Archivo de la etiqueta: límites

Seminario de Resolución de Problemas: La regla de L’Hôpital

Por Fabian Ferrari

Introducción

Como hemos visto en entradas anteriores, la noción de límite es fundamental en cálculo y ayuda a definir funciones continuas y funciones diferenciables. Un tipo de límite que aparece frecuentemente en problemas de cálculo involucra el cociente de dos expresiones cuyo límite no está determinado. La regla de L’Hôpital ayuda a trabajar con límites de este estilo.

Estamos familiarizados con esta regla debido a cursos de cálculo. De hecho, este resultado es una consecuencia directa del teorema del valor medio.

Como mencionamos arriba, esta regla resulta de utilidad para determinar límites indeterminados de la forma $\frac{0}{0}$ o $\frac{\infty}{\infty}$. En un primer acercamiento, si tenemos una función racional de la forma $\frac{f(x)}{g(x)}$ cuyo límite conforme $x\to c$ resulta en una indeterminación con las formas ya mencionadas, y además $f$ y $g$ son diferenciables cerca de $c$, entonces para determinar el valor del límite basta con derivar por separado las funciones $f(x)$ y $g(x)$ y determinar el límite de $\frac{f^\prime (x)}{g^\prime (x)}$, si este existe, entonces es igual al límite de $\frac{f(x)}{g(x)}$ .

Por ejemplo, supongamos que queremos determinar $\lim_{x\to c} \frac{f(x)}{g(x)}$ para $f$ y $g$ diferenciables cerca de $c$ y que tenemos

\begin{align*}
\lim_{x\to c} f(x)=0\\
\lim_{x\to c} g(x)=0.
\end{align*}

Entonces, si

$\lim_{x \to c}\frac{f^\prime (x)}{g^\prime (x)}=L,$

tenemos que

$\lim_{x \to c}\frac{f(x)}{g(x)}=L.$

Tenemos algo similar si $\lim_{x\to c} f(x)= \pm \infty$ y $ \lim_{x\to c} g(x)= \pm \infty $.

Aplicar la regla de L’Hôpital múltiples veces

En ocasiones es necesario aplicar la regla de L’Hôpital más de una vez.

Problema. Determinar el $\lim_{x \to 0 }\frac{\cos^2(x)-1}{x^2}$.

Sugerencia pre-solución. Intenta aplicar la regla de L’Hôpital de manera directa y verifica que tienes que aplicarla nuevamente.

Solución. Tenemos que al sustituir $x=0$ en la función $\frac{\cos^2(x)-1}{x^2}$, nos resulta la indeterminación $\frac{0}{0}$.

El numerados y denominador son diferenciables, así que aplicando la regla de L’Hôpital, el límite original es equivalente al siguiente límite

$\lim_{x \to 0 }\frac{(\cos^2(x)-1)^\prime}{(x^2)^\prime}= \lim_{x \to 0 }\frac{-2\cos(x)\sin(x)}{2x}$,

en donde de nuevo, al evaluar en $0$, tenemos $0$ en el numerador y en el denominador.

Como volvemos a tener una indeterminación, volvemos a aplicar la regla. Sin embargo, antes de derivar, resulta conveniente modificar el límite aplicando la identidad trigonométrica

$\sin(2\theta)=2\sin\theta \cos\theta$

Así,

$\lim_{x \to 0 }\frac{-2\cos(x)\sin(x)}{2x}=\lim_{x \to 0 }\frac{-\sin(2x)}{2x}$

Aplicando la regla de L´Hôpital una vez más, tenemos que:

\begin{align*}
\lim_{x \to 0 }\frac{-\sin(2x)}{2x}&=\lim_{x \to 0 }\frac{(-\sin(2x))^\prime}{(2x)^\prime}\\
&=\lim_{x \to 0 }\frac{-2\cos(2x)}{2}\\
&=\frac{-2cos(0)}{2}\\
&=-1
\end{align*}

$\square$

Aplicar la regla de L’Hôpital con exponentes

Otro tipo de limites que son de interés son aquellos cuyas indeterminaciones son $0^0$, $\infty^0$ y $1^\infty$, las cuales se obtienen de determinar el límite de funciones del estilo

$[f(x)]^{g(x)}$

Para resolver limites de funciones exponenciales, hay que hacer uso de las propiedades del logaritmo, para encontrar encontrar un problema equivalente.

Por ejemplo, supongamos que queremos resolver el siguiente problema.

Problema. Determinar el siguiente límite

$\lim_{x \to 0} (cos(2x))^{\frac{3}{x^2}}.$

Sugerencia pre-solución. Aplica logaritmo a la expresión para encontrar una que puedas estudiar usando la regla de L’Hôpital.

Solución. Al evaluar $x=0$ en la función $(\cos(2x))^{\frac{3}{x^2}}$, nos resulta la indeterminación $1^\infty$. Para transformar esta expresión en una que podamos estudiar con la regla de L’Hôpital, consideramos $$y=(\cos(2x))^{\frac{3}{x^2}},$$ y tenemos que

$\ln(y)=\ln((\cos(2x))^{\frac{3}{x^2}})=\frac{3}{x^2}\ln(\cos(2x)).$

Con lo que tendríamos la siguiente expresión para $y$

$y=e^{\frac{3}{x^2}\ln(\cos(2x))}.$

Así, usando la continuidad de la función exponencial, tenemos que

\begin{align*}
\lim_{x \to 0}y&=\lim_{x \to 0}e^{\frac{3}{x^2}\ln(\cos(2x))}\\
&=e^{\lim_{x \to 0}\frac{3}{x^2}\ln(\cos(2x))}.
\end{align*}

De modo que nuestro problema se ha convertido en determinar el siguiente límite

$$\lim_{x \to 0} \ln((\cos(2x))^{\frac{3}{x^2}})=\lim_{x \to 0}\frac{3\ln(\cos(2x))}{x^2}.$$

Notemos que el numerador y denominador evaluados en $0$ son cero. Con esto, tenemos una indeterminación como las que vimos al principio. Así que aplicando la regla de L’Hôpital, tenemos lo siguiente.

