Archivo de la etiqueta: Cauchy-Schwarz

Álgebra Lineal II: Espacios euclideanos y espacios hermitianos

Por Diego Ligani Rodríguez Trejo

Introducción

Hasta ahora hemos hablado de las formas bilineales, las formas bilineales simétricas, las formas cuadráticas y todos sus análogos complejos. Vimos también cómo podemos representar mediante matrices a estas formas.

Una de las aplicaciones más útiles de estos conceptos es que nos permitirán hablar de espacios vectoriales «con geometría». Este concepto ya lo exploramos en el primer curso de Álgebra Lineal, cuando hablamos de producto interior y de espacios euclideanos.

Por un lado, en esta entrada haremos un breve recordatorio de estos temas. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

Un acuerdo sobre el mundo real y complejo

Como hemos visto anteriormente, los resultados relacionados con formas bilineales tienen frecuentemente sus análogos en el mundo complejo. A veces hay algunas diferencias importantes, pero la mayoría de los casos son mínimas. Por esta razón, a partir de ahora dejaremos varias de las demostraciones de los casos complejos como ejercicios. En caso de ser necesario, haremos el énfasis pertinente en las diferencias entre el caso real y el complejo.

Formas positivas

Para poder «tener geometría» en un espacio vectorial, es necesario que tenga una forma bilineal un poco más especial que las que hemos estudiado. En el caso real requerimos lo siguiente.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Tomemos una forma bilineal $b: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

En el caso complejo hay que ser un poco más cuidadosos. Si $\varphi$ es una forma sesquilineal, podría suceder que $\varphi(x,x)$ no sea un número real y entonces no pueda establecerse una desigualdad entre $\varphi(x,x)$ y $0$. Sin embargo, bajo la hipótesis adicional de que $\varphi$ sea hermitiana, vimos que $\varphi(x,x)$ sí es real.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$. Tomemos una forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $\varphi$ es positiva si $\varphi(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $\varphi$ es positiva definida si $\varphi(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

Adicionalmente, diremos que una forma cuadrática de un espacio vectorial sobre $\mathbb{R}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida). Y diremos que una forma cuadrática hermitiana de un espacio vectorial sobre $\mathbb{C}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida).

Desigualdades de Cauchy-Schwarz real y compleja

Una de las consecuencias de tener formas positivas es que se cumple una desigualdad entre las evaluaciones de una forma cuadrática (o cuadrática hermitiana) y su forma polar. A continuación enunciamos la versión real que demostramos en el primer curso.

Teorema (desigualdad de Cauchy-Schwarz real). Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática y $b$ su forma polar.

  • Si $b$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} b(x,y)^2 \leq q(x)q(y). \end{align*}
  • Más aún, si $b$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

La versión compleja es casi análoga, pero hay que tener el cuidado de usar la norma al evaluar la forma sesquilineal para obtener un número real que podamos comparar con otro.

Teorema (desigualdad de Cauchy-Schwarz compleja). Sea $\Phi: V \rightarrow \mathbb{R}$ una forma cuadrática hermitiana y $\varphi$ su forma polar.

  • Si $\varphi$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} |\varphi(x,y)|^2 \leq \Phi(x)\Phi(y). \end{align*}
  • Más aún, si $\varphi$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

$\square$

La demostración es muy parecida a la del caso real, y queda como ejercicio.

Espacios euclideanos y hermitianos

La sección anterior da la pista de que hay sutiles diferencias entre tener formas positivas y positivas definidas. La noción de que una forma sea positiva definida es más restrictiva, y por ello deberíamos esperar que un espacio vectorial (real o complejo) con una forma positiva definida tenga más propiedades.

Definición. Un producto interior para un espacio vectorial $V$ sobre los reales es una forma bilineal, simétrica y positiva definida.

Definición. Un producto interior hermitiano para un espacio vectorial $V$ sobre los complejos es una forma sesquilineal, hermitiana y positiva definida.

Típicamente se usa una notación especial para los productos interiores (o interiores hermitianos). En vez de referirnos a ellos con expresiones del estilo $b(x,y)$ (o $\varphi(x,y)$), más bien usamos expresiones del estilo $\langle x, y \rangle$. Cuando no queremos poner los argumentos, usualmente dejamos sólo unos puntos, así: $\langle \cdot, \cdot \rangle$.

