Archivo de la etiqueta: geometría

Cálculo Diferencial e Integral III: Diferenciabilidad en campos vectoriales

Por Alejandro Antonio Estrada Franco

Introducción

Después de haber abordado a modo de repaso las herramientas que usaremos de álgebra lineal, estamos listos para estudiar la diferenciabilidad en funciones más generales. Ya estudiamos la diferenciabilidad en curvas (funciones $f:S\subseteq \mathbb{R}\to \mathbb{R}^m$) y en campos escalares (funciones $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$). Ahora podemos estudiar la diferenciabilidad en campos vectoriales, que recuerda que ahora sí son funciones $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ para cualesquiera $m$ y $n$ enteros positivos.

Intuición de diferenciabilidad en campos vectoriales

Con anterioridad, hemos discutido la intuición geométrica de lo que quiere decir que un campo escalar $f:\mathbb{R}^n\to \mathbb{R}$ sea diferenciable. A grandes rasgos, estamos pidiendo que cerca de un punto $\bar{a}$ la función $f(\bar{a})$ cambie «como una función lineal». Esto quiere decir que la gráfica de la función se parece mucho a un hiperplano en $\mathbb{R}^{n+1}$ cerca del punto $\bar{a}$, tanto que de hecho podemos dar un hiperplano tangente a la gráfica en $\bar{a}$. Bajo suficiente regularidad, esta función lineal estaba dada por las derivadas parciales y estaba muy relacionada con el gradiente $\triangledown f$.

La situación para campos vectoriales es parecida. Si tenemos una función $f:\mathbb{R}^n\to \mathbb{R}^m$, entonces está dada por funciones coordenada que la expresan de la manera $f(\bar{x})=(f_1(\bar{x}),\ldots,f_m(\bar{x}))$ para cada $\bar{x}\in \mathbb{R}^n$. La diferenciabilidad que buscaremos ahora deberá suceder coordenada a coordenada, y por ello lo que pensaremos como derivada tendrá algo así como un gradiente por cada coordenada. Esto nos daría $m$ gradientes, pero una mejor forma de pensar en resumen a la derivada es como una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^m$ que nos diga con mucha precisión cuándo cambia la funciíon $f$ (cuando esto sea posible).

Para tener clara idea de lo que queremos hacer recordemos el ejemplo de campos escalares, y de aquí construiremos una generalización a campos vectoriales: Observa la Figura $1$. A la izquierda, hemos dibujado dos copias de $\mathbb{R}^n$ (pero que puedes pensar como $\mathbb{R}^2$). A la derecha, hemos dibujado la gráfica de dos funciones. Una es una función cualquiera $f:\mathbb{R}^{n}\rightarrow \mathbb{R}^m$. La otra es una transformación lineal $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^m$ que ha sido trasladada sobre el plano $xy$ y sobre el eje $z$ con la función $G(\bar{v})=T(\bar{v}-\bar{a})+f(\bar{a})$. Estas gráficas son objetos en $\mathbb{R}^n \times \mathbb{R}^m$ (ponemos un punto por cada pareja $(\bar{x},f(\bar{x}))$ con $\bar{x}\in \mathbb{R}^n$).

Como $T$ es lineal, cumple $T(\bar{0})=0$. Al hacer la traslación, obtenemos $G(\bar{a})=T(\bar{0})+f(\bar{a})=f(\bar{a})$. Así, $T$ traslada un subespacio $H$ de dimensión $n$ a un subespacio afín de dimensión $n$ que pasa por $f(\bar{a})$. Lo que buscaremos al pedir que la función $f$ sea diferenciable con derivada $T$ es que la gráfica de $f$ se parezca mucho a este subespacio $H+f(\bar{a})$, tanto que de hecho dicho subespacio lo podremos pensar como tangente a la gráfica en el punto $(\bar{a},f(\bar{a}))$.