\begin{align*}
\lim_{x \to 0}\frac{3\ln(\cos(2x))}{x^2}&=\lim_{x \to 0}\frac{\frac{-6\sin(2x)}{\cos(2x)}}{2x}\\
&=\lim_{x \to 0}\frac{-3\tan(2x)}{x}\\
&=\frac{0}{0}.
\end{align*}

La última igualdad se debe entender como que «tenemos una determinación de la forma $0/0$ «. Como volvemos a tener la indeterminación, aplicamos nuevamente la regla

\begin{align*}
\lim_{x \to 0}\frac{-3\tan(2x)}{x}&=\lim_{x \to 0}\frac{-6\sec^2(2x)}{1}\\
&=\frac{-6\sec^2(2(0))}{1}\\
&=-6\sec^2(0)=-6.
\end{align*}

Por lo tanto tenemos que

$\lim_{x \to 0} \ln((\cos(2x))^{\frac{3}{x^2}})=-6.$

Así,

$\lim_{x \to 0} (\cos(2x))^{\frac{3}{x^2}}=e^{-6}.$

$\square$

Dos ejemplos más

Problema. Determina el siguiente límite $$\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n.$$

Solución. Tenemos que el límite nos resulta en la indeterminación $1^\infty$

Así que resulta conveniente considerar

$y=\left(1+\frac{1}{n}\right)^n.$

Con lo que tendríamos que

\begin{align*}
\ln(y)&=\ln\left(\left(1+\frac{1}{n}\right)^n\right)\\
&=n\ln\left(1+\frac{1}{n}\right).
\end{align*}

Así que podemos reescribir a $y$ como

$y=e^{n\ln\left(1+\frac{1}{n}\right)}.$

Entonces, por la continuidad de la función exponencial, tenemos que

$\lim_{x \to \infty}y=e^{\lim_{n \to \infty}n\ln\left(1+\frac{1}{n}\right)}.$

Ahora para calcular el límite $\lim_{n \to \infty}n\ln\left(1+\frac{1}{n}\right)$, hacemos un cambio de variable $n\mapsto 1/n$, de donde tenemos que

\begin{align*}
\lim_{n \to \infty}n\ln\left(1+\frac{1}{n}\right)&=\lim_{n \to 0} \frac{\ln\left(1+n\right)}{n}\\
&=\frac{0}{0}.
\end{align*}

Como nos resulta en una indeterminación de la forma $\frac{0}{0}$, aplicando la regla de L’Hôpital tenemos que

$\lim_{n \to 0}\frac{\ln\left(n+1\right)}{n}=\lim_{n \to 0}\frac{\frac{1}{n+1}}{1}=\frac{1}{1}=1.$

Por lo tanto

$\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n=e.$

$\square$

En la siguiente solución ya no seremos tan explícitos con cada uno de los argumentos, sin embargo, hay que tener cuidado con que al usar la regla de L’Hôpital se satisfagan todas las hipótesis que se necesitan, y que los cambios de variable que hagamos se puedan hacer por continuidad.

Problema. Determina el siguiente límite $$\lim_{n \to \infty}\left(\frac{n+1}{n+2}\right)^n.$$

Solución. Tenemos que este límite llega a una indeterminación, así que nos conviene expresar a la función como

$y=\left(\frac{n+1}{n+2}\right)^n=\left(1-\frac{1}{n+2}\right)^n.$

Así,

$\ln(y)=\ln\left(\frac{n+1}{n+2}\right)^n,$

$y=e^{n\ln\left(\frac{n+1}{n+2}\right)}.$

Entonces,

$\lim_{n \to \infty}\left(\frac{n+1}{n+2}\right)^n=e^{\lim_{x \to \infty}n\ln\left(\frac{n+1}{n+2}\right)},$

por lo que nos enfocamos en encontrar el límite en el exponente. Fijándonos en el $\lim_{n \to \infty}n\ln\left(\frac{n+1}{n+2}\right)$, tenemos que

\begin{align*}
\lim_{n \to \infty}n\ln\left(\frac{n+1}{n+2}\right)&=\lim_{n \to \infty}n\ln\left(\frac{n+1}{n+2}\right)\\
&=\lim_{n \to \infty}n\ln\left(1-\frac{1}{n+2}\right)
\end{align*}

lo cual es equivalente al límite mediante el cambio de variable $n\mapsto 1/n$ a

$\lim_{n \to 0}\frac{1}{n}\ln\left(1-\frac{1}{\frac{1}{n}+2}\right)=\lim_{n \to 0}\frac{\ln\left(1-\frac{n}{2n+1}\right)}{n}=\lim_{n \to 0}\frac{\ln\left(\frac{n+1}{2n+1}\right)}{n}$

Además. tenemos que

$\lim_{n \to 0}\frac{\ln\left(\frac{n+1}{2n+1}\right)}{n}=\lim_{n \to 0}\frac{\ln(n+1)-\ln(2n+1)}{n}$

que tiene una indeterminación de la forma $0/0$. Aplicando la regla de L’Hôpital tenemos que

$\lim_{n \to 0}\frac{\ln(n+1)-\ln(2n+1)}{n}=\lim_{n \to 0}\frac{\frac{1}{n+1}-\frac{2}{2n+1}}{1}=\lim_{n \to 0}\frac{\frac{-1}{(n+1)(2n+1)}}{1}=-1$

Por lo tanto

$\lim_{n \to \infty}\left(\frac{n+1}{n+2}\right)^n=e^{-1}=\frac{1}{e}$

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la aplicación de la regla de L’Hôpital en la Sección 6.7 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: El teorema del valor medio

Por Leonardo Ignacio Martínez Sandoval

Introducción

Las funciones continuas son bonitas pues tienen la propiedad del valor intermedio y además alcanzan sus valores extremos. Las funciones diferenciables en un intervalo también tienen un par de teoremas que hablan acerca de algo que sucede «dentro del intervalo». Estos son el teorema de Rolle, del cual platicamos en la entrada anterior, y el teorema del valor medio. Ambos nos permiten encontrar en el intervalo un punto en el que la derivada tiene un valor específico.

Teorema de Rolle. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Supongamos que $f(a)=f(b)$. Entonces existe un punto $c\in (a,b)$ tal que $f'(c)=0$.

