Archivo de la etiqueta: matrices

Álgebra Lineal I: Transformaciones multilineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Con esta entrada empieza el cuarto y último bloque del curso de Lineal I. En este último bloque hablaremos de determinantes de matrices, de eigenvectores, eigenvalores y de polinomios característicos. Además, probaremos el teorema espectral para matrices simétricas reales. Nuestro cimiento teórico para definir a los determinantes y probar sus propiedades fácilmente serán las transformaciones multilineales, que generalizan a las formas bilineales de las que ya hemos hablado.

Antes de empezar, vale la pena recapitular lo que hemos aprendido en los bloques anteriores:

  • Bloque 1: Primero, hablamos de vectores y matrices con entradas reales, y sus operaciones básicas. Luego, vimos que nos ayudan a plantear y resolver sistemas de ecuaciones lineales. Aquí hablamos de varias equivalencias de matrices invertibles. Al final de este bloque, definimos espacios vectoriales en general. En ellos hablamos de conjuntos generadores, independientes y bases. Mediante el lema de Steinitz definimos y probamos propiedades de espacios de dimensión finita.
  • Bloque 2: Vimos la teoría básica de transformaciones lineales. Hablamos de imágenes y kernels de transformaciones. Vimos cómo se comportan con independientes y bases. Luego hablamos de cómo representar transformaciones lineales entre espacios de dimensión finita usando matrices, y en particular cómo hacer cambios de base.
  • Bloque 3: Este bloque fue más «geométrico». Primero, vimos formas lineales y la teoría de dualidad y la aplicamos para ver que todo subespacio es intersección de hiperplanos. Luego, definimos formas bilineales y cuadráticas. De ahí salió la noción de producto interior, que nos permite «hacer geometría» en espacios vectoriales. Hablamos de desigualdades vectoriales, de bases ortogonales, para qué sirven y cómo encontrarlas.

La intuición que obtuvimos de formas bilineales nos ayudará a entender formas multilineales. Pero antes de entrar en este tema, que es un poco técnico, veamos un ejemplo que nos ayudará a entender lo que nos espera en este bloque.

Elevando una matriz a la 100

Considera la matriz $$A=\begin{pmatrix}-4&-10\\3&7\end{pmatrix}.$$ Imagina que para alguna aplicación queremos elevarla a la $100$. Esto probablemente lo puedas hacer a mano, y mejor aún, a computadora. Pero en aplicaciones en la vida real, puede que hacer los cálculos matriciales sea mucho incluso para una computadora. ¿Habrá una forma de que sea más fácil hacer $A^{100}$?

Resulta que para este caso en particular, sí. Considera las matrices $$B=\begin{pmatrix}3 & 5\\ 1& 2\end{pmatrix}$$ y $$D=\begin{pmatrix}1&0\\0&2\end{pmatrix}.$$ La matriz $B$ es invertible, con inversa $$B^{-1}=\begin{pmatrix}2&-5 \\-1&3\end{pmatrix},$$ como puedes verificar. Además, la matriz $A$ se puede «factorizar» así: $$A=B^{-1}DB.$$

Esto es muy útil para nuestros fines. Nota que
\begin{align*}
A^2&=(B^{-1}DB)(B^{-1}DB)\\
&=B^{-1}D^2B,
\end{align*}

y que de hecho inductivamente $A^n=B^{-1}D^n B$ para cualquier entero positivo $n$.

Por otro lado, como la matriz $D$ es diagonal, sus potencias son muy sencillas, de hecho, se puede probar inductivamente que $D^n=\begin{pmatrix}1&0\\0&2^{n}\end{pmatrix}$ para cualquier entero positivo $n$. De esta forma, podemos hacer $A^n$ con tan solo dos multiplicaciones de matrices:
\begin{align*}
A^n&=B^{-1}D^nB\\
&=\begin{pmatrix}2&-5 \\ -1&3\end{pmatrix}\begin{pmatrix}1&0\\ 0&2^{n}\end{pmatrix}\begin{pmatrix}3 & 5\\ 1& 2\end{pmatrix}\\
&=\begin{pmatrix}2&-5 \\ -1&3\end{pmatrix}\begin{pmatrix}3&5 \\ 2^n&2^{n+1}\end{pmatrix}\\
&=\begin{pmatrix}6-5\cdot 2^n& 10-5\cdot 2^{n+1}\\ -3+3\cdot 2^n & -5+3\cdot 2^{n+1}\end{pmatrix}
\end{align*}

Así, el problema que queremos resolver es sencillo ahora. Basta tomar $n=100$ para obtener $$A^{100}=\begin{pmatrix}6-5\cdot 2^{100} & 10-5\cdot 2^{101}\\ -3+3\cdot 2^{100} & -5+3\cdot 2^{101}\end{pmatrix}.$$

Si podemos escribir una matriz $A$ como $B^{-1}DB$ con $B$ invertible y $D$ diagonal, decimos que es diagonalizable. La conclusión anterior es que una matriz diagonalizable se puede elevar fácilmente a potencias.

Todo esto está muy bien pero, ¿de dónde salen las matrices $B$ y $D$? ¿toda matriz es diagonalizable? ¿qué otras ventajas tiene diagonalizar una matriz? Este tipo de preguntas son las que estudiaremos en este bloque.

Diagonalizar matrices de 2×2

El determinante de una matriz $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ en $M_2(\mathbb{R})$, como quizás hayas visto antes, está dado por $ad-bc$. Resulta que una forma sistemática para encontrar matrices $B$ y $D$ como las del ejemplo de arriba es la siguiente:

  • Tomar una matriz $A$.
  • Considerar el polinomio $P(\lambda)=\det(\lambda I – A)$. A este polinomio se le conoce como el polinomio característico de $A$.
  • Encontrar las raíces $\lambda_1$ y $\lambda_2$ de $P(\lambda)$. A estos valores se les llama los eigenvalores de $A$.
  • Encontrar vectores $v_1$ y $v_2$ no cero tales que $(A-\lambda_1I) v_1 =0$ y $(A-\lambda_2 I)v_2 = 0$. Estos simplemente son sistemas lineales homogéneos, que ya sabemos resolver con reducción gaussiana. A estos vectores se les llama eigenvectores de $A$.
  • Usar a $\lambda_1$ y $\lambda_2$ como las entradas de la matriz diagonal $D$.
  • Usar a $v_1$ y $v_2$ como columnas de la matriz $B^{-1}$. Encontrar la inversa de $B^{-1}$ para encontrar a $B$.

¿Cómo se hace en dimensiones más altas? ¿Siempre podemos seguir este proceso esto? ¿Hay algunos tipos de matrices para los que siempre funcione? Estas son otras preguntas que responderemos en el transcurso de estas semanas.

Mientras tanto, veamos qué sucede si aplicamos este método para la matriz $A=\begin{pmatrix}-4&-10\\3&7\end{pmatrix}$ del ejemplo. Tenemos que el determinante de $\lambda I-A = \begin{pmatrix}\lambda+4&10\\-3&\lambda – 7\end{pmatrix}$ es el polinomio \begin{align*}P(\lambda)&= (\lambda+4)(\lambda-7)+30\\ &=\lambda^2-3\lambda-28+30\\ &=\lambda^2-3\lambda+2,\end{align*} cuyas raíces son $1$ y $2$. De aquí construimos $$D=\begin{pmatrix}1&0\\0&2\end{pmatrix}.$$

Busquemos los eigenvectores. Por un lado, si queremos que suceda que $Av=v$ para un vector $v=(x,y)$, necesitamos que $$(-4x-10y, 3x+7y)=(x,y),$$ y una de las soluciones es $(x,y)=(2,-1)$. Por otro lado, si queremos que suceda que $Av=2v$ para un vector $v=(x,y)$, necesitamos que $$(-4x-10y,3x+7y)=(2x,2y),$$ y una de las soluciones es $(x,y)=(-5,3)$. De aquí construimos $$B^{-1}=\begin{pmatrix}2&-5 \\-1&3\end{pmatrix},$$ y podemos hacer reducción gaussiana para encontrar $B$. Observa que obtenemos exactamente las mismas matrices que propusimos en el ejemplo.

Nos gustaría poder hacer esto mismo en dimensiones más altas y entender cuándo y por qué funciona. Para ello, lo primero que necesitamos hacer es entender muy bien el concepto de determinante y aprender a manejar hábilmente sus propiedades principales.

Hay varias formas de definir determinante y quizás ya hayas visto algunas en cursos anteriores. En este curso definiremos determinante mediante transformaciones multilineales. Es un poco más abstracto, pero ayuda a que sea más fácil probar técnicas para trabajar con determinantes y entender por qué funcionan.

Transformaciones multilineales

En el bloque anterior ya hablamos de formas bilineales. Como recordatorio, tomábamos un espacio vectorial real $V$ y una forma bilineal era una función $b:V\times V\to \mathbb{R}$ tal que cada que fijábamos una entrada, la función era lineal en la otra. La palabra «forma» la usábamos porque la imagen caía en el campo.

Generalizaremos esta idea para más entradas, y para cuando la imagen cae en cualquier espacio vectorial. Trabajaremos en espacios vectoriales sobre un campo $F$, que puedes pensar que es $\mathbb{R}$ o $\mathbb{C}$.

Definición. Sean $V_1,\ldots, V_d$ y $W$ espacios vectoriales sobre $F$. Una función $f:V_1\times \ldots \times V_d\to W$ es multilineal si cada que fijamos una $i$ y para cada $j\neq i$ fijamos vectores $v_j$ en $V_j$, la transformación $$V_i\to W$$ dada por $$v_i\mapsto f(v_1,v_2,\ldots,v_d)$$ es lineal.

Aclaración. De nuevo, es muy importante no confundir una transformación multilineal con una transformación lineal del espacio vectorial $V_1\times \ldots \times V_d$ a $W$.

Ejemplo 1. Consideremos $\mathbb{R}^3=\mathbb{R}\times \mathbb{R} \times \mathbb{R}$ y consideramos la transformación $T:\mathbb{R}^3\to \mathbb{R}$ dada por $T(x,y,z)=xyz.$ Afirmamos que esta es una transformación multilineal.