Si el espacio vectorial además tiene dimensión finita, entonces estamos en un tipo de espacios muy especiales, en los que podremos probar varios resultados. Estos espacios son tan especiales que tienen su propio nombre.

Definición. Un espacio euclideano es un espacio vectorial sobre $\mathbb{R}$, de dimensión finita, y con un producto interior $\langle \cdot, \cdot \rangle$.

Definición. Un espacio hermitiano es un espacio vectorial sobre $\mathbb{C}$, de dimensión finita, y con un producto interior hermitiano $\langle \cdot, \cdot \rangle$.

Ejemplo. Tomemos $\mathbb{C}^n$ y la función $\langle \cdot, \cdot \rangle: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ dada por $$ \langle x, y\rangle = \sum_{i=1}^n \overline{x_i}y_i.$$

Se puede verificar que $\langle \cdot, \cdot \rangle$ es una forma sesquilineal, hermitiana y positiva definida. De este modo, $\mathbb{C}^n$ con este producto interior hermitiano es un espacio hermitiano.

$\triangle$

Normas, distancias y ángulos

Si tenemos un espacio vectorial con producto interior (o producto interior hermitiano), entonces ahora sí podemos introducir varias nociones geométricas: la de norma, la de distancia y la de ángulos. Además, estas nociones tendrán las propiedades geométricas que esperamos.

En las siguientes definiciones tenemos que $V$ es un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$.

Definición. Para $x\in V$, definimos la norma de $x$ como $$\norm{x}:=\sqrt{\langle x,x \rangle}.$$

Definición. Para $x, y\in V$, definimos la distancia de $x$ a $y$ como $$d(x,y):=\norm{x-y}.$$

Definición. Para $x, y\in V$, definimos el ángulo entre $x$ y $y$ como $$\text{ang}(x,y)=\cos^{-1}\left(\frac{|\langle x,y\rangle|}{\norm{x}\norm{y}}\right).$$

En esta última definición, las barras indican el valor absoluto en el caso real y la norma en el caso complejo. Observa que implícitamente estamos usando la desigualdad de Cauchy-Schwarz para asegurarnos de que el argumento de $\cos^{-1}$ en efecto es un número entre $0$ y $1$.

A continuación tenemos dos proposiciones clave que nos dicen que la norma y la distancia que definimos sí tienen todas las propiedades «que deben tener» una norma y una distancia.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entonces, la función norma $\norm{\cdot}:V\to \mathbb{R}$ cumple lo siguiente:

  • Para todo $x\in V$, se tiene que $\norm{x}$ es un número real, con $\norm{x}\geq 0$ y $\norm{x}=0$ si y sólo si $x=0$.
  • Para todo $x\in V$ y $c$ en $\mathbb{R}$ (o $\mathbb{C}$), se tiene que $\norm{cx}=|c|\norm{x}$.
  • Desigualdad del triángulo. Para cualesquiera $x,y \in V$, se tiene que $$\norm{x+y}\leq \norm{x}+\norm{y}.$$

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entones, la función distancia $d:V\times V \to \mathbb{R}$ cumple lo siguiente:

  • Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)$ es un número real, con $d(x,y)\geq 0$ y $d(x,y)=0$ si y sólo si $x=y$.
  • Simetría. Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)=d(y,x)$.
  • Desigualdad del triángulo. Para cualesquiera $x,y,z \in V$, se tiene que $$d(x,z)\leq d(x,y)+d(y,z).$$

La última proposición puede también resumirse como que $V$ con la función $d$ es un espacio métrico. Una métrica en un conjunto permite establecer una topología. Así, en un espacio con producto interior (o producto interior hermitiano), es posible establecer nociones de continuidad, convergencia, cálculo, etc. Es interesante saber que se pueden tomar estos caminos, pero queda fuera de los alcances de nuestro curso.