Teorema del valor medio. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Entonces existe un punto $c\in (a,b)$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}.$$

En la entrada anterior vimos aplicaciones del teorema de Rolle a resolución de problemas matemáticos. En esta entrada hablaremos brevemente de la intuición geométrica del teorema del valor medio, de algunas de sus consecuencias inmediatas y de cómo usar al teorema y sus consecuencias para resolver problemas concretos.

La intuición geométrica del teorema del valor medio

El teorema del valor medio dice que una función diferenciable en $(a,b)$ y continua en $[a,b]$ cumple que hay un punto $c$ tal que el valor de la derivada en $c$ es igual a la pendiente de la recta que une los puntos del plano $(a,f(a))$ y $(b,f(b))$. En la siguiente figura, se marca en azul el punto $c$ en donde la pendiente de la tangente es lo que queremos, es decir, la pendiente entre los puntos rojos.

Intuición geométrica del teorema del valor medio
Intuición geométrica del teorema del valor medio

En varios problemas en los que se usa el teorema del valor medio, o bien en los cuales se pide demostrar enunciados parecidos a lo que dice el teorema del valor medio, es conveniente hacer una figura para entender la intuición geométrica del problema.

Consecuencias del teorema del valor medio

Si $f$ y $g$ son funciones continuas en $[a,b]$ y diferenciables en $(a,b)$ entonces se pueden deducir los siguientes resultados a partir del teorema del valor medio. No profundizamos en las demostraciones, y dejamos su verificación como un ejercicio de práctica.

Proposición. Si $f'(x)=0$ para toda $x$ en $(a,b)$, entonces $f$ es constante.

Proposición. Si $f'(x)=g'(x)$ para toda $x$ en $(a,b)$, entonces existe una constante $c$ tal que $f(x)=g(x)+c$ para toda $x$.

Proposición. Si $f'(x)>0$ para toda $x$ en $(a,b)$, entonces $f$ es una función estrictamente creciente. Si $f'(x)<0$ en $(a,b)$, entonces $f$ es una función estrictamente decreciente.

Cuando $f'(x)\geq 0$ y $f'(x)\leq 0$, tenemos resultados análogos que dicen que es no decreciente y no creciente, respectivamente.

Veamos algunas aplicaciones de los resultados anteriores.

Problema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones tales que para todo par de reales $x$ y $y$ se cumple que $$|f(x)+g(y)-f(y)-g(x)|\leq (x-y)^2.$$ Demuestra que $f$ y $g$ varían sólo por una constante aditiva.

Sugerencia pre-solución. Identifica cuál de las proposiciones anteriores puedes usar. Hay que tener cuidado con las hipótesis, pues en el enunciado no se habla de la diferenciabilidad de ninguna de las funciones involucradas.

Solución. Podría ser tentador usar la segunda proposición que enunciamos arriba, pero no tenemos hipótesis acerca de la diferenciabilidad de $f$ o de $g$. Sin embargo, vamos a mostrar que sí se puede mostrar que $f-g$ es diferenciable en todo real, y que su derivada es $0$ en todo real. Para ello, definamos $h=f-g$ y notemos que la hipótesis dice que $|h(x)-h(y)|\leq (x-y)^2.$

A partir de aquí, notemos que por la hipótesis, para $x\neq y$, $$\frac{|h(y)-h(x)|}{|y-x|}\leq \frac{(y-x)^2}{|y-x|} = |y-x|,$$ y el límite de esta última expresión conforme $y\to x$ es $0$, de modo que $$\left|\lim_{y\to x} \frac{h(y)-h(x)}{y-x}\right|=\lim_{y\to x} \frac{|h(y)-h(x)|}{|y-x|} = 0.$$ Esto muestra que para cualquier $x$ se tiene que $h$ es diferenciable en $x$ y su derivada es igual $0$ en todo $x$. De este modo, $h$ es una función constante, y por lo tanto existe un $c$ tal que $f(x)=g(x)+c$ para todo $x$.

$\square$

Veamos cómo el teorema del valor medio nos puede ayudar a demostrar desigualdades.

Problema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función dos veces diferenciable tal que $f»(x)\geq 0$ para todo $x$. Demuestra que para todo par de reales $a$ y $b$ con $a<b$ se tiene que $$f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2}.$$

Sugerencia pre-solución. Haz una figura para convencerte de que el resultado es cierto. En el enunciado del problema, la función está siendo enunciada en tres valores, $a$, $b$ y $\frac{a+b}{2}$. Esto te dará una pista de dónde usar el teorema del valor medio.

Solución. Por el teorema del valor medio, existe un real $r$ en el intervalo $\left(a,\frac{a+b}{2}\right)$ para el cual $$\frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{a+b}{2}-a} = f'(r).$$

De manera similar, existe un real $s$ en el intervalo $\left(\frac{a+b}{2},b\right)$ para el cual $$\frac{f(b)-f\left(\frac{a+b}{2}\right)}{b-\frac{a+b}{2}} = f'(s).$$

Como $f»(x)>0$ para todo real $x$, tenemos que $f’$ es una función creciente, y como $r<s$, tenemos entonces que $f'(r)<f'(s)$. De esta forma, $$ \frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{a+b}{2}-a}<\frac{f(b)-f\left(\frac{a+b}{2}\right)}{b-\frac{a+b}{2}}.$$ Notemos que el denominador de ambos lados es $\frac{b-a}{2}$. Cancelando los denominadores y reacomodando los términos en esta desigualdad, obtenemos la desigualdad deseada.

$\square$

Problemas resueltos con el teorema del valor medio y otras técnicas

Veamos algunos problemas que combinan el teorema del valor medio con otras técnicas de solución de problemas.

Problema. Sea $f(x)$ una función diferenciable en $(0,1)$ y continua en $[0,1]$ con $f(0)=0$ y $f(1)=1$. Muestra que existen puntos distintos $a,b,c,d$ en el intervalo $[0,1]$ tales que $$\frac{1}{f'(a)}+ \frac{1}{f'(b)} + \frac{1}{f'(c)} + \frac{1}{f'(d)} = 4.$$

Sugerencia pre-solución. Para resolver el problema, hay que combinar el teorema del valor medio con el teorema del valor intermedio. El primer paso del problema es encontrar reales $p<q<r$ tales que $f$ valga en ellos $1/4$, $2/4$ y $3/4$.