Si fijamos $y$ y $z$, tenemos que mostrar que la transformación $x\mapsto xyz$ es lineal, lo cual es cierto pues para $x_1,x_2$ reales y $r$ real se cumple que
\begin{align*}
T(x_1+rx_2,y,z)&=(x_1+rx_2)yz\\
&=x_1yz + rx_2yz\\
&=T(x_1,y,z)+rT(x_2,y,z).
\end{align*}

De manera similar se prueba para las otras entradas.

Sin embargo, $T$ no es una transformación lineal. Por ejemplo, no saca escalares ya que $T(1,1,1)=1\cdot 1\cdot 1=1$ y $$T(2,2,2)=8\neq 2 = 2T(1,1,1).$$

$\square$

Las transformaciones multilineales son muy generales, y ayudan a crear algo que se llama el producto tensorial. Sin embargo, para los fines que necesitamos ahora, no hace falta tanta generalidad. Sólo nos enfocaremos en las transformaciones multilineales cuando $V_1=V_2=\ldots=V_d$, es decir, en transformaciones $f:V^d\to W$.

Definición. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$.

Ejemplo 2. Si $V$ es un espacio vectorial real y $W=\mathbb{R}$, entonces toda forma bilineal $b:V\times V\to \mathbb{R}$ es una transformación $2$-lineal.

Ejemplo 3. Tomemos $V=\mathbb{R}^3$ y $d=4$. Tomemos las siguientes formas lineales en $V$:
\begin{align*}
l_1(x,y,z)&=x+y+z\\
l_2(x,y,z)&=3x-2y+z\\
l_3(x,y,z)&=y\\
l_4(x,y,z)&=x+z.
\end{align*}

Consideremos la transformación $T:V^4\to \mathbb{R}$ dada por $$T(v_1,v_2,v_3,v_4)=l_1(v_1)l_2(v_2)l_3(v_3)l_4(v_4),$$ por ejemplo, si $v_1=(1,0,0)$, $v_2=(0,1,0)$, $v_3=(0,1,1)$ y $v_4=(1,1,1)$, tenemos que

\begin{align*}
l_1(v_1)&=l_1(1,0,0)=1+0+0=1\\
l_2(v_2)&=l_2(0,1,0)=0-2+0=-2\\
l_3(v_3)&=l_3(0,1,1)=1\\
l_4(v_4)&=l_4(1,1,1)=1+1=2,
\end{align*}

y por lo tanto $$T(v_1,v_2,v_3,v_4)=(1)(-2)(1)(2)=-4.$$

Tenemos que $T$ es $4$-lineal pues para cada $i$, al fijar las tres entradas $v_j$ con $j\neq i$ tenemos que $T(v_1,v_2,v_3,v_4)$ es de la forma $cl_i(v_i)$ con $c$ un escalar. Como $l_i$ es una forma lineal, $cl_i$ también.

$\triangle$

Nos interesan un tipo todavía más restringido de transformaciones multilineales. Para definirlas, tenemos que hacer una pequeña desviación hacia el tema de permutaciones.

Permutaciones y signos

Tomemos un entero positivo y usemos $[n]$ para hablar del conjunto de los enteros de $1$ a $n$, es decir, $[n]:=\{1,2,\ldots,n\}$.

Definicion. Una permutación de $[n]$ es una función biyectiva $\sigma: [n]\to [n]$.

En otras palabras, una permutación básicamente «revuelve los elementos» de $[n]$. Usualmente expresamos a la permutación con la notación $$\begin{pmatrix} 1 & 2 & \ldots & n\\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{pmatrix}$$

Ejemplo 1. La función $\sigma:[3]\to [3]$ tal que $\sigma(1)=2$, $\sigma(2)=3$ y $\sigma(3)=1$ es una permutación que manda al conjunto ordenado $(1,2,3)$ al conjunto ordenado $(2,3,1)$. La expresamos como $$\begin{pmatrix} 1& 2 & 3\\ 2 & 3 & 1\end{pmatrix}.$$

$\triangle$

Como las permutaciones son funciones, entonces podemos componerlas. Para evitar complicar la notación, no pondremos el signo de composición $\circ$, sino simplemente permutaciones adyacentes. La composición usualmente no es conmutativa.

Ejemplo 2. Tomemos la permutación $\sigma_1:[4]\to [4]$ representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}$$ y la permutación $\sigma_2:[4]\to [4]$ representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}.$$

¿Qué hace la función $\sigma_1 \sigma_2$? Es una función de $[4]$ a $[4]$ y cumple lo siguiente:
\begin{align*}
\sigma_1(\sigma_2(1))&=\sigma_1(4)=4,\\
\sigma_1(\sigma_2(2))&=\sigma_1(2)=2,\\
\sigma_1(\sigma_2(3))&=\sigma_1(3)=1,\\
\sigma_1(\sigma_2(4))&=\sigma_1(1)=3,
\end{align*}

es decir, la composición es la permutación representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 4 & 2 & 1 & 3\end{pmatrix}.$$

Por otro lado, la función $\sigma_2\sigma_1$ hace algo un poco diferente. También es una función de $[4]$ a $[4]$ y cumple lo siguiente:
\begin{align*}
\sigma_2(\sigma_1(1))&=\sigma_2(3)=3,\\
\sigma_2(\sigma_1(2))&=\sigma_2(2)=2,\\
\sigma_2(\sigma_1(3))&=\sigma_2(1)=4,\\
\sigma_2(\sigma_1(4))&=\sigma_2(4)=1,
\end{align*}

así que es la permutación representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 3 & 2 & 4 & 1\end{pmatrix}.$$

$\triangle$

Al conjunto de permutaciones de $[n]$ le llamamos $S_n$. Tomemos una permutación $\sigma$ en $S_n$. Para dos elementos $i<j$ en $[n]$, decimos que $\sigma$ los invierte si $\sigma(i)>\sigma(j)$.

Definición. Sea $\sigma$ un elemento de $S_n$. Decimos que el signo de $\sigma$ es $1$ si invierte una cantidad par de parejas, y es $-1$ si invierte una cantidad impar de parejas. Al signo de $\sigma$ lo denotamos $\text{sign}(\sigma)$.

Ejemplo 3. La permutación $$\begin{pmatrix}1& 2 & 3 & 4 & 5\\ 5 & 2 & 1 & 4 & 3\end{pmatrix}$$ invierte a la pareja $(1,2)$ pues $\sigma(1)=5>2=\sigma(2)$. Todas las parejas que invierte son $(1,2)$, $(1,3)$, $(1,4)$, $(1,5)$, $(2,3)$, $(4,5)$. Estas son $6$ parejas, que son una cantidad par, así que la permutación tiene signo $1$.

La permutación identidad en $S_n$ no invierte ninguna pareja, así que tiene signo $1$.

$\triangle$

En la siguiente entrada combinaremos estas nociones de permutaciones y de transformaciones multilineales para hablar de antisimetría y alternancia. Por el momento, reflexiona en lo siguiente: si $\sigma$ es una permutación en $S_n$ y $f:V^n\to W$ es una transformación $n$-lineal, entonces la transformación $\sigma f:V^n \to W$ definida por $$(\sigma f)(x_1,x_2,\ldots,x_n) = f(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)})$$ también es una transformación $n$-lineal.

Más adelante…

En esta primera entrada de la cuarta unidad hemos visto cómo la intuición que obtuvimos cuando estudiamos formas bilineales, nos ha ayudado a entender el concepto de formas multilineales. En las siguientes entradas del blog, abordaremos el concepto de determinante y aprenderemos cómo se usa.

Para la definición de determinante y para demostrar algunas de sus propiedades , usaremos lo que aprendimos en esta entrada sobre las transformaciones multilineales. Veremos que es una herramienta del álgebra lineal bastante útil y entender detalladamente cómo funciona será fundamental para abordar uno de los teoremas más importantes del curso: el teorema espectral.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Toma $T:V^d\to W$ una transformación $d$-lineal. Muestra que si de entre $x_1,\ldots,x_d$ elementos de $V$ alguno de ellos es el vector $0$, entonces $T(x_1,\ldots,x_d)=0$.
  • Muestra que la transformación del ejemplo de transformaciones multilineales también es lineal en la segunda y tercera entradas.
  • Supón que $l_1,\ldots,l_d$ son formas lineales de $V$ al campo $F$. Muestra que $f:V^d\to F$ dada por $$f(x_1,\ldots,x_d)=l_1(x_1)\ldots l_d(x_d)$$ es una transformación $d$-lineal.
  • Encuentra una transformación lineal $T:\mathbb{R}^3\to \mathbb{R}$ que no sea una transformación multilineal.
  • Muestra que la composición de dos permutaciones siempre es una permutación.
  • Muestra que para dos permutaciones $\sigma_1$ y $\sigma_2$ se tiene que $$\text{sign}(\sigma_1\sigma_2)=\text{sign}(\sigma_1)\text{sign}(\sigma_2).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Ortogonalidad y transformación transpuesta

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya estudiamos la noción de espacio dual y la de ortogonalidad. También vimos cómo a partir de la ortogonalidad podemos definir subespacios como intersección de hiperplanos. Como veremos a continuación, la ortogonalidad también nos permite definir qué quiere decir que consideremos la «transformación transpuesta» de una transformación lineal.

Antes de comenzar, vale la pena recordar también que cada transformación lineal entre espacios de dimensión finita puede ser expresada mediante una matriz que depende de la elección de bases de los espacios vectoriales. Como tal vez te imaginarás, la transformación transpuesta tendrá como matriz a la matriz transpuesta de la transformación original.

Esta intuición nos dice que hay que tener cuidado. Supongamos que estamos trabajando sobre un campo $F$. Si tenemos espacios vectoriales $V$ de dimensión $n$, $W$ de dimensión $m$ y una tranformación lineal $T:V\to W$, recordemos que, tras elegir bases, $T$ está representada por una matriz $A$ en $M_{m,n}(F)$, es decir, con $m$ filas y $n$ columnas.

Pero la matriz transpuesta $^t A$ es de $n$ filas y $m$ columnas, así que típicamente no representará a una transformación de $V$ a $W$, pues las dimensiones no necesariamente coinciden. Podríamos intentar construir una transformación de $W$ a $V$ para que las dimensiones coincidan, pero resulta que esto no es «tan natural», por razones en las que no profundizaremos.