Más adelante…

Con esto concluimos nuestro pequeño repaso de producto interior y espacios euclideanos. Así mismo, con esto establecemos las bases de los productos interiores hermitianos y de los espacios hermitianos. Como puedes ver, ambas nociones están muy relacionadas entre sí. Los conceptos de norma y distancia dan pie a un sin fin de teoría muy interesante. Es útil poder llegar a ellos desde un enfoque puramente algebraico, y nos muestra el poder que tiene este campo de estudio.

¿Cómo se ven las nociones de positividad y positividad definida en términos de matrices? Esto es algo que estudiaremos en la siguiente entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ espacio vectorial sobre $\mathbb{R}$ y definamos $q: V \rightarrow \mathbb{R}$ como sigue:
    \begin{align*} q(x,y,z)= x^2+y^2+z^2-xy-yz-xz. \end{align*}
    ¿Es $q$ positiva? ¿Es positiva definida?
  2. Sea $n$ un entero positivo y $V$ el espacio de polinomios con coeficientes reales cuyos grados no excedan $n$. Prueba que
    \begin{align*} \langle P, Q\rangle :=\sum_{i=0}^nP(i)Q(i) \end{align*}
    es un producto interno en $V$. ¿Cómo construirías un producto interno hermitiano análogo en el caso de $W$ el espacio de polinomios con coeficientes complejos cuyos grados no excedan $n$?
  3. Revisa la demostración de la desigualdad de Cauchy-Schwarz en los espacios reales. Usa esto para dar una demostración para la versión análoga compleja. Recuerda también demostrar cuándo se da la igualdad si el producto interno hermitiano es positivo definido.
  4. Con la misma notación del ejercicio anterior, prueba la desigualdad de Minkowski, es decir, para todos $x,y \in V$
    \begin{align*} \sqrt{\Phi(x+y)} \leq \sqrt{\Phi(x)} + \sqrt{\Phi(y)}. \end{align*}
  5. Revisa la demostración de las propiedades de la norma y de la distancia para el caso real. Tomando esto como base, realiza la demostración para el caso complejo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Seminario de Resolución de Problemas: Desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Seguimos con las entradas de temas de desigualdades. Con anterioridad ya hablamos de desigualdades básicas y de desigualdades con medias. En esta ocasión estudiaremos una desigualdad muy versátil: la desigualdad de Cauchy-Schwarz.

En su versión más simple, lo que dice la desigualdad de Cauchy-Schwarz es lo siguiente.

Desigualdad (de Cauchy-Schwarz). Para cualesquiera números reales $a_1,\ldots,a_n$ y $b_1,\ldots,b_n$ se tiene que $$|a_1b_1+\ldots+a_nb_n| \leq \sqrt{a_1^2+\ldots+a_n^2} \sqrt{b_1^2+\ldots+b_n^2}.$$

Primero, veremos cómo se demuestra esta desigualdad. Luego, veremos varios problemas en los que se puede aplicar. Finalmente, hablaremos un poco de sus extensiones a espacios vectoriales.

La demostración polinomial de la desigualdad de Cauchy-Schwarz

Una forma de demostrar la desigualdad de Cauchy-Schwarz es usando inducción sobre $n$. Hay otra demostración usando polinomios. Veamos esa demostración, pues tiene la idea útil de usar argumentos polinomiales para demostrar igualdades.

Consideremos la expresión $$p(t)=\sum_{i=1}^n (a_i+b_i t)^2.$$ Como es una suma de cuadrados, esta expresión es no negativa. Haciendo los cuadrados, y desarrollando la suma, podemos escribirla de la siguiente forma, que nos dice que es un polinomio cuadrático en $t$:

\begin{align*}
\sum_{i=1}^n (a_i+b_i t)^2&=\sum_{i=1}^n \left(a_i^2 + 2a_ib_i t + b_i^2 t^2\right)\\
&=\sum_{i=1}^n a_i^2 + \left(2\sum_{i=1}^n a_ib_i \right)t + \left(\sum_{i=1}^n b_i^2\right)t^2.
\end{align*}

De esta forma $p(t)$ es un polinomio cuadrático y siempre toma valores no negativos. Así, a lo más puede tener una raíz $t$, por lo que su discriminante es menor o igual a $0$:

$$ \left(2\sum_{i=1}^n a_ib_i \right)^2-4\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right)\leq 0$$