Solución. Como $f(0)=0$, $f(1)=1$ y $0<1/4<1$, por el teorema del valor intermedio existe un real $p$ en $(0,1)$ tal que $f(p)=1/4$. De manera similar, existe un real $q$ en $(p,1)$ tal que $f(q)=2/4$ y un real $r$ en $(q,1)$ tal que $f(r)=3/4$.

Aplicando el teorema del valor medio a los intervalos $[0,p]$, $[p,q]$, $[q,r]$ y $[r,1]$ obtenemos reales $a,b,c,d$ respectivamente tales que

\begin{align*}
f'(a)&=\frac{f(p)-f(0)}{p-0}=\frac{1/4}{p}\\
f'(b)&=\frac{f(q)-f(p)}{q-p}=\frac{1/4}{q-p} \\
f'(c)&=\frac{f(r)-f(q)}{r-q}=\frac{1/4}{r-q} \\
f'(d)&=\frac{f(1)-f(r)}{1-r}=\frac{1/4}{1-r}.
\end{align*}

Estos son los valores de $a,b,c,d$ que queremos pues

\begin{align*}
\frac{1}{f'(a)}+ \frac{1}{f'(b)} + \frac{1}{f'(c)} + \frac{1}{f'(d)} &= 4(1-r+r-q+q-p+p)\\
&=4.
\end{align*}

$\square$

Problema. Sean $a$, $b$ y $c$ números distintos. Muestra que la siguiente expresión $$\frac{(x-a)(x-b)}{(c-a)(c-b)}+ \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-c)}$$ no depende del valor de $x$.

Sugerencia pre-solución. Encuentra la derivada de la expresión. Puedes aprovechar la simetría para hacer menos cuentas.

Solución. Usando la regla del producto, la derivada del primer sumando es
\begin{align*}
\frac{(x-a)+(x-b)}{(c-a)(c-b)}&=\frac{(2x-a-b)(b-a)}{(a-b)(b-c)(c-a)}\\
&=\frac{2x(b-a)+a^2-b^2}{(a-b)(b-c)(c-a)}.
\end{align*}

Por simetría, las derivadas de los otros dos términos tienen el mismo denominador que esta y en el numerador tienen, respectivamente,
\begin{align*}
&2x(c-b)+b^2-c^2\quad \text{y}\\
&2x(a-c)+c^2-a^2,
\end{align*} de modo que al sumar las tres expresiones obtenemos cero. Así, la derivada de la expresión es cero y por lo tanto es constante.

$\square$

Hay otro argumento para resolver el problema anterior, que usa teoría de polinomios. A grandes rasgos, la expresión es un polinomio de grado $2$, que toma tres veces el valor $1$, de modo que debe ser igual al polinomio constante $1$.

Más problemas

Hay más ejemplos de problemas relacionados con el teorema del valor medio en la Sección 6.6 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Funciones diferenciables y la derivada

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hemos platicado acerca de funciones continuas. A partir de ahí, platicamos de dos teoremas importantes para esta clase de funciones: el teorema del valor intermedio y el teorema del valor extremo. La siguiente clase de funciones que nos interesa es la de funciones diferenciables. Hablaremos de esta clase de funciones y de la derivada.

Como recordatorio, si $A\subset \mathbb{R}$ y $a$ es un punto en el interior de $A$, decimos que $f:A\to \mathbb{R}$ es diferenciable en $a$ si el límite $$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$ existe y es finito.

En ese caso, llamamos $f'(a)$ al valor de ese límite. Cuando $A$ es abierto y $f$ es diferenciable en todo punto $a$ de $A$, entonces simplemente decimos qur $f$ es diferenciable y podemos definir a la derivada $f’$ de $f$ como la función $f’:A\to \mathbb{R}$ tal que a cada punto lo manda al límite anterior.

Mencionaremos algunas propiedades básicas de funciones diferenciables y cómo se pueden usar para resolver problemas. Como en ocasiones anteriores, no hacemos mucho énfasis en la demostración de las propiedades básicas, pues se pueden encontrar en libros de texto, como el Cálculo de Spivak.

Propiedades básicas de funciones diferenciables

En la definición de diferenciabilidad, se calcula el límite $$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}.$$ Sin embargo, en algunas ocasiones es más sencillo calcular el límite $$\lim_{y\to x} \frac{f(x)-f(y)}{x-y}.$$ Estos dos límites son equivalentes, pues sólo difieren en el cambio de variable $y=x+h$. Dependiendo del problema que se esté estudiando, a veces conviene usar una notación u otra para simplificar las cuentas.

Como en el caso de la continuidad, la diferenciabilidad se comporta bien con las operaciones básicas.

Proposición. Si $f:(a,b)\to \mathbb{R}$ y $g:(a,b)\to \mathbb{R}$ son diferenciables, entonces $f+g$, $f-g$ y $fg$ son diferenciables. Tenemos que sus derivadas son
\begin{align*}
(f+g)’=f’+g’\\
(f-g)’=f’-g’\\
(fg)’=f’g+fg’.
\end{align*} Si $g(x)\neq 0$, entonces $f/g$ también es diferenciable en $x$, con derivada $$(f/g)’=\frac{f’g-fg’}{g^2}.$$

La proposición anterior se puede probar directamente de las definiciones. Se demuestra en un curso usual de cálculo, pero es un ejercicio recomendable hacer las demostraciones de nuevo.

La tercera igualdad se llama la regla del producto y la última la regla del cociente. En la regla del producto tenemos simetría, así que no importa cuál función derivamos primero. En la regla del cociente sí importa que derivemos primero a $f$ en el numerador. Para acordarse de ello, es fácil acordarse que $g$ va «al cuadrado» y como va al cuadrado, es «más fuerte», y «no se deja derivar primero».

Las funciones diferenciables son continuas, en el sentido de la siguiente proposición.

Proposición. Si $f:A\to \mathbb{R}$ es una función diferenciable en $x$, entonces es continua en $x$.