Figura 1

Definición de diferenciabilidad para campos vectoriales

¿Cuál es la condición algebraica que pediremos? Será muy similar a lo que pasaba en campos escalares. Lo que queremos es que el cambio $f(\bar{a}+\bar{v})-f(\bar{a})$ se parezca mucho a $T(\bar{v})$ cuando $\bar{v}$ es pequeño. De hecho, tiene que parecerse tanto, tanto, que $f(\bar{a}+\bar{v})-f(\bar{a})$ debe parecerse a $T(\bar{v})$ más rápido de lo que $\bar{v}$ se va a $\bar{0}$. Esto nos lleva a plantear que la condición buscada sea la siguiente:

$$\lim_{\bar{v}\to \bar{0}}\frac{||(f(\bar{a}+\bar{v})-f(\bar{a}))-T(\bar{v})||}{||\bar{v}||}=0.$$ La Figura $2$ tiene un diagrama que ayuda a entender esto un poco mejor. Queremos que la flecha indicada en amarillo acabe muy cerca de $f(\bar{a}+\bar{v})$.

El vector $T(\bar{v}-\bar{a})+f(\bar{a})$ es el vector $T(\bar{v})$ transportado hasta el plano tangente el cual está en color rosa. La idea es que $f(\bar{a}+\bar{v})-f(\bar{a})$, que es el vector señalado con amarillo abajo, se aproxime mucho en el sentido señalado por el límite mencionado en el párrafo de arriba. De esta manera tenemos la mejor aproximación lineal. Esta definición se inspira en el polinomio de Tylor de grado 1 para funciones de una variable real.

Por supuesto, la discusión que hemos tenido sólo aplica para cuando estamos trabajando cerca del punto $\bar{a}$, así que más bien la transformación lineal de la que estamos hablando dependerá del punto $\bar{a}$. Todo esto nos lleva a nuestra primera definición formal de diferenciabilidad.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Decimos que $f$ es diferenciable en $\bar{a}\in Int(S)$ si existe una transformación lineal $T_{\bar{a}}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ tal que

$$\lim_{\bar{v}\to \bar{0}}\frac{||f(\bar{a}+\bar{v})-f(\bar{a})-T_{\bar{a}}(\bar{v})||}{||\bar{v}||}=0.$$

En este caso, a $T_{\bar{a}}$ le llamamos la derivada de $f$ en el punto $\bar{a}$.

Antes de empezar a demostrar propiedades de esta noción, nos conviene tener una versión alternativa y totalmente equivalente.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Decimos que $f$ es diferenciable en $\bar{a}\in Int(S)$ si existe una transformación lineal $T_{\bar{a}}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ y una función $E:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}^m$ de manera que $$f(\bar{a}+\bar{v})=f(\bar{a})+T_{\bar{a}}(\bar{v})+||\bar{v}||E(\bar{a};\bar{v})$$ con $$\lim_{||\bar{v}||\to 0}E(\bar{a};\bar{v})=0.$$

Esta definición es equivalente a la anterior pues si despejamos tenemos: \[E(\bar{a};\bar{v})=\frac{f(\bar{a}+\bar{v})-f(\bar{a})-T_{\bar{a}}(\bar{v})}{||\bar{v}||},\] de donde se puede verificar que se cumple una definición si y sólo si se cumple la otra. Los detalles quedan como tarea moral.

Ejemplo. Consideremos la función $f(x,y)=(x^2y^2,xy)$ y tomemos el punto $a=(1,1)$. ¿Será $f$ diferenciable en $a$? Afirmamos que sí, que la función lineal $T_a(x,y)=(2x+2y, x+y)$ cumple con la definición de límite que se pide. Veamos esto en la primera versión de la definición. Tendríamos, usando $\bar{v}=(h,k)$, que

\begin{align*}
f((1,1)&+(h,k))-f(1,1)-T_a(h,k)\\
&=((h+1)^2(k+1)^2,(h+1)(k+1))-(1,1)-(2h+2k,h+k)\\
&=(h^2k^2+2h^2k+2hk^2+h^2+k^2+4hk,hk)
\end{align*}

Dividiendo entre $\sqrt{h^2+k^2}$ que es la norma de $v$, y haciendo manipulaciones algebraicas, se obtiene

$$\left(\frac{h^2k^2+2h^2k+2hk^2+h^2+k^2+4hk}{\sqrt{h^2+k^2}},\frac{hk}{\sqrt{h^2+k^2}}\right).$$