Al pasar el segundo término sumando al otro lado y dividir entre $4$ queda

$$\left(\sum_{i=1}^n a_ib_i \right)^2\leq \left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right).$$

Al sacar raíz cuadrada de ambos lados hay que tener cuidado de poner un valor absoluto al lado izquierdo. Al hacer esto, se obtiene el resultado deseado: $$\left|\sum_{i=1}^n a_ib_i \right|\leq \sqrt{\sum_{i=1}^n a_i^2}\cdot \sqrt{\sum_{i=1}^n b_i^2}.$$

Observa que la igualdad se da si y sólo si el discriminante es $0$, lo cual sucede si y sólo si el polinomio tiene una raíz $t$. Cuando esto pasa, cada uno de los sumandos al cuadrado de $p(t)$ debe ser $0$. Así, existe un real $t$ tal que $a_i=-tb_i$ para todo $i=1,\ldots,n$. Esto lo podemos decir en términos vectoriales como que «la igualdad se da si y sólo si el vector $(a_1,\ldots,a_n)$ es un múltiplo escalar del vector $(b_1,\ldots,b_n)$ » .

Un problema sobre acotar el valor de una variable

Problema. Sean $a,b,c,d$ números reales tales que
\begin{align*}
a+b+c+d&=6\\
a^2+b^2+c^2+d^2&=12.
\end{align*}
¿Cuál es el máximo valor que puede tener $d$?

Sugerencia. Aplica la desigualdad de Cauchy-Schwarz a las ternas $(a,b,c)$ y $(1,1,1)$.

Solución. Aplicando la desigualdad a las ternas $(a,b,c)$ y $(1,1,1)$ obtenemos que $$|a+b+c|\leq \sqrt{a^2+b^2+c^2}\cdot{\sqrt{3}}.$$ Usando las hipótesis sobre $a,b,c,d$, tenemos que esta desigualdad es equivalente a $|6-d|\leq \sqrt{3}\cdot {\sqrt{12-d^2}$. Elevando al cuadrado de ambos lados, obtenemos las desigualdades equivalentes
\begin{align*}
36-12d+d^2&\leq 3(12-d^2)\\
36-12d+d^2&\leq 36-3d^2\\
4d^2-12d&\leq 0\\
4d(d-3)&\leq 0.
\end{align*}

Para que se satisfaga esta desigualdad, tiene que pasar o bien que simultáneamente $d\leq 0$ y $d\geq 3$ (lo cual es imposible), o bien que simultáneamente $d\geq 0$ y $d\leq 3$. En conclusión, esto acota el máximo valor posible de $d$ con $3$.

En efecto, existe una solución con $d=3$. De acuerdo al caso de igualdad de la desigualdad de Cauchy-Schwarz, debe pasar cuando $(a,b,c)$ es un múltiplo escalar de $(1,1,1)$, es decir, cuando $a=b=c$. Como $a+b+c+d=6$ y queremos $d=3$, esto forza a que $a=b=c=1$. Y en efecto, tenemos que con esta elección $$a^2+b^2+c^2+d^2=1+1+1+9=12.$$

$\square$

Aplicando Cauchy-Schwarz en un problema con el circunradio

A veces podemos aprovechar información implícita en un problema geométrico y combinarla con la desigualdad de Cauchy-Schwarz. Veamos un problema en el que sucede esto.

Problema. Sea $P$ un punto en el interior del triángulo $ABC$ y $p,q,r$ las distancias de $P$ a los lados $BC, CA, AB$ respectivamente, que tienen longitudes $a,b,c$, respectivamente. Sea $R$ el circunradio de $ABC$. Muestra que $$\sqrt{p}+\sqrt{q}+\sqrt{r} \leq \sqrt{\frac{a^2+b^2+c^2}{2R}}.$$

Sugerencia pre-solución. Necesitarás aplicar la desigualdad de Cauchy-Schwarz más de una vez. Haz una figura para entender la expresión $ap+bq+cr$. Necesitarás también la fórmula que dice que se puede calcular el área $T$ de un triángulo mediante la fórmula $$T=\frac{abc}{R}.$$