Demostración. En efecto,
\begin{align*}
\lim_{h\to 0}& f(a+h)-f(a) \\
= &\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot h\\
=&\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot \lim_{h\to 0} h\\
= &f'(a)\cdot 0 = 0,
\end{align*}

de modo que $$\lim_{h\to 0}f(a+h) = f(a),$$ en otras palabras, $$\lim_{x\to a} f(x)=f(a),$$ así que $f$ es continua en $a$.

$\square$

Una propiedad más es que las funciones diferenciables alcanzan su máximo en puntos en donde la derivada se anula. Damos un esbozo de la demostración de una parte de la proposición, pero recomendamos completar con cuidado el resto de la prueba, sobre todo cuidando que al pasar términos negativos multiplicando o dividiendo, se invierta la desigualdad correctamente.

Proposición. Si $f:(a,b)\to \mathbb{R}$ tiene un máximo o un mínimo en $x$, entonces $f'(x)=0$.

Sugerencia pre-demostración. Supón que $f'(x)\neq 0$. Divide en casos de acuerdo a si $f'(x)>0$ ó $f'(x)<0$. También, haz una figura que te ayude a entender lo que está sucediendo: si la derivada existe y es mayor que $0$ en un punto $x$, entonces cerca de $x$ la función se ve como si «tuviera pendiente positiva» y entonces tantito a la derecha crece y tantito a la izquierda decrece.

Esbozo de demostración. Procedemos por contradicción. Si $f'(x)=c>0$, entonces para $h>0$ suficientemente pequeño tenemos que $$\left|\frac{f(x+h)-f(x)}{h}-c\right|<c/2,$$ de modo que $\frac{f(x+h)-f(x)}{h}>c/2$, de donde $f(x+h)>f(x)+\frac{hc}{2}>f(x)$, lo que muestra que $x$ no es un máximo.

Del mismo modo, tomando $h<0$ suficientemente cercano a $0$, tenemos que $x$ no es un mínimo. Los casos en los que $f'(x)=c<0$ son parecidos.

$\square$

La proposición anterior nos permite usar la derivada para estudiar los valores extremos de una función, aunque no esté definida en un intervalo abierto. Si $f:[a,b]\to \mathbb{R}$ es diferenciable en $(a,b)$ y es continua en $[a,b]$, entonces sus valores extremos forzosamente están o bien en los extremos del intervalo (en $a$ o $b$), o bien en un punto $x\in (a,b)$ en donde la derivada es $0$. Esta es la estrategia que usaremos para mostrar los teoremas de Rolle y del valor medio.

Problemas resueltos de funciones diferenciables

Veamos algunos problemas en los que podemos aplicar las propiedades anteriores de funciones diferenciables.

Problema. Supongamos que la función $xf(x)$ es diferenciable en un punto $x_0\neq 0$ y que la función $f$ es continua en $x_0$. Muestra que $f$ es diferenciable en $x_0$.

Sugerencia pre-solución. Para mostrar que la expresión es diferenciable, usa la definición de diferenciabilidad con límite $x\to x_0$. En vez de tratar de encontrar el límite del cociente directamente, cambia el problema multiplicando y dividiendo por $xx_0$.

Solución. Primero, como $xf(x)$ es diferenciable en $x_0$, tenemos que el siguiente límite existe y es finito $$A:=\lim_{x\to x_0}\frac{xf(x)-x_0f(x_0)}{x-x_0}.$$

Tenemos que mostrar que el límite $$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$ existe. Para ello tomamos una $x$ suficientemente cerca de $x_0$, de modo que $x\neq 0$, y multiplicamos el numerador y denominador por $xx_0$, y luego sumamos y restamos $x_0^2f(x_0)$ en el numerador para obtener lo siguiente:

\begin{align*}
&\frac{f(x)-f(x_0)}{x-x_0} &\\
= &\frac{xx_0 f(x)-xx_0 f(x_0)}{xx_0 (x-x_0)}\\
=&\frac{xx_0 f(x)-x_0^2f(x_0)-xx_0 f(x_0)+x_0^2f(x_0)}{xx_0 (x-x_0)}\\
=&\frac{1}{x}\left(\frac{xf(x)-x_0f(x_0)}{x-x_0}\right) -\frac{f(x_0)}{x}.
\end{align*}

Tomando el límite cuando $x\to x_0$, tenemos que el primer sumando converge a $\frac{A}{x_0}$, por la diferenciabilidad de $xf(x)$ y que el segundo sumando converge a $\frac{f(x_0)}{x_0}$. De esta forma, $f$ es diferenciable en $x_0$.

$\square$

Problema. Sea $n$ un entero positivo y $a_1,\ldots, a_n$ números reales. Consideremos la función $$f(x)=a_1\sin x + a_2\sin 2x + \ldots + a_n \sin nx.$$ Muestra que si $|f(x)|\leq |\sin x|$ para todos los reales $x$, entonces $$|a_1+2a_2+\ldots+na_n|\leq 1.$$

Sugerencia pre-solución. Se puede hacer una prueba por inducción. Intenta hacerlo así. Luego, intenta modificar el problema poniendo a la expresión final del enunciado en términos de la derivada de $f$ en algún valor específico.

Solución. La derivada de $f$ es $$a_1\cos x+ 2a_2\cos 2x + \ldots + n a_n\cos nx,$$ que en $0$ es $$a_1+2a_2+\ldots+na_n,$$ que es precisamente el lado izquierdo de la desigualdad que queremos.

Por definición de derivada, tenemos que
\begin{align*}
|f'(0)|&=\lim_{x\to 0}\left|\frac{f(x)-f(0)}{x-0}\right|\\
&=\lim_{x\to 0} \left|\frac{f(x)}{x}\right|.
\end{align*}

Por la hipótesis del problema, la última expresión dentro del límite es menor o igual a $\left|\frac{\sin x}{x}\right |$. Como el límite de $\frac{\sin x}{x}$ cuando $x \to 0$ es $1$, tenemos que $$|f'(0)|\leq 1,$$ como queríamos.