Lo que sí resulta muy natural y fácil de definir es una transformación de $W^\ast$ a $V^\ast$, lo cual tendrá sentido pues ya probamos que $\dim W^\ast = \dim W$ y $\dim V^\ast = \dim V$, así que será representada por una matriz en $M_{n,m}$. Es un poco más difícil conceptualmente, pero las consecuencias matemáticas son más bonitas y útiles. Sin decir más, comenzamos con la teoría.

Definición y ejemplo de transformación transpuesta

Para definir «transformación transpuesta», le hacemos como sigue.

Definición. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$ y sea $T:V\to W$ una transformación lineal. Definimos la transformación transpuesta de $T$, como la transformación $^tT:W^\ast \to V^\ast$ tal que a cada forma lineal $l$ en $W^\ast$ la manda a la forma lineal $^tT(l)$ en $V^\ast$ para la cual $$(^tT(l))(v)=l(T(v)).$$

Otra forma de escribir a la definición es mediante la notación de emparejamiento canónico: $$\langle ^tT(l),v\rangle=\langle l, T(v)\rangle.$$

Veamos un ejemplo para entender mejor la definición.

Ejemplo. Considera a $V=M_{2}(\mathbb{R})$ y $W=\mathbb{R}^2$. Considera la transformación lineal $T:V\to W$ dada por $$T\begin{pmatrix} a& b\\ c&d\end{pmatrix}=(a+b,c+d).$$

La transformación $^t T$ va a mandar a una forma lineal $l$ de $W$ a una forma lineal $^tT(l)$ de $V$. Las formas lineales $l$ en $W$ se ven de la siguiente forma $$l(x,y)=rx+sy.$$ La forma lineal $^tT(l)$ en $V$ debe satisfacer que $^tT(l)=l\circ T$. En otras palabras, para cualquier matriz $\begin{pmatrix} a& b\\ c&d\end{pmatrix}$ se debe tener
\begin{align*}
(^t T(l)) \begin{pmatrix} a& b\\ c&d\end{pmatrix} &= l(a+b,c+d)\\
&=r(a+b)+s(c+d)\\
&=ra+rb+sc+sd.
\end{align*}

Si tomamos la base canónica $E_{11}$, $E_{12}$, $E_{21}$, $E_{22}$ de $V$ y la base canónica $e_1,e_2$ de $W$, observa que la transformación $T$ tiene como matriz asociada a la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\end{pmatrix}$$ (recuerda que se obtiene poniendo como columnas a los vectores coordenada de las imágenes de la base).

Por otro lado, los vectores de la base dual $e_1^\ast$ y $e_2^\ast$ «leen las coordenadas», de modo que $e_1^\ast(x,y)=x$ y $e_2^\ast(x,y)=y$. Por lo que vimos arriba, $(^t T)(e_1)$ es entonces la forma lineal $a+b$ y $(^t T)(e_2)$ es la forma lineal $c+d$. En términos de la base dual en $V^\ast$, estos son $E_{11}^\ast + E_{12}^\ast$ y $E_{21}^\ast+ E_{22}^\ast$ respectivamente. De esta forma, la transformación $^t T$ tiene matriz asociada $$\begin{pmatrix}1&0\\1&0\\0&1\\0&1\end{pmatrix}.$$

$\triangle$

Nota que en el ejemplo la transformación transpuesta tiene como matriz a la matriz transpuesta de la transformación original. Esto es algo que queremos que pase siempre, y más abajo lo demostramos.

Propiedades básicas de transformación transpuesta

Observa que la definición no necesita que $V$ y $W$ sean de dimensión finita. A continuación enunciamos y probamos algunos resultados que se valen también en el contexto de dimensión infinita.

Teorema 1. Tomemos $V$,$W$,$Z$ espacios vectoriales sobre un campo $F$ y $c$ en $F$. Sean $T_1,T_2: V \to W$ transformaciones lineales. Sea $T_3:W\to Z$ una transformación lineal. Se cumple todo lo siguiente:

  1. $^tT_1$ es una transformación lineal.
  2. $^t(T_1+cT_2)= {^tT_1} + c^tT_2$.
  3. $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$.
  4. Si $V=W$ y $T_1$ es invertible, entonces $^t T_1$ también lo es y $(^t T_1)^{-1}= {^t (T_1^{-1})}$.

Para tener un poco más de intuición, observa cómo estas propiedades son análogas a las de transposición para matrices.

Demostración. Las partes 1 y 2 se demuestran usando cuidadosamente las definiciones. Haremos la demostración de $1$ y la demostración de $2$ queda como tarea moral. Para probar $1$, necesitamos probar que $^tT_1:W^\ast \to V^\ast$ es lineal, así que tomemos $l_1$, $l_2$ en $W^\ast$ y $a$ un escalar en $F$. Tenemos que demostrar que $$ ^tT_1(l_1+a l_2)= {^tT_1(l_1)}+ a ^tT_1(l_2).$$

Ésta es una igualdad de formas lineales en $V^\ast$, y para mostrar su validez tenemos que mostrar que se vale en cada $v\in V$. Por un lado,
\begin{align*}
^tT_1(l_1+a l_2)(v) &= (l_1+a l_2)(T_1(v))\\
&=l_1(T_1(v))+a l_2(T_1(v)).
\end{align*}

Por otro lado,
\begin{align*}
(^tT_1(l_1)+ a ^tT_1(l_2))(v)&= {^tT_1(l_1)(v)}+ a ^tT_1(l_2)(v)\\
&= l_1(T_1(v)) + a l_2(T_1(v)).
\end{align*}

En ambos casos obtenemos el mismo resultado, así que $^tT_1(l_1+a l_2)$ y $^tT_1(l_1)+ a ^tT_1(l_2)$ son iguales, mostrando que $^t T_1$ es lineal.

Pasemos a la parte 3. La igualdad $^t(T_3\circ T_1) = {^t T_1} \circ ^t T_3$ es una igualdad de transformaciones de $Z^\ast$ a $V^\ast$. Para verificar su veracidad, hay que ver que son iguales en cada elemento en su dominio. Tomemos entonces una forma lineal $l$ en $Z^\ast$. Queremos verificar la veracidad de $$ ^t(T_3\circ T_1)(l) = (^t T_1 \circ ^t T_3)(l),$$ que es una igualdad de formas lineales en $V^\ast$, de modo que tenemos que verificarla para cada $v$ en $V$. Por un lado,

\begin{align*}
^t(T_3\circ T_1)(l)(v)&=l((T_3\circ T_1)(v))\\&=l(T_3(T_1(v))),
\end{align*}

Por otro,
\begin{align*}
(^t T_1 \circ ^t T_3)(l)(v)&=(^tT_1(^t T_3 (l)))(v)\\&=(^t T_3 (l))(T_1(v))\\&=l(T_3(T_1(v))).
\end{align*}

En ambos casos obtenemos el mismo resultado.

Para la parte 4 basta notar que si $V=W$ y $T_1$ es invertible, entonces tiene una inversa $S:V\to V$, y por la parte $3$ tenemos que $$^t S\circ ^t T_1 = {^t(T_1\circ S)} = {^t \text{Id}_V} = \text{Id}_{V^\ast},$$

mostrando que $^t T_1$ tiene inversa $^tS$. Observa que estamos usando que la transpuesta de la transformación identidad es la identidad. Esto no lo hemos probado, pero lo puedes verificar como tarea moral.

$\square$

La matriz transpuesta es la matriz de la transformación transpuesta

Cuando estamos trabajando en espacios de dimensión finita, podemos mostrar que la matriz que le toca a la transformación transpuesta es precisamente la transpuesta de la matriz que le toca a la transformación original. Hacemos esto más preciso en el siguiente resultado.

Teorema 2. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita y $B$ y $B’$ bases de $V$ y $W$ respectivamente. Si $A$ es la matriz de $T$ con respecto a $B$ y $B’$, entonces $^t A$ es la matriz de la transformación $^t T:W^\ast \to V^\ast$ con respecto a las bases duales $B’^\ast$ y $B^\ast$.

Demostración. Necesitamos definir algo de notación. Llamemos $n=\dim V$, $m=\dim W$, $B=\{b_1,\ldots, b_n\}$, $B’=\{c_1,\ldots, c_m\}$ y $A=[a_{ij}]$. Recordemos que la matriz $A$ está hecha por las coordenadas de las imágenes de la base $B$ en términos de la base $B’$, es decir, que por definición tenemos que para toda $j=1,\ldots, n$: \begin{equation}T(b_j)=\sum_{i=1}^{m} a_{ij} c_i.\end{equation}

La transformación $^t T:W^\ast \to V^\ast$ va de un espacio de dimensión $m$ a uno de dimensión $n$, así que en las bases $B’^\ast$ y $B^\ast$ se puede expresar como una matriz de $n$ filas y $m$ columnas. Afirmamos que ésta es la matriz $^t A$. Para ello, basta mostrar que las coordenadas de las imágenes de la base $B’^\ast$ en términos de la base $B^\ast$ están en las filas de $A$, es decir, que para todo $i=1, \ldots, m$ tenemos que $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast.$$

La anterior es una igualdad de formas lineales en $V^\ast$, de modo que para ser cierta tiene que ser cierta evaluada en todo $v$ en $V$. Pero por linealidad, basta que sea cierta para todo $b_j$ en la base $B$. Por un lado, usando (1),

\begin{align*}
^tT(c^\ast_i)(b_j)&=c^\ast_i(T(b_j))\\
&=c^\ast_i \left(\sum_{k=1}^{m} a_{kj} c_i\right)\\
&=\sum_{k=1}^{m} a_{kj} c^\ast_i(c_k)\\
&=a_{ij},
\end{align*}

en donde estamos usando que por definición de base dual $c_i^\ast (c_i)= 1$ y $c_j^\ast (c_i)=0$ si $i\neq j$. Por otro lado,

\begin{align*}
\left(\sum_{k=1}^{n} a_{ik} b_k^\ast\right)(b_j)&= \sum_{k=1}^{n} a_{ik} b_k^\ast(b_j)\\
&=a_{ij},
\end{align*}

en donde estamos usando linealidad y la definición de base dual para $B$.