Solución. Lo primero que haremos es aplicar la desigualdad de Cauchy-Schwarz en las ternas $(\sqrt{ap},\sqrt{bq},\sqrt{cr})$ y $(1/\sqrt{a},1/\sqrt{b},1/\sqrt{c})$ para obtener $$\sqrt{p}+\sqrt{q}+\sqrt{r}\leq \sqrt{ap+bq+cr}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}.$$

Observa que $ap$ es dos veces el área de $\triangle BCP$. De manera similar, tenemos que $bq$ y $cr$ son las áreas de $\triangle CAP$ y $\triangle ABP$ respectivamente. Así, si llamamos $T$ al área de $\triangle ABC$ tenemos que $ap+bq+cr=2T$. Otra expresión para el área de $\triangle ABC$ en términos de su circunradio $R$ es $$T=\frac{abc}{4R}.$$ En otras palabras, $ap+bq+cr=\frac{abc}{2R}$.

Esto nos permite continuar con la desigualdad como sigue:
\begin{align*}
\sqrt{p}+\sqrt{q}+\sqrt{r} &\leq \sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\\
&=\sqrt{\frac{abc}{2R}}\cdot\sqrt{\frac{ab+bc+ca}{abc}}\\
&=\sqrt{\frac{ab+bc+ca}{2R}}.
\end{align*}

Esto es casi la desigualdad que queremos. Para terminar, basta mostrar que $$ab+bc+ca\leq a^2+b^2+c^2.$$ Esto se puede hacer de varias formas (intenta hacerlo usando la desigualdad MA-MG). Pero para continuar viendo la versatilidad de la desigualdad de Cauchy-Schwarz, observa que se puede deducir de ella aplicándola a las ternas $(a,b,c)$ y $(b,c,a)$.

$\square$

En el problema anterior, ¿para qué puntos $P$ se alcanza la igualdad?

Cauchy-Schwarz más allá de los números reales

Lo que está detrás de la desiguadad de Cauchy-Schwarz es en realidad la noción de producto interior en álgebra lineal. En cualquier espacio vectorial sobre los reales que tenga un producto interior $\langle \cdot, \cdot \rangle$ se satisface una desigualdad del tipo de la de Cauchy-Schwarz. No entraremos en los detalles de la teoría que se necesita desarrollar, pues eso se estudia en un curso de álgebra lineal. Sin embargo, enunciaremos el teorema y veremos una forma de aplicarlo.

Teorema (desigualdad de Cauchy-Schwarz). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$|\langle u , v\rangle|\leq \sqrt{\langle u , u\rangle}\cdot \sqrt{\langle v , v\rangle}.$$

Se puede mostrar que bajo las hipótesis del teorema la función $\norm{u}:=\langle u , u\rangle$ es una norma. Como platicamos con anterioridad, una norma satisface la desigualdad del triángulo, que en espacios vectoriales tiene un nombre especial.

Teorema (desigualdad de Minkowski). Si $V$ es un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ y $\norm{u}:=\langle u , u\rangle$, entonces para cualesquiera dos vectores $u$ y $v$ se satisface que $$\norm{u}+\norm{v}\geq \norm{u+v}.$$

Es relativamente sencillo ver que las desigualdades de Cauchy-Schwarz y de Minkowski son «equivalentes», en el sentido de que se puede mostrar una fácilmente suponiendo la otra y viceversa.

La desigualdad de Cauchy-Schwarz que usamos en las secciones anteriores es para el producto interior en $\mathbb{R}^n$ dado por $$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n) \rangle = a_1b_1+\ldots + a_nb_n,$$ al cual le llamamos el producto punto.

Si tenemos a $V$ el espacio vectorial de las funciones continuas reales en el intervalo $[0,1]$, entonces $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ es un producto interior para $V$. Esto nos puede ayudar a resolver algunos problemas.

Problema. Sea $f:[0,1]\to \mathbb{R}^+$ una función continua. Muestra que $$\left ( \int_0^1 f(x)\, dx \right) \left (\int_0^1 \frac{1}{f(x)}\, dt \right) \geq 1.$$

Sugerencia pre-solución. Aplica la desigualdad de Cauchy-Schwarz con el producto interior que discutimos antes de esta entrada.

