al cuadrado de ambos lados, obtenemos las desigualdades equivalentes
\begin{align*}
36-12d+d^2&\leq 3(12-d^2)\\
36-12d+d^2&\leq 36-3d^2\\
4d^2-12d&\leq 0\\
4d(d-3)&\leq 0.
\end{align*}

Para que se satisfaga esta desigualdad, tiene que pasar o bien que simultáneamente $d\leq 0$ y $d\geq 3$ (lo cual es imposible), o bien que simultáneamente $d\geq 0$ y $d\leq 3$. En conclusión, esto acota el máximo valor posible de $d$ con $3$.

En efecto, existe una solución con $d=3$. De acuerdo al caso de igualdad de la desigualdad de Cauchy-Schwarz, debe pasar cuando $(a,b,c)$ es un múltiplo escalar de $(1,1,1)$, es decir, cuando $a=b=c$. Como $a+b+c+d=6$ y queremos $d=3$, esto forza a que $a=b=c=1$. Y en efecto, tenemos que con esta elección $$a^2+b^2+c^2+d^2=1+1+1+9=12.$$

$\square$

Aplicando Cauchy-Schwarz en un problema con el circunradio

A veces podemos aprovechar información implícita en un problema geométrico y combinarla con la desigualdad de Cauchy-Schwarz. Veamos un problema en el que sucede esto.

Problema. Sea $P$ un punto en el interior del triángulo $ABC$ y $p,q,r$ las distancias de $P$ a los lados $BC, CA, AB$ respectivamente, que tienen longitudes $a,b,c$, respectivamente. Sea $R$ el circunradio de $ABC$. Muestra que $$\sqrt{p}+\sqrt{q}+\sqrt{r} \leq \sqrt{\frac{a^2+b^2+c^2}{2R}}.$$

Sugerencia pre-solución. Necesitarás aplicar la desigualdad de Cauchy-Schwarz más de una vez. Haz una figura para entender la expresión $ap+bq+cr$. Necesitarás también la fórmula que dice que se puede calcular el área $T$ de un triángulo mediante la fórmula $$T=\frac{abc}{R}.$$

Solución. Lo primero que haremos es aplicar la desigualdad de Cauchy-Schwarz en las ternas $(\sqrt{ap},\sqrt{bq},\sqrt{cr})$ y $(1/\sqrt{a},1/\sqrt{b},1/\sqrt{c})$ para obtener $$\sqrt{p}+\sqrt{q}+\sqrt{r}\leq \sqrt{ap+bq+cr}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}.$$

Observa que $ap$ es dos veces el área de $\triangle BCP$. De manera similar, tenemos que $bq$ y $cr$ son las áreas de $\triangle CAP$ y $\triangle ABP$ respectivamente. Así, si llamamos $T$ al área de $\triangle ABC$ tenemos que $ap+bq+cr=2T$. Otra expresión para el área de $\triangle ABC$ en términos de su circunradio $R$ es $$T=\frac{abc}{4R}.$$ En otras palabras, $ap+bq+cr=\frac{abc}{2R}$.

Esto nos permite continuar con la desigualdad como sigue:
\begin{align*}
\sqrt{p}+\sqrt{q}+\sqrt{r} &\leq \sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\\
&=\sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{ab+bc+ca}{abc}}\\
&=\sqrt{\frac{ab+bc+ca}{2R}}.
\end{align*}

Esto es casi la desigualdad que queremos. Para terminar, basta mostrar que $$ab+bc+ca\leq a^2+b^2+c^2.$$ Esto se puede hacer de varias formas (intenta hacerlo usando la desigualdad MA-MG). Pero para continuar viendo la versatilidad de la desigualdad de Cauchy-Schwarz, observa que se puede deducir de ella aplicándola a las ternas $(a,b,c)$ y $(b,c,a)$.

$\square$

En el problema anterior, ¿para qué puntos $P$ se alcanza la igualdad?

Cauchy-Schwarz más allá de los números reales

Lo que está detrás de la desiguadad de Cauchy-Schwarz es en realidad la noción de producto interior en álgebra lineal. En cualquier espacio vectorial sobre los reales que tenga un producto interior $\langle \cdot, \cdot \rangle$ se satisface una desigualdad del tipo de la de Cauchy-Schwarz. No entraremos en los detalles de la teoría que se necesita desarrollar, pues eso se estudia en un curso de álgebra lineal. Sin embargo, enunciaremos el teorema y veremos una forma de aplicarlo.

Teorema (desigualdad de Cauchy-Schwarz). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$|\langle u , v\rangle|\leq \sqrt{\langle u , u\rangle}\cdot \sqrt{\langle v , v\rangle}.$$

Se puede mostrar que bajo las hipótesis del teorema la función $\norm{u}:=\langle u , u\rangle$ es una norma. Como platicamos con anterioridad, una norma satisface la desigualdad del triángulo, que en espacios vectoriales tiene un nombre especial.

Teorema (desigualdad de Minkowski). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ y $\norm{u}:=\langle u , u\rangle$, entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$\norm{u}+\norm{v}\geq \norm{u+v}.$$

Es relativamente sencillo ver que las desigualdades de Cauchy-Schwarz y de Minkowski son «equivalentes», en el sentido de que se puede mostrar una fácilmente suponiendo la otra y viceversa.

La desigualdad de Cauchy-Schwarz que usamos en las secciones anteriores es para el producto interior en $\mathbb{R}^n$ dado por $$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n) \rangle = a_1b_1+\ldots + a_nb_n,$$ al cual le llamamos el producto punto.

Si tenemos a $V$ el espacio vectorial de las funciones continuas reales en el intervalo $[0,1]$, entonces $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ es un producto interior para $V$. Esto nos puede ayudar a resolver algunos problemas.

Problema. Sea $f:[0,1]\to \mathbb{R}^+$ una función continua. Muestra que $$\left ( \int_0^1 f(x)\, dx \right) \left (\int_0^1 \frac{1}{f(x)}\, dt \right) \geq 1.$$

Sugerencia pre-solución. Aplica la desigualdad de Cauchy-Schwarz con el producto interior que discutimos antes de esta entrada.

Solución. Tomemos el producto interior $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ en el espacio vectorial de funciones reales y continuas en $[0,1]$. Como la imagen de $f$ está en los reales positivos, podemos definir la función $h:[0,1]\to \mathbb{R}^+$ dada por $h(x)=\sqrt{f(x)}$.

Tenemos que
\begin{align*}
\left \langle h, \frac{1}{h}\right \rangle &= \int_0^1 h(x)\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 1\, dx\\
&=1.
\end{align*}

Por otro lado,

\begin{align*}
\langle h, h \rangle &= \int_0^1 h(x)\cdot h(x)\, dx\\
&=\int_0^1 f(x)\, dx.
\end{align*}

y

\begin{align*}
\left\langle \frac{1}{h}, \frac{1}{h} \right\rangle&= \int_0^1 \frac{1}{h(x)}\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 \frac{1}{f(x)}\, dx
\end{align*}

La conclusión se sigue entonces de manera inmediata de la desigualdad de Cauchy-Schwarz para $\langle \cdot, \cdot \rangle$.

$\square$

Más problemas

Puedes encontrar más problemas que usan la desigualdad de Cauchy-Schwarz en la sección 7.1 del libro Problem Solving through Problems de Loren Larson. También puedes consultar más técnicas y problemas en el libro Desigualdades de la Olimpiada Mexicana de Matemáticas.