Con esto concluimos la igualdad $$^tT(c^\ast_i)=\sum_{j=1}^{n} a_{ij} b_j^\ast,$$ que muestra que podemos leer las coordenadas de las evaluaciones de $^t T$ en $B’^\ast$ en términos de la base $B^\ast$ en las filas de $A$, por lo tanto podemos leerlas en las columnas de $^t A$. Esto muestra que $^t A$ es la matriz correspondiente a esta transformación en términos de las bases duales.

$\square$

Kernel e imagen de la transformación transpuesta

Finalmente, el siguiente resultado nos habla acerca de cómo están relacionadas las transformaciones transpuestas y la ortogonalidad.

Teorema 3. Sea $T:V\to W$ una transformación lineal entre espacios vectoriales de dimensión finita. Entonces

$$\ker (^t T) = (\Ima (T))^\bot,\quad \ker (T)=(\Ima (^t T))^\bot$$

y

$$\Ima (^t T) = (\ker(T))^\bot\,\quad \Ima (T)=(\ker(^t T))^\bot.$$

Demostración. Demostraremos la igualdad $\ker (^t T) = (\Ima (T))^\bot$. Notemos que $l \in \ker(^t T)$ si y sólo si $(^t T)(l)=0$, lo cual sucede si y sólo si $l\circ T = 0$. Pero esto último sucede si y sólo si para todo $v$ en $V$ se tiene que $l(T(v))=0$, que en otras palabras quiere decir que $l(w)=0$ para todo $w$ en $\Ima (T)$. En resumen, $l\in \ker(^t T)$ pasa si y sólo si $l$ se anula en todo $\Ima (T)$ es decir, si y sólo si está en $(\Ima (T))^\bot$.

El resto de las igualdades se demuestran de manera análoga, o alternativamente, usando la bidualidad canónica. Es un buen ejercicio hacerlo y se deja como tarea moral.

$\square$

Más adelante…

En esta entrada enunciamos un resultado muy importante: dada una transformación lineal $T$, su transformación transpuesta tiene como matriz asociada la matriz transpuesta de la matriz asociada de $T$. Este resultado nos permitirá calcular fácilmente la transpuesta de una transformación, como veremos en la entrada de problemas de este tema.

En la siguiente entrada del blog hablaremos por primera vez de formas bilineales: vamos a ver cómo nuestra discusión de transformaciones lineales facilitará mucho abordar este tema.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transpuesta de la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=T(7x+8y,6x+7y)$ es invertible. Encuentra a su transpuesta y a la inversa de la transpuesta explícitamente.
  • Muestra la parte $2$ del Teorema 1.
  • Muestra que la transpuesta de la transformación identidad es la identidad.
  • Demuestra el resto de las igualdades del Teorema 3.
  • Encuentra la transpuesta de la transformación traza que va de $M_n(\mathbb{R})$ a los reales. Recuerda que esta transformación manda a una matriz $A=[a_{ij}]$ a la suma de sus entradas en la diagonal principal, es decir $$A\mapsto a_{11}+a_{22}+\ldots+a_{nn}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de dualidad y base dual

Por Blanca Radillo

Introducción

En esta ocasión, comenzaremos a resolver problemas sobre un nuevo tema: espacio dual. La parte teórica ya la hemos cubierto en entradas anteriores. En la entrada de introducción a dualidad definimos el espacio dual y las formas coordenadas. Después, en una siguiente entrada, de bases duales vimos que las formas coordenadas son una base del espacio dual, hablamos de ciertos problemas prácticos para resolver, y vimos un teorema que relaciona bases, bases duales y una matriz invertible.

Problemas resueltos

Uno de los problemas de dualidad que discutimos la ocasión anterior es expresar a una base dual de vectores en $V$ en términos de la base dual de la base canónica. Veamos un ejemplo de esto.

Problema 1. Sean $v_1,v_2,v_3,v_4$ los vectores en $\mathbb{R}^4$ definidos como $$v_1=\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, v_2=\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, v_3=\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}, v_4=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 5 \end{pmatrix}.$$ Demuestra que $V:=\{v_1,v_2,v_3,v_4\}$ es una base de $\mathbb{R}^4$ y encuentra la base dual de $V$ en términos de $e_i^\ast$, donde $e_i^\ast$ es la base dual de la base canónica de $\mathbb{R}^4$.

Solución. Dado que $V$ está conformado por cuatro vectores y la dimensión de $\mathbb{R}^4$ es $4$, basta con probar que son vectores linealmente independientes. Hay dos maneras de hacerlo.

Manera 1: Sean $a,b,c,d \in \mathbb{R}$ tales que $0=av_1+bv_2+cv_3+dv_4$. Esto da cuatro ecuaciones

\begin{align*}
0&=a+b+d\\
0&=a+2b\\
0&=a+3b+c\\
0&=a+4b+2c+5d.
\end{align*}

De la segunda obtenemos que $a=-2b$, sustituyendo en la primera y en la tercera
\begin{align*}
d&=2b-b=b,\\
c&=2b-3b=-b,
\end{align*}
y sustituyendo ésto en la cuarta, tenemos que $0=-2b+4b-2b+5b=5b$. Por lo tanto $a=b=c=d=0$, implicando que los vectores en $V$ son linealmente independientes, y por consiguiente forman una base de $\mathbb{R}^4$.

Manera 2: También podemos hacer la reducción gaussiana en la matriz $(A|I)$ donde $A$ es la matriz cuyas columnas son los vectores de $V$. Esta forma tiene la ventaja de que a la vez calcularemos la matriz inversa que nos interesa encontrar.
$$\left( \begin{array}{cccc|cccc} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 4 & 2 & 5 & 0 & 0 & 0 & 1 \end{array} \right)$$

$$\to \left( \begin{array}{cccc|cccc} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 1 & -1 & -1 & 0 & 1 & 0 \\ 0 & 3 & 2 & 4 & -1 & 0 & 0 & 1 \end{array} \right)$$

$$\to \left( \begin{array}{cccc|cccc} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & 2 & -3 & 0 & 1 \end{array} \right)$$

$$\to \left( \begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 2 & -7/5 & 4/5 & -2/5 \\ 0 & 1 & 0 & 0 & -1 & 6/5 & -2/5 & 1/5 \\ 0 & 0 & 1 & 0 & 1 & -11/5 & 7/5 & -1/5 \\ 0 & 0 & 0 & 1 & 0 & 1/5 & -2/5 & 1/5 \end{array} \right)$$


Como podemos reducir a la identidad, los vectores iniciales son linealmente independientes y forman una base. Más aún, ya obtuvimos la inversa de $A$.

Ahora, para obtener la base dual $V^{\ast}:=\{v_1^\ast,v_2^\ast,v_3^\ast,v_4^\ast\}$ de la base $V$, por lo visto en la última entrada, podemos escribir a cada elemento de $V^\ast$ como combinación lineal de $e_i^\ast$, donde los coeficientes del vector $v_i^\ast$ están en la $i$-ésima fila de $A^{-1}$. Por lo tanto,
\begin{align*}
v_1^\ast &= 2e_1^\ast -\frac{7}{5} e_2^\ast +\frac{4}{5} e_3^\ast -\frac{2}{5}e_4^\ast\\
v_2^\ast &= -e_1^\ast +\frac{6}{5} e_2^\ast -\frac{2}{5} e_3^\ast +\frac{1}{5}e_4^\ast\\
v_3^\ast &= e_1^\ast -\frac{11}{5} e_2^\ast +\frac{7}{5} e_3^\ast -\frac{1}{5}e_4^\ast\\
v_4^\ast &= \frac{1}{5} e_2^\ast -\frac{2}{5} e_3^\ast +\frac{1}{5}e_4^\ast.
\end{align*}

$\square$

Otro tipo de problemas de dualidad consisten en determinar algunos vectores en $V$ cuya base dual sea una base dada de $V^\ast$.

Problema 2. Considera las siguientes formas lineales en $\mathbb{R}^3$: \begin{align*}
l_1(x,y,z)&=x-y, \\
l_2(x,y,z)&=y-z, \\
l_3(x,y,z)&=x+y-z.
\end{align*}

  1. Prueba que $l_1,l_2,l_3$ forman una base del dual de $\mathbb{R}^3$.
  2. Encuentra una base de $\mathbb{R}^3$ cuya base dual es $l_1,l_2,l_3$.

Solución. (1) Por el último teorema de la entrada de bases duales, sabemos que $l_1,l_2,l_3$ forman una base si la matriz $A=[l_i(e_j)]$ es invertible, donde $e_j$ es la base canónica de $\mathbb{R}^3$.

Para mostrar que $A$ es invertible, calcularemos la forma escalonada reducida de la matríz $(A|I)$. Entonces,

\begin{align*}
&\left( \begin{array}{ccc|ccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 \end{array} \right) \\ \to &\left( \begin{array}{ccc|ccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 2 & -1 & -1 & 0 & 1 \end{array} \right) \\
\to &\left( \begin{array}{ccc|ccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -2 & 1 \end{array} \right) \\ \to &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 1 \\ 0 & 0 & 1 & -1 & -2 & 1 \end{array} \right)
\end{align*}

Con esto concluimos que $A$ es invertible, y por lo tanto $l_1,l_2,l_3$ forman una base del dual de $\mathbb{R}^3$.

(2) En el inciso anterior, calculamos la inversa de $A$, obteniendo $$A^{-1}=\begin{pmatrix} 0 & -1 & 1 \\ -1 & -1 & 1 \\ -1 & -2 & 1 \end{pmatrix}.$$
Recordemos que la base $v_1,v_2,v_3$ de $\mathbb{R}^3$ está determinada por las columnas de $B=A^{-1}$, entonces $$v_1=\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}, \ v_2=\begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}, \ v_3=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

$\square$

Veamos otro ejemplo, en el que veremos formas lineales un poco más interesantes, relacionadas con cálculo.

Problema 3. Sea $V=\mathbb{C}_2[X]$ el espacio vectorial de polinomios de grado a lo más 2 con coeficientes complejos, y para cada $P\in V$ definimos
\begin{align*}
l_1(P)&=P(0), \\ l_2(P)&=\int_0^1 P(x) \, dx, \\ l_3(P)&=\int_0^1 P(x)e^{-2\pi ix}\, dx.
\end{align*}

  1. Prueba que $l_1,l_2,l_3$ pertenecen a $V^*$. Más aún, forman una base de $V^*$.
  2. Encuentra una base $v_1,v_2,v_3$ de $V$ cuya base dual es $l_1,l_2,l_3$.