Solución. Tomemos el producto interior $$\langle f,g\rangle = \int_0^1 f(x)g(x) \, dx$$ en el espacio vectorial de funciones reales y continuas en $[0,1]$. Como la imagen de $f$ está en los reales positivos, podemos definir la función $h:[0,1]\to \mathbb{R}^+$ dada por $h(x)=\sqrt{f(x)}$.

Tenemos que
\begin{align*}
\left \langle h, \frac{1}{h}\right \rangle &= \int_0^1 h(x)\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 1\, dx\\
&=1.
\end{align*}

Por otro lado,

\begin{align*}
\langle h, h \rangle &= \int_0^1 h(x)\cdot h(x)\, dx\\
&=\int_0^1 f(x)\, dx.
\end{align*}

y

\begin{align*}
\left\langle \frac{1}{h}, \frac{1}{h} \right\rangle&= \int_0^1 \frac{1}{h(x)}\cdot \frac{1}{h(x)}\, dx\\
&=\int_0^1 \frac{1}{f(x)}\, dx
\end{align*}

La conclusión se sigue entonces de manera inmediata de la desigualdad de Cauchy-Schwarz para $\langle \cdot, \cdot \rangle$.

$\square$

Más problemas

Puedes encontrar más problemas que usan la desigualdad de Cauchy-Schwarz en la sección 7.1 del libro Problem Solving through Problems de Loren Larson. También puedes consultar más técnicas y problemas en el libro Desigualdades de la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal I: Problemas de desigualdades vectoriales

Por Ayax Calderón

Introducción

En esta entrada practicaremos las dos desigualdades vectoriales que hemos visto anteriormente: la desigualdad de Cauchy – Schwarz y con la desigualdad de Minkowski. Veremos que de ellas se obtiene información valiosa sobre los espacios con producto interior.

Como ya se menciono en otras entradas del blog, estos espacios son muy importantes más allá del álgebra lineal, pues también aparecen en otros áreas como el análisis matemático, variable compleja, probabilidad, etc. Así mismo, los espacios vectoriales con producto interior tienen muchas aplicaciones en el mundo real. Por esta razón es muy importante aprender a detectar cuándo podemos usar desigualdades vectoriales.

Problemas resueltos

Comencemos con algunos problemas de desigualdades vectoriales que usan la desigualdad de Cauchy-Schwarz.

Problema 1. Demuestra que si $f:[a,b]\longrightarrow \mathbb{R}$ es una función continua, entonces

$$\left(\int_a ^b f(t)dt\right)^2 \leq (b-a)\int_a ^b f(t)^2 dt.$$

Demostración. Sea $V=\mathcal{C}([a,b],\mathbb{R})$ el espacio de las funciones continuas de $[a,b]$ en los reales.

Veamos que $\langle \cdot , \cdot \rangle: V\times V \longrightarrow \mathbb{R}$ definido por $$\langle f,g \rangle = \int_a^b f(t)g(t) \, dt$$ es una forma bilineal simétrica.

Sea $f\in V$ fija. Veamos que $g\mapsto \langle f,g \rangle$ es lineal.

Sean $g,h \in V$ y $k\in F$, entonces

\begin{align*}
\langle f,g+hk \rangle &= \int_a ^b f(t)(g(t)+kh(t))dt\\
&=\int_a ^b (f(t)g(t)+kf(t)h(t)) dt\\
&=\int_a ^b f(t)g(t)dt +k \int_a ^b f(t)h(t)dt\\
&=\langle f,g \rangle + k \langle f,h \rangle .
\end{align*}

Análogamente se ve que si $g\in V$ fija, entonces $f\mapsto \langle f,g \rangle$ es lineal.

Luego,
\begin{align*}
\langle f,g \rangle &= \int_a ^b f(t)g(t)\, dt\\
&= \int_a ^b g(t)f(t)\, dt\\
&= \langle g,f \rangle.
\end{align*}
Por lo tanto $\langle \cdot, \cdot \rangle$ es una forma bilineal simétrica.