$\square$

Problema. Supongamos que $f:\mathbb{R}\to \mathbb{R}$ es una función que satisface la ecuación funcional $f(x+y)=f(x)+f(y)$ para todo $x$ y $y$ en $\mathbb{R}$ y que $f$ es diferenciable en $0$. Muestra que $f$ es una función de la forma $f(x)=cx$ para $c$ un real.

Sugerencia pre-solución. Usa como paso intermedio para el problema mostrar que $f$ es diferenciable en todo real. Recuerda que una función que satisface la ecuación funcional del problema debe satisfacer que $f(x)=f(1)x$ para todo racional $x$. Esto se probaba con división por casos e inducción. Usa propiedades de funciones continuas.

Solución. Tomando $x=y=0$, tenemos que $f(0)=2f(0)$, de modo que $f(0)=0$. Mostremos que $f$ es diferenciable en todo real.

Como $f$ es diferenciable en $0$, tenemos que $$L:=\lim_{h\to 0} \frac{f(h)-f(0)}{h}=\lim_{h\to 0} \frac{f(h)}{h}$$ existe y es finito. Tomemos ahora cualquier real $r$. Por la ecuación funcional, tenemos que
\begin{align*}
f(r+h)-f(r)&=f(r)+f(h)-f(h)\\
&=f(r),
\end{align*}
de modo que $$\lim_{h\to 0} \frac{f(r+h)-f(r)}{h}=\lim_{h\to 0} f(h)=L.$$

Así, $f$ es diferenciable en todo real $r$. Por lo tanto, $f$ es contínua en todo real.

Anteriormente, cuando hablamos de inducción y de división por casos, vimos que una función que satisface la ecuación funcional $f(x+y)=f(x)+f(y)$ debe satisfacer que $f(x)=f(1) x$ para todo número racional $x$. Para cualquier real $r$ podemos encontrar una sucesión de racionales $\{x_n\}$ que convergen a $r$. Como $f$ es continua, tenemos que
\begin{align*}
f(r)&=\lim_{n\to \infty} f(x_n) \\
&= \lim_{n\to \infty} f(1) x_n \\
&= f(1) r.
\end{align*}

Esto muestra lo que queremos.

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la derivada en la Sección 6.3 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Funciones continuas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores platicamos de propiedades aritméticas de los números enteros, del anillo de enteros módulo $n$ y de los números complejos. Vimos cómo pueden ser de utilidad para resolver problemas de matemáticas de distintos tipos. Ahora veremos temas de funciones continuas.

En esta entrada, y las subsecuentes, entraremos al mundo del cálculo y de la continuidad. En el transcurso de diez entradas veremos cómo aprovechar distintas herramientas de continuidad, cálculo diferencial e integral.

Seguiremos con la costumbre de no demostrar los teoremas principales que usemos, pero podemos recomendar al lector las siguientes fuentes para consultar los fundamentos

El orden de presentación de los temas viene del libro Problem Solving Strategies de Loren Larson.

Recordatorio de límites y continuidad

Sea $A$ un subconjunto de $\mathbb{R}$ y $f:A\to \mathbb{R}$ una función. Intuitivamente, el límite de $f(x)$ cuando $x$ tiende a $a$ es $c$ si al acercarnos a $x$ en $A$ tenemos que $f(x)$ se acerca a $c$.

De manera formal, tenemos que $$\lim_{x\to a} f(x) = c$$ si para todo $\epsilon>0$ tenemos que existe un $\delta >0$ tal que si $x\in A$ y $|x-a|<\delta$, entonces $|f(x)-c|<\epsilon$. Esta es la definición épsilon-delta. Otra forma de denotar lo mismo es decir que $f(x)\to c$ cuando $x\to a$. Los límites se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f(x)\to c$ y $g(x)\to d$ cuando $x\to a$, entonces

  • $f(x)+g(x)\to c+d$ cuando $x\to a$
  • $f(x)g(x)\to cd$ cuando $x\to a$
  • Si $d\neq 0$, $f(x)/g(x)\to c/d$ cuando $x\to a$

Definición. Sea $f:A\to \mathbb{R}$ una función real y $a\in A$. Decimos que $f$ es continua

  • en $a$ si $f(x)\to f(a)$ cuando $x\to a$.
  • en $S\subset A$ si es continua en todo $a\in S$.

Si $f$ es continua en $A$, simplemente decimos que es continua.

Como los límites se comportan bien con las operaciones, tenemos que las funciones continuas también se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f$ y $g$ son continuas en $a$, entonces

  • $f+g$ es continua en $a$
  • $fg$ es continua en $a$
  • Si $g(a)\neq 0$, $f/g$ es continua en $a$

Ejercicio. Muestra que $\frac{x^2+3x+1}{x+1}$ es continua para todo $x\neq -1$.

Sugerencia. No uses la definición épsilon-delta directamente en la función, pues será complicado. Demuestra que $f(x)=x$ es continua con la definición epsilon-delta y de ahí usa las demás propiedades enunciadas en las proposiciones.

Funciones continuas y sucesiones

Las funciones continuas y las sucesiones están cercanamente relacionadas. Recuerda que una sucesión de reales es un conjunto ordenado de reales, uno por cada entero positivo, al cual denotaremos así: $$\{x_n\}=\{x_1,x_2,x_3,x_4,\ldots\}.$$

Decimos que la sucesión $\{x_n\}$ converge a $c$, en símbolos $$\lim_{n\to \infty} x_n = c$$ si para cada $\epsilon >0$ existe un natural $N$ tal que si $n\geq N$, entonces $|x_n-c|<\epsilon$. También decimos esto como $x_n\to c$ cuando $n\to \infty$, o simplemente $x_n\to c$.

Teorema. La función $f:A\to \mathbb{R}$ es continua en $a\in A$ si y sólo si para toda sucesión de reales $\{x_n\}$ en $A$ tal que $\{x_n\}\to a$ se tiene que $f(x_n)\to f(a)$.