Solución. (1) No es difícil ver que son formas lineales. Para $l_1$, notamos que \begin{align*}
l_1(P+Q)&=P(0)+Q(0)=l_1(P)+l_1(Q)\\
l_1(aP)&=aP(0)=al_1(P)
\end{align*} para cualesquiera polinomios $P$ y $Q$, y cualquier escalar $a$ en $\mathbb{C}$. Para $l_2$ y $l_3$, la linealidad se sigue por las propiedades de la integral.

Para probar que $l_1, l_2,l_3$ forman una base de $V^\ast$, lo haremos de manera similar al problema anterior. Sabemos que $1,x,x^2$ forman la base canónica de $V$, entonces $L:=\{l_1,l_2,l_3\}$ es una base de $V^\ast$ si la matriz $A=[l_i(e_j)]$ es invertible. Calculando $$l_1(1)=1, \ l_1(x)=l_1(x^2)=0,$$ $$l_2(1)=1, \ l_2(x)=\int_0^1 xdx=\frac{1}{2},$$ $$ l_2(x^2)=\int_0^1 x^2 dx=\frac{1}{3},$$ $$l_3(1)=\int_0^1 e^{-2\pi i x}dx=0, \ l_3(x)=\int_0^1 xe^{-2\pi i x}dx=\frac{i}{2\pi},$$ $$l_3(x^2)=\int_0^1 x^2e^{-2\pi i x}dx=\frac{1+i\pi}{2\pi^2}.$$
(Para calcular $l_3(x),l_3(x^2)$ se usa integración por partes). Entonces la matriz es $$A=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1/2 & 1/3 \\ 0 & \frac{i}{2\pi} & \frac{1+i\pi}{2\pi^2} \end{pmatrix}.$$

Ahora, reduciremos la matriz $(A|I)$ para simultáneamente probar que $A$ es invertible y encontrar $A^{-1}$. Tenemos que

\begin{align*}
&\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1/2 & 1/3 & 0 & 1 & 0 \\ 0 & \frac{i}{2\pi} & \frac{1+i\pi}{2\pi^2} & 0 & 0 & 1 \end{array} \right)\\
\to &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1/2 & 1/3 & -1 & 1 & 0 \\ 0 & i\pi & 1+i\pi & 0 & 0 & 2\pi^2 \end{array} \right)\\
\to & \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & -6 & 6 & 0 \\ 0 & 1 & \frac{1+i\pi}{i\pi} & 0 & 0 & -2i\pi \end{array} \right)\\
\to &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{-6-6\pi i}{3+\pi i} & \frac{6+6\pi i}{3+\pi i} & \frac{-4\pi^2}{3+\pi i} \\ 0 & 0 & 1 & \frac{6\pi i}{3+\pi i} & \frac{-6\pi i}{3+\pi i} & \frac{6\pi^2}{3+\pi i} \end{array} \right)
\end{align*}

Por lo tanto $A$ es invertible, implicando que $L$ es una base de $V^*$.

(2) Ya calculada en el inciso anterior, tenemos que $$A^{-1}=\frac{1}{3+\pi i} \begin{pmatrix} 3+\pi i & 0 & 0 \\ -6-6\pi i & 6+6\pi i & -4\pi^2 \\ 6\pi i & -6 \pi i & 6\pi^2 \end{pmatrix}.$$ De esta matriz leemos a las coordenadas de la base que estamos buscando en términos de la la base canónica $\{1,x,x^2\}$. Las columnas son los vectores de coordenadas. Por lo tanto, la base de $V$ tal que $L$ es la base dual es:

\begin{align*}
v_1&= \frac{1}{3+\pi i} \left(3+\pi i – (6+6\pi i) x + 6\pi i x^2\right) \\
v_2&= \frac{1}{3+\pi i} \left((6+6\pi i)x-6\pi i x^2 \right) \\
v_3&= \frac{1}{3+\pi i} \left( -4\pi^2 x+6\pi^2x^2 \right).
\end{align*}

$\square$

Fórmula de interpolación de Lagrange

La teoría de dualidad tiene amplias aplicaciones. Con ella se puede probar un resultado clásico: podemos construir un polinomio de grado $n$ que pase por $n+1$ puntos que nosotros queramos. En el siguiente ejercicio vemos los detalles.

Problema. (Interpolación de Lagrange) Sea $V=\mathbb{R}_n[X]$ el espacio vectorial de polinomios de grado a lo más $n$ con coeficientes reales. Sean $x_0,\dots,x_n$ números reales distintos. Para $0\leq i \leq n$ definimos $$L_i(x)=\prod_{0\leq j\leq n, j\neq i} \frac{x-x_j}{x_i-x_j}.$$

  1. Demuestra que $L_i(x_j)=\delta_{ij}$ para todo $1\leq i,j \leq n$, donde $\delta_{ij}$ es igual a 1 si $i=j$ y es igual a 0 si $i\neq j$.
  2. Prueba que $L_0,\dots,L_n$ forman una base de $V$.
  3. Encuentra la base dual de $L_0,\dots,L_n$.
  4. Prueba la Fórmula de Interpolación de Lagrange: para todo $P\in V$ tenemos que $$P=\sum_{i=0}^n P(x_i)L_i.$$
  5. Demuestra que para cualquiera $b_0,\dots,b_n \in\mathbb{R}$, podemos encontrar un único polinomio $P\in V$ tal que $P(x_i)=b_i$ para todo $0\leq i \leq n$. Este polinomio $P$ es llamado el polinomio de interpolación de Lagrange asociado a $b_0,\dots,b_n$.

Solución. (1) Si $j\neq i$, entonces $$L_i(x_j)=\frac{x_j-x_j}{x_i-x_j}\cdot\prod_{k\neq j,i} \frac{x_j-x_k}{x_i-x_k}=0.$$ Por otro lado si $i=j$, $$L_i(x_j)=L_i(x_i)=\prod_{k\neq i} \frac{x_i-x_k}{x_i-x_k} =1 .$$

(2) Dado que $\text{dim}(V)=n+1$, cuya base canónica es $1,x,\ldots,x^n$ y $L_0,\dots,L_n$ son $n+1$ vectores, para probar que son base, basta con demostrar que son linealmente independientes. Sean $a_0,\dots,a_n$ tales que $a_0L_0+\dots+a_nL_n=0$. Evaluando en $x_i$ y usando el inciso anterior, tenemos que $$0=\sum_{j=0}^n a_jL_j(x_i)=\sum_{j=0}^n a_j\delta_{ij}=a_i,$$ pero esto pasa cualquier $0\leq i \leq n$. Por lo tanto $L_0,\dots,L_n$ son linealmente independientes, y por consiguiente, son base de $V$.

(3) Por definición de la base dual $L_i^*(L_j)=\delta_{ij}$, y por el inciso (a) tenemos que $L_j(x_i)=\delta_{ij}$, entonces $L_i^*(L_j)=L_j(x_i)$, para toda $i,j$. Ahora, fijamos $i$. Dado que $L_0,\dots, L_n$ forman una base de $V$ y dado que $L_i^*$ es lineal, para todo polinomio $P$ en $V$, escrito en términos de la base como $$P(x)=a_0L_0+a_1L_1+\ldots+a_nL_n,$$ tenemos que
\begin{align*}
L_i^*(P)&=a_0L_i^*(L_0)+\ldots+a_nL_i^\ast(L_n)\\
&=a_0L_0(x_i)+\ldots+a_nL_n(x_i)\\
&=P(x_i).
\end{align*}

Por lo tanto la base dual es $L_i^*=\text{ev}_{x_i}$. Dicho de otra forma, la $i$-ésima forma coordenada consiste en evaluar en $x_i$.

(4) Sabemos que la base dual satisface que $$P=\sum_{i=0}^n \langle L_i^*,P \rangle L_i.$$ Pero por el inciso anterior, $\langle L_i^*,P\rangle =L_i^*(P)=P(x_i)$, entonces $P=\sum_i P(x_i)L_i$.

(5) Definimos $P=\sum_{i=0}^n b_iL_i$. Por el inciso (1), tenemos que $$P(x_j)=\sum_i b_iL_i(x_j)=\sum_i b_i\delta_{ij}=b_j.$$ Entonces el polinomio existe. Falta probar la unicidad.

Suponemos que existe $Q\in V$ tal que $Q(x_i)=b_i$ para todo $i$. Notemos que $P-Q$ es un polinomio de grado a lo más $n$ (por definición) y $(P-Q)(x_i)=0$ para todo $i$, esto implica que $P-Q$ tiene $n+1$ raíces distintas, lo cual es imposible si $P-Q \neq 0$, por lo tanto, $P-Q=0$, es decir $P=Q$.

$\square$

El último argumento viene de la teoría de polinomios. Puedes repasarla en otro curso que tenemos en el blog. Observa que este problema también se satisface para los polinomios con coeficientes complejos, $V=\mathbb{C}_n[X]$. Intenta reproducir la demostración por tu cuenta.

Expresar integral como suma de evaluaciones

Terminamos esta entrada con el siguiente problema. El enunciado no menciona dualidad, pero podemos usar la teoría desarrollada hasta ahora para resolverlo.