Ahora observemos que $\langle \cdot ,\cdot \rangle$ es positiva.
$$\langle f,f \rangle = \int_a ^b f(t)^2 dt \geq 0$$ pues $f^2 (t)\geq 0$. Aunque no lo necesitaremos, mostremos además que que $\langle \cdot, \cdot \rangle$ es positiva definida. Si $f$ tiene algún valor $c$ en el interior de $[a,b]$ en la que $f(c)\neq 0$, como es continua, hay un $\epsilon>0$ tal que en todo el intervalo $(c-\epsilon,c+\epsilon)$ se cumple que $|f|$ es mayor que $|f(c)|/2$, de modo que
\begin{align*}
\langle f, f \rangle &= \int_a^b f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon} f^2(t)\, dt\\
&\geq \int_{c-\epsilon}^{c+\epsilon}\frac{f(c)^2}{4} \, dt\\
&=\frac{\epsilon f(c)^2}{2}>0.
\end{align*}

Así, para que $\langle f, f \rangle$ sea $0$, es necesario que $f$ sea $0$ en todo el intervalo $(a,b)$ y por continuidad, que sea cero en todo $[a,b]$.

Sea $q$ la forma cuadrática asociada a $\langle \cdot, \cdot \rangle$.
En vista de todo lo anterior, podemos aplicar la desigualdad de Cauchy -Schwarz tomando $g$ la función constante $1$, es decir, tal que $g(x)=1$ para todo $x$ en $[a,b]$, la cual claramente es continua.

Entonces, $$\langle f,g \rangle &\leq q(f)q(g),$$ que substituyendo las definiciones es
\begin{align*}
\left( \int_a ^b f(t)\, dt\right)^2 &\leq \left(\int_a ^b f(t)^2 \, dt\right)\left(\int_a ^b 1^2\, dt\right)\\
&= (b-a)\int_a ^b f(t)^2 \, dt
\end{align*}

$\square$

Problema 2. a) Sean $x_1, \dots, x_n \in \mathbb{R}$. Demuestra que
$$ (x_1^2+\dots +x_n^2)\left(\frac{1}{x_1^2} + \dots + \frac{1}{x_n^2}\right) \geq n^2.$$
b) Demuestra que si $f:[a,b]\longrightarrow (0,\infty)$ es una función continua, entonces $$\left ( \int_a^b f(t)dt \right) \left (\int_a^b \frac{1}{f(t)}dt \right) \geq (b-a)^2$$

Demostración. a) Considera $\mathbb{R}^n$ con el producto interior usual. Sean $a,b\in\mathbb{R}^n$ dados por
\begin{align*}
a&=(x_1,\dots,x_n)\\
b&=\left( \frac{1}{x_1},\dots, \frac{1}{x_n}\right ).
\end{align*}

La desigualdad de Cauchy-Schwarz afirma que $\lvert \langle a,b \rangle \rvert \leq \norm{a} \norm{b}$. Se tiene que

\begin{align*}
\langle a,b \rangle &= (x_1,\ldots,x_n)\cdot \left(\frac{1}{x_1},\ldots,\frac{1}{x_n}\right)\\
&=1+1+\ldots+1\\
&=n,
\end{align*}

de modo que
\begin{align*}
|n|&\leq \norm{a} \norm{b}\\
&=\sqrt{(x_1^2+\dots +x_n^2)}\sqrt{\left(\frac{1}{x_1^2}+\dots + \frac{1}{x_n^2}\right )}.
\end{align*}

Si elevamos al cuadrado ambos extremos de esta igualdad, obtenemos la desigualdad deseada.

$\square$

b) En el problema 1 de esta entrada vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t) dt$$ es un producto interior para el espacio de funciones continuas en $[a,b]$, y el espacio de este problema es un subespacio del de funciones continuas, así que también define un producto interior aquí.

Para la función $f$ dada, definamos $\phi (t)=\sqrt{f(t)}$ y $\psi (t)=\frac{1}{\sqrt{f(t)}}$.
Notemos que $\phi$ y $\psi$ son continuas, y además como $\forall t\in [a,b]$ se tiene $f(t)\in(0,\infty)$, también tenemos que $\psi (t), \phi (t)\in (0,\infty)$.