Este teorema tiene múltiples usos. Nos dice que para verificar que una sucesión sea continua en un punto $a$, nos basta ver qué le hace a todas las sucesiones que convergen a $a$. Si alguna de ellas no converge a $f(a)$, entonces la función no es continua. Si todas ellas convergen a $f(a)$, entonces la función sí es continua. Veamos un ejemplo de su aplicación

Problema. Considera la función $f:[0,1]\to \mathbb{R}$ la función tal que a cada irracional le asigna $0$ y a cada racional $p/q$ (expresado con $p$ y $q$ positivos y primos relativos) le asigna $1/q$. Estudia la continuidad de esta función.

Sugerencia pre-solución. La continuidad de la función se comporta distinto para los racionales y para los irracionales. Para ver qué sucede en los racionales, acércate con una sucesión de irracionales.

Solución. Demostraremos que $f$ es continua en los irracionales y no es continua en los racionales.

Tomemos un racional $r=p/q<1$. Observa que la sucesión $x_n=r+\frac{\sqrt{3}}{n}$ para $n$ suficientemente grande cae en $[0,1]$ y $x_n\to r$. Cada término de la sucesión es irracional. Así, $f(x_n)=0$ para todo término, de modo que $f(x_n)\to 0\neq 1/q = f(r)$. Esto muestra que $f$ no es continua en $r$. Para $r=1$ podemos hacer el mismo truco con $x_n=r-\frac{\sqrt{3}}{n}$ para ver que no es continua.

Tomemos ahora un número irracional $r\in[0,1]$. Tenemos que $f(r)=0$. Mostraremos que para toda sucesión $\{x_n\}$ tal que $x_n\to r$, tenemos que $f(x_n)\to 0$. Tomemos $M$ un entero positivo. Consideremos el conjunto $A_M$ de todos los números racionales en $[0,1]$ con denominador a lo más $M$.

Como $r$ es irracional, las distancias de $r$ a los números de $A_M$ son todas positivas, así que su mínimo es un real positivo $\epsilon$. Como $x_n\to r$, existe un $N$ tal que si $n\geq N$, entonces $|x_n-r|<\epsilon$. Así, para $n\geq N$, no se puede que $x_n$ esté en $A_M$. De este modo, para $n\geq N$ tenemos que $|f(x_n)|<1/M$. Esto muestra que $f(x_n)\to 0$. Así, $f$ es continua en los irracionales.

$\square$

Por supuesto, algunas veces es útil regresar a la definición epsilon-delta para funciones continuas.

Problema. Sea $f:\mathbb{R}\to\mathbb{R}$ una función inyectiva y continua tal que $f(2x-f(x))=x$ y tal que tiene por lo menos un punto fijo. Muestra que $f(x)=x$ para todo $x\in \mathbb{R}$.

Sugerencia pre-solución. Antes de intentar cualquier idea de cálculo, hay que demostrar que si se cumple $f(y)=y+r$, entonces $f(y+nr)=(y+nr)+r$. Para demostrar esto para $n$ negativa, usa inducción. Para $n$ positiva necesitarás jugar un poco con la hipótesis. Aplica la hipótesis $f(2x-f(x))=x$ para $x=f(z)$ y usa la inyectividad. De ahí obtendrás una igualdad que te servirá para encontrar $f(y+nr)$ para $n$ positivas.

Solución. La primera observación es que el conjunto de puntos fijos de una función continua es cerrado, pues si $\{x_n\}$ es una sucesión de puntos fijos que converge a un punto $c$, entonces por un lado $\{f(x_n)\}=\{x_n\}$ también converge a $c$, y por otro por continuidad converge a $f(c)$. Como los límites, cuando existen, son únicos, tenemos que $f(c)=c$.

Si $f(y)\neq y$ para alguna $y\in \mathbb{R}$, entonces tendremos $f(y)=y+r$ para alguna $r\neq 0$. Mostraremos que $f(y+nr)=(y+nr)+r$ para todo entero $n$. Aplicando la hipótesis $f(2x-f(x))=x$ para $x=y$, obtenemos que $f(y-r)=y=(y-r)+r$, de modo que inductivamente tenemos $f(y-nr)=(y-nr)+r$ para $n$ entero positivo.

Aplicando la hipótesis $f(2x-f(x))=x$ para $x=f(x)$ obtenemos $f(2f(z)-f(f(z)))=f(z)$, de modo que por inyectividad tenemos $2f(z)-f(f(z))=z$. Usando esta ecuación para $z=y$ obtenemos que $2f(y)-f(f(y))=y$, de donde $f(y+r)=2(y+r)-y=(y+r)+r$, y de aquí inductivamente $f(y+nr)=(y+nr)+r$ para $n$ enteros positivos. De esta forma, $f(y+nr)=(y+nr)+r$ para todo entero.

Ahora sí viene la parte en la que usamos la continuidad. Supongamos que $f(x)\neq x$. Sea $\epsilon=|f(x)-x|>0$. Como $f$ es continua en $x$, existe un $\delta>0$ que podemos suponer menor a $\frac{\epsilon}{4}$ tal que si $|z-x|<\delta$, entonces $|f(z)-f(x)|<\frac{\epsilon}{4}$.

Sea $x_0$ un punto frontera del conjunto de puntos fijos. Como $f$ es continua en $x_0$, podemos encontrar un $\alpha>0$ y $\alpha<\delta$ tal que si $|w-x_0|<\alpha$, entonces $|f(w)-f(x_0)|<\delta$. Como el conjunto de puntos fijos es cerrado, $x_0$ está en él. Ya que $x_0$ es punto frontera, existe un $y$ tal que $f(y)\neq y$ y $|x_0-y|\leq \alpha$. Para este $y$ tenemos por las cotas que hemos encontrado y la desigualdad del triángulo que $$|f(y)-y|\leq |f(y)-f(x_0)|+|x_0-y|\leq \delta +\alpha <2\delta.$$

Así, $r=f(y)-y$ es un número de norma entre $0$ y $2\delta$, de modo que existe una $n$ para la cual $y+nr \in (x-\delta,x+\delta)$. Por lo que probamos previamente, $f(y+nr)=(y+nr)+r$. A partir de todo esto concluimos que:

\begin{align*}
\epsilon&=|f(x)-x|\\
&\leq |f(x)-f(y+nr)|+|f(y+nr)-x|\\
&<\frac{\epsilon}{4}+|(y+nr)-x|+|r|\\
&<\frac{\epsilon}{4}+3\delta\\
&<\frac{\epsilon}{4}+\frac{3\epsilon}{4}=\epsilon.
\end{align*}

Esto es una contradicción, así que todos los reales deben ser puntos fijos de $f$.