Problema. Sean $x_0,x_1,x_2\in [0,1]$, y sea $V=\mathbb{R}_2[X]$. Definimos el mapeo $$l(P)=\int_0^1 P(x)e^{-x} dx.$$ Demuestra que $l$ es una forma lineal en $V$ y prueba que existe una única tercia $(a_0,a_1,a_2)$ de números reales tales que para todo polinomio $P$ en $V$ se cumple que $$\int_0^1 P(x)e^{-x}dx=a_0P(x_0)+a_1P(x_1)+a_2P(x_2).$$

Solución. Debido a las propiedades de la integral, es fácil ver que $l$ es lineal, ya que

\begin{align*}
l(aP+Q)&=\int_0^1 (aP(x)+Q(x))e^{-x} dx \\
&= a\int_0^1 P(x)e^{-x}dx+\int_0^1 Q(x)e^{-x}dx \\
&=al(P)+l(Q).
\end{align*}

Usando el problema anterior, tenemos que $L_0^*=\text{ev}_{x_0}$, $L_1^*=\text{ev}_{x_1}$ y $L_2^*=\text{ev}_{x_2}$ forman una base de $V^$. Por lo tanto existen $(a_0,a_1,a_2)$ tales que $l=a_0L_0^*+a_1L_1^*+a_2L_2^*.$ Entonces

\begin{align*}
\int_0^1 P(x)e^{-x}&=l(P)=a_0L_0^*(P) + a_1L_1^*(P) + a_2L_3^*(P) \\
&= a_0P(x_0) + a_1P(x_1) + a_2P(x_2).
\end{align*}

Es fácil ver que es única esa tercia, ya que, si existiera otra $(b_0,b_1,b_2)$ tal que $$l=b_0L_0^*+b_1L_1^*+b_2L_2^*,$$ esto implica que $$0=(a_0-b_0)L_0^*+(a_1-b_1)L_1^*+(a_2-b_2)L_2^*,$$ y dado que $L_i^*$ son una base, tendríamos $a_i=b_i$ para $i=0,1,2$.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases duales, recetas y una matriz invertible

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior definimos el espacio dual de un espacio vectorial $V$. Así mismo, definimos las formas coordenadas, que son formas lineales asociadas a una base $B$ de $V$. Lo que hace la $i$-ésima forma coordenada en un vector $v$ es «leer» el $i$-ésimo coeficiente de $v$ expresado en la base $B$. Nos gustaría ver que estas formas coordenadas conforman bases del espacio dual.

Más concretamente, el objetivo de esta entrada es mostrar el teorema que enunciamos al final de la entrada anterior, hablar de problemas prácticos de bases duales y de mostrar un resultado interesante que relaciona bases, bases duales y la invertibilidad de una matriz.

Pequeño recordatorio

Como recordatorio, dada una base $B=\{e_1,\ldots,e_n\}$ de un espacio vectorial $V$ de dimensión finita $n$, podemos construir $n$ formas coordenadas $e_1^\ast,\ldots,e_n^\ast$ que quedan totalmente determinadas por lo que le hacen a los elementos de $B$ y esto es, por definición, lo siguiente:

$$
e_i^\ast(e_j)=
\begin{cases}
1\quad \text{ si $i=j$,}\\
0\quad \text{ si $i\neq j$.}
\end{cases}
$$

Recordemos también que dado un vector $v$ en $V$ podíamos construir a la forma lineal «evaluar en $v$», que era la forma $\text{ev}_v:V^\ast \to F$ dada por $\text{ev}_v(f)=f(v)$. Como manda elementos de $V^\ast$ a $F$, entonces pertenece a $V^{\ast \ast}$. A partir de esta definición, construimos la bidualidad canónica $\iota:V\to V^{\ast \ast}$ que manda $v$ a $\text{ev}_v$.

Finalmente, recordemos que dada una forma lineal $l$ y un vector $v$, usamos la notación $\langle l,v\rangle = l(v)$, y que esta notación es lineal en cada una de sus entradas. Todo esto lo puedes revisar a detalle en la entrada anterior.

El teorema de bases duales

El resultado que enunciamos previamente y que probaremos ahora es el siguiente.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Antes de comenzar, convéncete de que cada una de las $e_i^\ast$ son formas lineales, es decir, transformaciones lineales de $V$ a $F$.

Demostración. Veremos que $B^\ast=\{e_1^\ast,\ldots,e_n^\ast\}$ es un conjunto linealmente independiente y que genera a $V^\ast$. Veamos lo primero. Tomemos una combinación lineal igual a cero, $$z:=\alpha_1 e_1^\ast + \alpha_2 e_2^\ast+\ldots + \alpha_n e_n^\ast=0.$$ Para cada $i=1,2,\ldots,n$, podemos evaluar la forma lineal $z$ en $e_i$.

Por un lado, $z(e_i)=0$, pues estamos suponiendo que la combinación lineal de $e_i^\ast$’s es (la forma lineal) cero. Por otro lado, analizando término a término y usando que los $e_i^\ast$ son la base dual, tenemos que si $i\neq j$ entonces $e_j^\ast(e_i)$ es cero, y si $i=j$, es $1$.

Así que el único término que queda es $\alpha_i e_i^\ast(e_i)=\alpha_i$. Juntando ambas observaciones, $\alpha_i=z(e_i)=0$, de modo que todos los coeficientes de la combinación lineal son cero. Asi, $B^\ast$ es linealmente independiente.

Ahora veremos que $B^\ast$ genera a $V^\ast$. Tomemos una forma lineal arbitraria $l$, es decir, un elemento en $V^\ast$. Al evaluarla en $e_1,e_2,\ldots,e_n$ obtenemos escalares $$\langle l, e_1\rangle,\langle l, e_2\rangle,\ldots,\langle l, e_n\rangle. $$ Afirmamos que estos son los coeficientes que nos ayudarán a poner a $l$ como combinación lineal de elementos de $B^\ast$. En efecto, para cualquier vector $v$ tenemos que

\begin{align*}
\left(\sum_{i=1}^n\langle l, e_i \rangle e_i^\ast\right) (v)
&= \sum_{i=1}^{n} \langle l, e_i \rangle \langle e_i^\ast, v \rangle \\
&= \sum_{i=1}^{n} \langle l, \langle e_i^\ast, v \rangle e_i \rangle \\
&=\left \langle l, \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i \right \rangle\\
&= \langle l, v \rangle\\
&= l(v).
\end{align*}

La primer igualdad es por la definición de suma de transformaciones lineales. En la segunda usamos la linealidad de la segunda entrada para meter el escalar $\langle e_i^\ast , v\rangle$. La siguiente es de nuevo por la linealidad de la segunda entrada. En la penúltima igualdad usamos que justo $\langle e_i^\ast , v\rangle$ es el coeficiente que acompaña a $e_i$ cuando escribimos a $v$ con la base $B$. Esto muestra que $B^\ast$ genera a $V^\ast$.

Así, $B^\ast$ es base de $V^\ast$. Como $B^\ast$ tiene $n$ elementos, entonces $V^\ast$ tiene dimensión $n$.

La última parte del teorema consiste en ver que $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales. Por lo que acabamos de demostrar, $$\dim V = \dim V^\ast = \dim V^{\ast \ast}.$$ Así que basta con mostrar que $\iota$ es inyectiva pues, de ser así, mandaría a una base de $V$ a un conjunto linealmente independiente de $V^{\ast \ast}$ con $n$ elementos, que sabemos que es suficiente para que sea base. Como $\iota$ es transformación lineal, basta mostrar que el único vector que se va a la forma lineal $0$ de $V^\ast$ es el $0$ de $V$.

Supongamos que $v$ es tal que $\text{ev}_v=0$. Vamos a mostrar que $v=0$. Si $\text{ev}_v=0$, en particular para las formas coordenadas $e_i^\ast$ tenemos que $ \text{ev}_v(e_i^\ast)=0$. En otras palabras, $e_i^\ast(v)=0$ para toda $i$. Es decir, todas las coordenadas de $v$ en la base $B$ son $0$. Así, $v=0$. Con esto terminamos la prueba.

$\square$

La demostración anterior muestra cómo encontrar las coordenadas de una forma lineal $l$ en términos de la base $B^\ast$: basta con evaluar $l$ en los elementos de la base $B$. Recopilamos esto y la igualdad dual como una proposición aparte, pues resulta ser útil en varios contextos.

Proposición. Sea $V$ un espacio vectorial de dimensión finita $n$, $B=\{e_1,\ldots, e_n\}$ una base de $V$ y $B^\ast=\{e_1^\ast,\ldots,e_n^\ast\}$ la base dual. Entonces, para todo vector $v$ en $V$ y para toda forma lineal $l:V\to F$, tenemos que
\begin{align*}
v&= \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i \quad \text{ y }\\
l&= \sum_{i=1}^{n} \langle l, e_i \rangle e_i^\ast.
\end{align*}

La traza de una matriz en $M_n(F)$ es la suma de las entradas en su diagonal principal. Es sencillo verificar que la función $\text{tr}:M_n(F)\to F$ que manda a cada matriz a su traza es una forma lineal, es decir, un elemento de $M_n(F)^\ast$.

Ejemplo. Considera el espacio vectorial de matrices $M_3(\mathbb{R})$. Sea $B=\{E_{ij}\}$ su base canónica. Expresa a la forma lineal traza en términos de la base dual $B^\ast$.

Solución. Tenemos que $\text{tr}(E_{ii})=1$ y que si $i\neq j$, entonces $\text{tr}(E_{ij})=0$. De esta forma, usando la fórmula de la proposición anterior,
\begin{align*}
\text{tr}&=\sum_{i,j} \text{tr}(E_{ij}) E_{ij}^\ast\\
&=E_{11}^\ast + E_{22}^\ast + E_{33}^\ast.
\end{align*} Observa que, en efecto, esta igualdad es correcta. Lo que hace $E_{ii}^\ast$ por definición es obtener la entrada $a_{ii}$ de una matriz $A=[a_{ij}]$.

La igualdad que encontramos dice que «para obtener la traza hay que extraer las entradas $a_{11}$, $a_{22}$, $a_{33}$ de $A$ y sumarlas». En efecto, eso es justo lo que hace la traza.

$\triangle$

Algunos problemas prácticos de bases duales

Ya que introdujimos el concepto de espacio dual y de base dual, hay algunos problemas prácticos que puede que queramos resolver.

  • Dada una base $v_1,\ldots,v_n$ de $F^n$, ¿cómo podemos encontrar a la base dual $v_1^\ast, \ldots, v_n^\ast$ en términos de la base dual $e_1^\ast, \ldots, e_n^\ast$ de la base canónica?
  • Dada una base $L=\{l_1,\ldots, l_n\}$ de $V^\ast$, ¿es posible encontrar una base $B$ de $V$ tal que $B^\ast = L$? De ser así, ¿cómo encontramos esta base?

A continuación mencionamos cómo resolver ambos problemas. Las demostraciones se quedan como tarea moral. En la siguiente entrada veremos problemas ejemplo resueltos.