Aplicando la desigualdad de Cauchy-Schwarz $$\langle \phi, \psi \rangle^2 \leq \langle \phi , \phi \rangle \langle \psi , \psi \rangle.$$

Entonces
$$ \left(\int_a^b \phi (t) \psi (t) dt\right)^2 \leq \left(\int_a^b \phi(t)^2 dt \right)\left( \int_a^b\psi (t)^2 dt \right).$$

Luego, substituyendo los valores de $\phi$ y $\psi$:
$$ \left( \int_a^b \sqrt{f(t)}\cdot \frac{1}{\sqrt{f(t)}}dt\right )^2 \leq \left(\int_a^b f(t) dt \right)\left ( \int_a^b\frac{1}{f(t)}dt \right).$$

Finalmente, haciendo la integral a la izquierda:
$$(b-a)^2\leq \left(\int_a^b f(t) dt \right)\left (\int_a^b \frac{1}{f(t)}dt \right).$$

$\square$

Hay algunos problemas de desigualdades en los reales que necesitan que usemos herramientas de desigualdades vectoriales.

Problema 3. Sean $x,y,z$ números mayores que 1, tales que $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}=2$. Muestre que
$$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$


Demostración. Considera $\mathbb{R}^3$ con el producto interior usual y $u,v\in \mathbb{R}^3$ con
\begin{align*}
u&=\left(\sqrt{\frac{x-1}{x}}, \sqrt{\frac{y-1}{y}},\sqrt{\frac{z-1}{z}}\right),\\
v&=(\sqrt{x},\sqrt{y},\sqrt{z}).
\end{align*}

Aplicamos la desigualdad de Cauchy-Schwarz a $u$ y $v$:

\begin{align*}
\sqrt{x-1} +& \sqrt{y-1} + \sqrt{z-1}\\
&\leq \sqrt{\frac{x-1}{x}+\frac{y-1}{y}+\frac{z-1}{z}}\sqrt{x+y+z}\\
&=\sqrt{(1+1+1)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\sqrt{x+y+z}\\
&=\sqrt{3-2} \cdot \sqrt{x+y+z}\\
&=\sqrt{x+y+z}.
\end{align*}

Por lo tanto, $$\sqrt{x+y+x} \geq \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$$

$\square$

Problema 4. Sea $f:[a,b]\longrightarrow (0,\infty)$ una función continua.
Demuestre que $$\int_a^b f(t)dt \leq \left ( (b-a)\int_a^b f(t)^2dt\right)^\frac{1}{2}.$$

Demostración. Ya vimos que $$\langle f,g \rangle = \int_a^b f(t)g(t)dt$$ es un producto interior para el espacio de funciones continuas.
Considera $g$ la función constante $1$.

Aplicando la desigualdad de Minkowski se tiene que
$$\sqrt{\langle f+g,f+g \rangle}\leq \sqrt{\langle f,f \rangle} + \sqrt{\langle g,g \rangle}$$

Tenemos entonces que:

$$\left ( \int_a^b (f(t)+1)^2 dt \right)^\frac{1}{2} \leq \left( \int_a^b f(t)^2 dt \right)^\frac{1}{2} + \left ( \int_a^b dt\right )^\frac{1}{2}.$$

Desarrollando el cuadrado en el lado izquierdo,
$$\left (\int_a^b f(t)^2 dt +2\int_a^b f(t)dt +(b-a) \right )^\frac{1}{2} \leq \left(\int_a^bf(t)^2dt \right)^\frac{1}{2} + (b-a)^\frac{1}{2}$$

Luego, elevando ambos lados de la ecuación al cuadrado
$$\int_a^b f(t)^2 dt + 2\int_a^b f(t) dt +(b-a)$$
$$\leq \int_a^b f(t)^2 dt +2\sqrt{b-a}\left( \int_a^b f(t)^2 dt\right)^\frac{1}{2} +(b-a)$$

Finalmente, cancelando términos igual en ambos lados, obtenemos la desigualdad deseada

$$\int_a^b f(t) dt \leq \left((b-a) \int_a^b f(t)^2 dt\right)^\frac{1}{2}.$$

$\square$

Tarea Moral

  • Resuelve el problema 2.b usando la desigualdad de Minkowski.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»