$\square$

Dos teoremas importantes de continuidad

Las funciones continuas satisfacen dos propiedades muy importantes.

Teorema (teorema del valor intermedio). Sea $f:[a,b]\to \mathbb{R}$ una función continua. Entonces para todo $y$ entre $f(a)$ y $f(b)$ existe un real $c \in [a,b]$ tal que $f(c)=y$.

Aquí, si $f(a)\leq f(b)$ entonces «entre $f(a)$ y $f(b)$» quiere decir en el intervalo $[f(a),f(b)]$ y si $f(b)\leq f(a)$, quiere decir en el intervalo $[f(b),f(a)]$. Dicho en otras palabras, si una función continua toma dos valores, entonces toma todos los valores entre ellos.

Teorema (teorema del valor extremo). Sea $f:[a,b] \to \mathbb{R}$ una función continua. Entonces existen números $c$ y $d$ en $[a,b]$ para los cuales $f(c)\leq f(x) \leq f(d)$ para todos los $x$ en $[a,b]$.

Dicho de otra forma, una función continua definida en un intervalo cerrado «alcanza su máximo y su mínimo».

En siguientes entradas hablaremos de aplicaciones de estos teoremas. Por el momento sólo los enunciamos, y en la siguiente sección demostraremos uno de ellos.

El método de la bisección de intervalos

Una de las herramientas más útiles para trabajar con reales y con funciones continuas es el método de la bisección de intervalos. Se trata a grandes rasgos de lo siguiente:

  • Se comienza con un intervalo $[a,b]$. Definimos $a_0=a$ y $b_0=b$.
  • Partimos ese intervalo por su punto medio $m_0=m$ en dos intervalos $[a,m]$ y $[m,b]$. En alguno de esos dos pasa algo especial. Si es en el primero, definimos $a_1=a$, $b_1=m$. Si es en el segundo, definimos $a_1=m$, $b_1=b$, para conseguir un intervalo $[a_1,b_1]\subset [a_0,b_0]$ especial.
  • Continuamos recursivamente. Ya que definimos al intervalo $[a_n,b_n]$, consideramos a su punto medio $m_n$. De entre los intervalos $[a_n,m_n]$ y $[m_n,b_n]$ elegimos a uno de ellos que sea «especial» para definir $[a_{n+1},b_{n+1}]$.

Los $a_i$ forman una sucesión no decreciente acotada superiormente por $b$ y los $b_i$ una sucesión no creciente acotada inferiormente por $a$. De esta forma, ambas sucesiones tienen un límite. Además, notemos que $|b_n-a_n|=|b-a|/2^n$, de modo que $|b_n-a_n|\to 0$, por lo que ambas situaciones convergen al mismo límite $L$, y este límite está en todos los intervalos $[a_n,b_n]$. Si elegimos a los intervalos $[a_n,b_n]$ de manera correcta, podemos hacer que este límite $L$ tenga propiedades especiales.

Veamos cómo aplicar esta idea para demostrar el teorema del valor extremo.

Demostración (teorema del valor extremo). Comenzamos con una función contínua $f:[a,b]\to \mathbb{R}$. Basta con probar que $f$ alcanza su máximo, pues para ver que alcanza su mínimo basta aplicar las siguientes ideas a $-f$.

Usaremos el método de bisección de intervalos. Definimos $a_0=a$ y $b_0=b$. Suponiendo que ya definimos $a_n$ y $b_n$, consideremos el punto medio $m_n$ del intervalo $[a_n,b_n]$.

  • Si algún $x$ en $[a_n,m_n]$ cumple que $f(x)\geq f(y)$ para todo $y\in [m_n,b_n]$, elegimos $a_{n+1}=a_n$ y $b_{n+1}=m_n$.
  • En otro caso, para todo $x$ en $[a_n,m_n]$ tenemos algún $y\in [m_n,b_n]$ que cumple $f(x)<f(y)$ y elegimos $a_{n+1}=m_n$ y $b_{n+1}=b_n$.

En cualquier caso, notemos que se cumple que «para cualquier $x$ en el intervalo no elegido hay una $y$ en el intervalo sí elegido tal que $f(y)\geq f(x)$».

Como discutimos anteriormente, las sucesiones $\{a_n\}$ y $\{b_n\}$ convergen a un mismo límite $d$. Afirmamos que $f(d)\geq f(x)$ para todo $x$ en $[a,b]$. Si $x=d$, esto es claro. Si no, $x\neq d$ y definimos $x_0=x$.

Vamos a definir recursivamente una sucesión $\{x_n\}$ para la cual $$f(x_0)\leq f(x_1)\leq f(x_2)\leq f(x_3)\leq \ldots$$ mediante un proceso que haremos mientras $x_n\neq d$.

Ya que definimos $x_n$ tal que $x_n\neq d$, notemos que $d$ y $x_n$ están en el mismo intervalo $[a_0,b_0]$, pero como son distintos existe un primer $m\geq 1$ tal que en el intervalo $[a_m,b_m]$ está $d$ pero $x_n$ no. Como es la menor $m$, sí están ambos en el intervalo $[a_{m-1},b_{m-1}]$.

Por cómo definimos la elección de intervalos, hay un $y$ en el intervalo $[a_m,b_m]$ tal que $f(y)\geq f(x_n)$. Si $y=d$, terminamos (por la cadena de desigualdades). Si no, definimos $x_{n+1}$ como este $y$. Así, cuando el proceso se detiene, terminamos por la cadena de desigualdades. Si el proceso no se detiene, tenemos una sucesión infinita $\{x_n\}$ que converge a $d$, de modo que $f(d)=\lim{f(x_n)}\geq f(x_0)=f(x)$, pues cada término es mayor o igual a $f(x_0)$. Esto muestra la desigualdad $f(d)\geq f(x)$ que queríamos.

$\square$

Más problemas

Se pueden encontrar más problemas de este tema en la Sección 6.1 del libro Problem Solving through Problems de Loren Larson.