  • La receta para resolver el primer problema es poner a $v_1,\ldots, v_n$ como vectores columna de una matriz $A$. Las coordenadas de $v_1^\ast,\ldots, v_n^\ast$ en términos de la base $e_1^\ast,\ldots,e_n^\ast$ están dados por las filas de la matriz $A^{-1}$.
  • La receta para resolver el segundo problema es tomar una base $B’=\{e_1,\ldots, e_n\}$ cualquiera de $V$ y considerar la matriz $A$ con entradas $A=[l_i(e_j)]$. La matriz $A^{-1}$ tiene como columnas a los vectores de coordenadas de la base $B$ que buscamos con respecto a la base $B’$.

¿Por qué la matriz $A$ de la segunda receta es invertible? Esto lo mostramos en la siguiente sección.

Un teorema de bases, bases duales e invertibilidad de matrices

La demostración del siguiente teorema usa varias ideas que hemos estado desarrollando con anterioridad. Usamos que:

  • Si $V$ es de dimensión finita $n$ y $B$ es un conjunto de $n$ vectores de $V$, entonces basta con que $B$ sea linealmente independiente para ser base. Esto lo puedes repasar en la entrada del lema de intercambio de Steinitz.
  • Una matriz cuadrada $A$ es invertible si y sólo si el sistema de ecuaciones $AX=0$ sólo tiene la solución trivial $X=0$. Esto lo puedes repasar en la entrada de equivalencias de matrices invertibles.
  • Una matriz cuadrada $A$ es invertible si y sólo si su transpuesta lo es.
  • El hecho de que la bidualidad canónica $\iota$ es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ sobre el campo $F$. Sea $B=\{v_1,\ldots, v_n\}$ un conjunto de vectores en $V$ y $L=\{l_1,\ldots, l_n\}$ un conjunto de elementos de $V^\ast$, es decir, de formas lineales en $V$. Consideremos a la matriz $A$ en $M_n(F)$ dada por $$A=[l_i(v_j)].$$ La matriz $A$ es invertible si y sólo si $B$ es una base de $V$ y $L$ es una base de $V^\ast$.

Demostración. Mostraremos primero que si $B$ no es base, entonces $A$ no es invertible. Como $B$ tiene $n$ elementos y no es base, entonces no es linealmente independiente, así que existe una combinación lineal no trivial $$\alpha_1 v_1+\ldots+\alpha_n v_n=0.$$ De esta forma, si definimos $v=(\alpha_1,\ldots, \alpha_n)$, este es un vector no cero, y además, la $i$-ésima entrada de $Av$ es $$\alpha_1 l_i(v_1)+\ldots+\alpha_n l_i(v_n) = l_i(\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0.$$ De este modo, $AX=0$ tiene una no solución trivial y por lo tanto no es invertible.

De manera similar, si $L$ no es base, entonces hay una combinación lineal no trivial $$\beta_1 L_1 + \ldots + \beta_n L_n =0$$ y entonces el vector $w=(\beta_1,\ldots,\beta_n)$ es una solución no trivial a la ecuación $^t A X=0$, por lo que $^t A$ no es invertible, y por lo tanto $A$ tampoco lo es.

Ahora veremos que si $L$ y $B$ son bases, entonces $A$ es invertible. Si $A$ no fuera invertible, entonces tendríamos una solución no trivial $(\alpha_1,\ldots,\alpha_n)$ a la ecuación $AX=0$. Como vimos arriba, esto quiere decir que para cada $i$ tenemos que $$ l_i(\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0.$$ Como $l_i$ es base de $V^\ast$, esto implica que $l(\alpha_1 v_1 + \ldots + \alpha_n v_n)=0$ para toda forma lineal $l$, y como la bidualidad canónica es un isomorfismo, tenemos que $$\alpha_1 v_1 + \ldots + \alpha_n v_n=0.$$ Esto es imposible, pues es una combinación lineal no trivial de los elementos de $B$, que por ser base, son linealmente independientes.

$\square$

Más adelante…

Esta entrada es un poco abstracta, pues habla de bastantes transformaciones aplicadas a transformaciones, y eso puede resultar un poco confuso. Se verán problemas para aterrizar estas ideas. La importancia de entenderlas y manejarlas correctamente es que serán de utilidad más adelante, cuando hablemos de los espacios ortogonales, de transposición de transformaciones lineales y de hiperplanos.

La teoría de dualidad también tiene amplias aplicaciones en otras áreas de las matemáticas. En cierto sentido, la dualidad que vemos aquí es también la que aparece en espacios proyectivos. Está fuertemente relacionada con la dualidad que aparece en teoremas importantes de optimización lineal, que permiten en ocasiones reformular un problema difícil en términos de uno más fácil, pero con el mismo punto óptimo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Usa la definición de linealidad para ver que las formas coordenadas $e_i^\ast$ en efecto son formas lineales.
  • Muestra que $\iota:V \to V^{\ast \ast}$, la bidualidad canónica, es una transformación lineal.
  • Justifica por qué la primer receta resuelve el primer problema práctico de bases duales.
  • Justifica por qué la segunda receta resuelve el segundo problema práctico de bases duales.
  • Sean $a_0,a_1,\ldots,a_n$ reales distintos. Considera el espacio vectorial $V=\mathbb{R}_n[x]$ de polinomios con coeficientes reales y grado a lo más $n$. Muestra que las funciones $\text{ev}_{a_i}:V\to \mathbb{R}$ tales que $\text{ev}_{a_i}(f)=f(a_i)$ son formas lineales linealmente independientes, y que por lo tanto son una base de $V^\ast$. Usa esta base, la base canónica de $V$ y el teorema de la última sección para mostrar que la matriz $$\begin{pmatrix} 1 & a_0 & a_0 ^2 & \ldots & a_0^n\\ 1 & a_1 & a_1^2 & \ldots & a_1^n\\ 1 & a_2 & a_2^2 & \ldots & a_2^n\\ & \vdots & & \ddots & \vdots \\ 1 & a_n & a_n^2 & \ldots & a_n^n\end{pmatrix}$$ es invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Introducción a espacio dual

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada empezamos la tercera unidad del curso de Álgebra Lineal I. Los conceptos fundamentales de esta nueva unidad son el de espacio dual y el de formas bilineales.

Hagamos un pequeño recordatorio, que será útil para entender los temas que vendrán. Ya definimos qué es un espacio vectorial y qué son las transformaciones lineales.

Para los espacios vectoriales, hablamos de subespacios, de conjuntos generadores, independientes y bases. A partir de ellos definimos qué quiere decir que un espacio sea de dimensión finita y, en ese caso, dijimos cómo definir la dimensión. Un lema fundamental para hacer esto fue el lema del intercambio de Steinitz.

Dijimos que las transformaciones lineales son funciones «bonitas» entre espacios vectoriales que «abren sumas» y «sacan escalares». Dimos como ejemplos a las proyecciones y las simetrías. Vimos lo que le hacen a generadores, linealmente independientes y bases. También, vimos que podemos expresarlas a través de matrices.

Un tipo de matrices de trasformaciones lineales muy importante son las matrices de cambios de base, que permiten conocer las coordenadas de vectores en distintas bases y pasar matrices de transformaciones lineales entre distintas bases. Finalmente, hablamos del rango para matrices y transformaciones lineales.

Es muy bueno entender estos temas lo mejor posible antes de continuar. Aunque no te queden 100% claras todas las demostraciones, por lo menos intenta sí conocer las hipótesis y los enunciados de los resultados principales.

Los temas que vendrán están basados en los capítulos 6 y 10 del libro de Titu Andreescu.

Dualidad y espacio dual

Antes de continuar, el siguiente ejemplo te debe de quedar clarísimo. Dice que hay una forma de hacer un espacio vectorial cuyos elementos son transformaciones lineales. Así es, cada vector de este espacio es una transformación lineal. Esto no debería de ser tan raro pues ya estudiamos algunos espacios vectoriales de funciones.

De ser necesario, verifica que en efecto se satisfacen los axiomas de espacio vectorial, para entender todavía mejor el ejemplo.

Ejemplo 1. Si $V$ y $W$ son espacios vectoriales sobre un mismo campo $F$, entonces el conjunto de transformaciones lineales de $V$ a $W$ es un espacio vectorial con las operaciones de suma de funciones y multiplicación por escalar.

Recordemos que la suma de funciones manda a las funciones $S:V\to W$ y $T:V\to W$ a la función $S+T:V\to W$ para la cual $$(S+T)(v)=S(v)+T(v)$$ y que la multiplicación por escalar manda al escalar $c\in F$ y a la función $T:V\to W$ a la función $cT:V\to W$ para la cual $$(cT)(v)=cT(v).$$

La razón por la cual este es un espacio vectorial es que es un subconjunto del espacio vectorial de todas las funciones de $V$ a $W$, y además es cerrado bajo sumas y multiplicaciones por escalar, de modo que es un subespacio.

A este espacio vectorial le llamamos $\text{Hom}(V,W)$.

$\triangle$

En esta unidad vamos a estudiar $\text{Hom}(V,W)$, pero para un caso particular muy concreto: para cuando $W$ es $F$, el campo sobre el cual está $V$. Podemos hacer esto, pues recuerda que podemos pensar al campo $F$ como un espacio vectorial sobre sí mismo.

A partir de ahora fijaremos el campo $F$. Si quieres, puedes pensarlo como $\mathbb{R}$ o $\mathbb{C}$ pero lo que digamos funcionará para campos arbitrarios.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. El espacio dual $V^\ast$ de $V$ es el conjunto de transformaciones lineales $l:V\to F$ dotado con las operaciones suma dada por $$(l_1+l_2)(v)=l_1(v)+l_2(v)$$ y producto por escalar dado por $$(cl)(v)=c(l(v))$$ para $l_1,l_2, l$ en $V^\ast$, $v$ en $V$ y $c$ en $F$.

A cada elemento de $V^\ast$ le llamamos una forma lineal en $V$. Usamos la palabra «forma» para insistir en que es una transformación que va hacia el campo $F$ sobre el cual está $V$.

Ejemplo 2. Consideremos al espacio vectorial $\mathbb{R}^3$. Está sobre el campo $\mathbb{R}$. Una forma lineal aquí es simplemente una transformación lineal $S_1:\mathbb{R}^3\to \mathbb{R}$, por ejemplo $$S_1(x,y,z)=x+y-z.$$ Otra forma lineal es $S_2:\mathbb{R}^3\to \mathbb{R}$ dada por $$S_2(x,y,z)=y+z-x.$$ Si sumamos ambas formas lineales, obtenemos la forma lineal $S_1+S_2$, la cual cumple $$(S_1+S_2)(x,y,z)=(x+y-z)+(y+z-x)=2y.$$

Estas son sólo dos formas lineales de las que nos interesan. Si queremos construir todo el espacio dual $(\mathbb{R}^3)^\ast$, necesitamos a todas las transformaciones lineales de $\mathbb{R}^3$ a $\mathbb{R}$.

Recordemos que cada transformación lineal $T$ de estas está representada de manera única por una matriz en $M_{1,3}(\mathbb{R})$ de la forma, digamos, $\begin{pmatrix} a & b & c\end{pmatrix}$. Así, toda transformación lineal de $\mathbb{R}^3$ a $\mathbb{R}$ lo que hace es enviar a $(x,y,z)$ a $$\begin{pmatrix} a& b & c \end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=ax+by+cz.$$ Se puede verificar que la suma de matrices y el producto escalar corresponden precisamente con la suma de sus transformaciones lineales asociadas, y su producto escalar.

Dicho de otra forma, $(\mathbb{R}^3)^\ast$ se puede pensar como el espacio vectorial de matrices $M_{1,3}(\mathbb{R})$. Observa que $\mathbb{R}^3$ y $(\mathbb{R}^3)^\ast$ tienen ambos dimensión $3$.

$\triangle$

Ejemplo 3. Consideremos el espacio vectorial $V$ de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$. Una forma lineal es una transformación lineal que a cada vector de $V$ (cada función) lo manda a un real en $\mathbb{R}$. Un ejemplo es la forma lineal $T:V\to \mathbb{R}$ tal que $$T(f)=\int_0^1 f(t)\,dt.$$ Otro ejemplo es la forma lineal $\text{ev}_0:V\to \mathbb{R}$ que manda a cada función a lo que vale en $0$, es decir, $$\text{ev}_0(f)=f(0).$$ Aquí dimos dos formas lineales, pero hay muchas más. De hecho, en este ejemplo no está tan sencillo decir quienes son todos los elementos de $V^\ast$.

$\triangle$

Espacio dual de un espacio de dimensión finita

Sea $V$ un espacio de dimensión finita $n$ y $B=\{e_1,e_2,\ldots,e_n\}$ una base de $V$. Como ya vimos antes, una transformación lineal queda totalmente definida por lo que le hace a los elementos de una base. Más concretamente, si $v=x_1e_1+\ldots+x_ne_n$, entonces lo que hace una forma lineal $l$ en $v$ es $$l(x_1e_1+\ldots+x_ne_n)=x_1a_1+\ldots+x_na_n,$$ en donde $a_i=l(e_i)$ son elementos en $F$.

Hay una manera canónica de combinar a un elemento $l$ de $V^\ast$ y a un elemento $v$ de $V$: evaluando $l$ en $v$. Así, definimos al emparejamiento canónico entre $V$ y $V^\ast$ como la función $$\langle\cdot, \cdot \rangle: V^\ast \times V$$ definida para $l$ en $V^\ast$ y $v$ en $V$ como $$\langle l,v\rangle = l(v).$$

Observa que $\langle\cdot, \cdot \rangle$ es lineal en cada una de sus entradas por separado, es decir para $c$ en $F$, para $l_1,l_2,l$ en $V^\ast$ y para $v_1,v_2,v$ en $V$ se tiene que $$\langle cl_1+l_2,v\rangle = c\langle l_1,v\rangle + \langle l_2,v\rangle$$ y que $$\langle l,cv_1+v_2\rangle = c\langle l,v_1\rangle +\langle l,v_2\rangle.$$ Esto es un ejemplo de una forma bilineal. Estudiaremos estas formas a detalle más adelante.

Vamos a hacer una pequeña pausa. Hasta ahora, para un espacio vectorial $V$ definimos:

  • Su espacio dual $V^\ast$.
  • El emparejamiento canónico entre $V$ y $V^\ast$.

Si a $V^\ast$ le estamos llamando «el dual» es porque esperamos que sea «muy parecido» a $V$. También, en una operación de dualidad nos gustaría que al aplicar dualidad dos veces «regresemos» al espacio original.

Por esta razón, nos gustaría a cada elemento $v$ de $V$ asociarle un elemento de $V^ {\ast \ast} $, el espacio dual del espacio dual. Afortunadamente, hay una forma muy natural de hacerlo. Para cada $v$ en $V$ podemos considerar la forma lineal $\text{ev}_v:V^\ast \to F$ que a cada forma lineal $l$ en $V^\ast$ le asigna $l(v)$.

Ejemplo. Considera el espacio vectorial de matrices $M_{2}(\mathbb{R})$. El espacio dual $M_{2}(\mathbb{R})^\ast$ consiste de todas las transformaciones lineales $T: M_{2}(\mathbb{R}) \to \mathbb{R}$. Un ejemplo de estas transformaciones es la transformación $T$ que a cada matriz la manda a la suma de sus entradas, $T\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+b+c+d$. Otro ejemplo es la transformación $S$ que a cada matriz la manda a su traza, es decir, $S\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+d$.

Consideremos ahora a la matriz $A=\begin{pmatrix} 5 & 2\\ 1 & 1\end{pmatrix}$.

A esta matriz le podemos asociar la transformación $\text{ev}_A:M_{2}(\mathbb{R})^\ast\to F$ tal que a cualquier transformación lineal $L$ de $ M_{2}(\mathbb{R})$ a $\mathbb{R}$ la manda a $L(A)$. Por ejemplo, a las $T$ y $S$ de arriba les hace lo siguiente $$\text{ev}_A(T)=T(A)=5+2+1+1=9$$ y $$\text{ev}_A(S)=S(A)=5+1=6.$$

$\triangle$

La discusión anterior nos permite dar una transformación lineal $\iota: V \to V {\ast \ast}$ tal que a cada $v$ la manda a $\text{ev}_v$, a la cual le llamamos la bidualidad canónica entre $V$ y $V^ {\ast \ast} $. Nota que $$\langle \iota(v), l\rangle=\langle l, v\rangle.$$ Un teorema importante que no probaremos en general, sino sólo para espacios vectoriales de dimensión finita, es el siguiente.

Teorema. Para cualquier espacio vectorial $V$, la bidualidad canónica es inyectiva.

De hecho, para espacios vectoriales de dimensión finita veremos que es inyectiva y suprayectiva, es decir, que es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Formas coordenadas

En esta sección hablaremos de cómo encontrar una base para el espacio dual de un espacio vectorial $V$ de dimensión finita.

Supongamos que $V$ es de dimensión finita $n$ y sea $B=\{e_1,\ldots,e_n\}$ una base de $V$. A partir de la base $B$ podemos obtener $n$ formas lineales $e_i^\ast:V\to F$ como sigue. Para obtener el valor de $e_i^\ast$ en un vector $v$, expresamos a $v$ en términos de la base $$v=x_1e_1+x_2e_2+\ldots+x_n e_n$$ y definimos $e_i^\ast(v)=x_i$. A $e_i^\ast$ le llamamos la $i$-ésima forma coordenada para la base $B$ de $V$.

Directamente de las definiciones que hemos dado, tenemos que $$v=\sum_{i=1}^n e_i^\ast(v) e_i = \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i.$$

Otra relación importante es que $e_i^\ast(e_j)=0$ si $i\neq j$ y $e_i^\ast(e_j)=1$ si $i=j$. De hecho, muchas veces tomaremos esta como la definición de la base dual.

Ejemplo. Si estamos trabajando en $F^n$ y tomamos la base canónica $e_i$, entonces la forma canónica $e_i^\ast$ manda al vector $(x_1,\ldots,x_n)$ a $x_i$, que es precisamente la $i$-ésima coordenada. De aquí el nombre de formas coordenadas. En efecto, tenemos que $$v=x_1e_1+x_2e_2+\ldots+x_ne_n.$$

$\triangle$

Estamos listos para enunciar el teorema principal de esta entrada introductoria a dualidad lineal.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Más adelante…

Esta primera entrada introduce los conceptos de espacio dual. Estos conceptos son bastante útiles más adelante. Veremos que gracias a ellos, podemos dar una interpretación en términos de transformaciones lineales de la matriz transpuesta. En esta primer entrada también hablamos de formas lineales. Más adelante, veremos como éstas nos llevan de manera natural al concepto de «hiperplanos» en cualquier espacio vectorial. Uno de los resultados clave que demostraremos con la teoría de dualidad es que cualquier subespacio de un espacio vectorial de dimensión finita se puede pensar como intersección de hiperplanos. Gracias a esto encontraremos una fuerte relación entre subespacios y sistemas de ecuaciones lineales.

Antes de poder hacer estas cosas bien, necesitamos desarrollar bases sólidas. Por ello, en la siguiente entrada demostraremos el último teorema enunciado. También, veremos algunas recetas para resolver problemas de bases duales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Revisa por definición que si $V$ y $W$ son espacios vectoriales sobre $F$, entonces $\text{Hom}(V,W)$ es un espacio vectorial sobre $F$.
  • Encuentra más formas lineales en el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$.
  • Justifica por qué $\iota:V\to V^{\ast \ast}$ es una transformación lineal y argumenta por qué $\langle \iota (v),l\rangle = \langle l,v\rangle$.
  • En el espacio de polinomios $\mathbb{R}_n[x]$ con coeficientes reales y grado a lo más $n$, ¿quienes son las formas coordenadas para la base ordenada $(1,x,x^2,\ldots,x^{n-1},x^n)$?, ¿quiénes son las formas coordenadas para la base ordenada $(1,1+x,\ldots,1+\ldots+x^{n-1},1+\ldots+x^n)$?
  • Aplica el último teorema a la base canónica $E_{ij}$ de $M_2(\mathbb{R})$ para encontrar una base de $M_2(\mathbb{R})^\ast$
  • Considera el espacio vectorial $V$ de matrices en $M_2(\mathbb{R})$. ¿Quién es el kernel de la forma lineal en $V$ que a cada matriz la manda a su traza? ¿Quién es el kernel de la forma lineal $\text{ev}_A$ en $V^\ast$, donde $A=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»