Por la desigualdad entre la media cuadrática y la media geométrica, $$\frac{|hk|}{\sqrt{h^2+k^2}}\leq \sqrt{\frac{|hk|}{2}},$$

de modo que cuando $(h,k)\to (0,0)$, la segunda coordenada del vector que nos interesa converge a cero. La primera coordenada también se puede ver que converge a cero: el primero, segundo, tercero y sexto sumandos se acotan de manera similar, pues tienen factores $h$ o $k$ adicionales. El cuarto y quinto sumando se acotan notando que $\frac{h^2+k^2}{\sqrt{h^2+k^2}}=\sqrt{h^2+k^2}$, que también converge a cero con $h$ y $k$. Los detalles quedan de tarea moral.

$\triangle$

Diferenciabilidad implica continuidad

En el caso de las funciones de una variable real teníamos claramente que diferenciabilidad implica continuidad. Como es de esperarse, lo mismo se cumple para campos vectoriales, ya que una función diferenciable es más «suave» que una continua.

Teorema. Supongamos $f:S\subseteq \mathbb{R}^n\to\mathbb{R}^m$ es un campo vectorial diferenciable en un punto $\bar{a}$ de $S$. Entonces $f$ es continuo en $\bar{a}$.

Demostración. Si $f$ es diferenciable en $\bar{a}$ entonces cumple con la ecuación \[f(\bar{a}+\bar{v})=f(\bar{a})+T_{\bar{a}}(\bar{v})+||\bar{v}||E(\bar{a};\bar{v})\] con $E(\bar{a};\bar{v})$ una función tal que $\lim_{\bar{v}\to \bar{0}} E(\bar{a}; \bar{v})=0$ (¿Por qué es válida esta última afirmación?). Por ello:

\begin{align*}
\lim\limits_{\bar{v}\to \bar{0}}f(\bar{a}+\bar{v})&=\lim\limits_{\bar{v}\to \bar{0}}\left( f(\bar{a})+T_{\bar{a}}(\bar{v})+||\bar{v}||E(\bar{a};\bar{v}) \right)\\
&= \lim\limits_{\bar{v}\to \bar{0}}f(\bar{a})+\lim\limits_{\bar{v}\to \bar{0}}T_{\bar{a}}(\bar{v})+\lim\limits_{\bar{v}\to \bar{0}}||\bar{v}||E(\bar{a};\bar{v}).
\end{align*}

El primer sumando no depende de $\bar{v}$, así que es $f(\bar{a})$. El segundo se va a cero pues las transformaciones lineales son continuas. Finalmente, el tercer sumando se va a cero por lo que sabemos de $E(\bar{a},\bar{v})$. Así, $\lim\limits_{\bar{v}\to \bar{0}}f(\bar{a}+\bar{v})=f(\bar{a})$. Por lo tanto $f$ es continua.

$\square$.

Derivadas direccionales y derivadas parciales

Si bien tenemos dos definiciones de diferenciabilidad, aún no tenemos una manera muy práctica de encontrar o describir a la transformación lineal $T_{\bar{a}}$, que es la mejor aproximación lineal. En el ejemplo después de nuestra definición, nos dieron la transformación y funcionó, pero hasta donde hemos platicado, todavía es un misterio cómo obtenerla.

Nos gustaría tener una descripción más explícita pues queremos resolver problemas específicos como encontrar, por ejemplo, la ecuación de un hiperplano tangente. Este problema ya lo habíamos resuelto para campos escalares: si tenemos suficiente regularidad, entonces podemos construir la derivada a través de las derivadas parciales (que a su vez son derivadas direccionales). La teoría que ya desarrollamos prácticamente se puede copiar, considerando que ahora tendremos derivadas en cada función coordenada.

Lo primero que notaremos es que así como para campos escalares, para campos vectoriales también podemos definir la noción de derivadas direccionales. Pensemos en una función $f:S\subseteq \mathbb{R}^{n}\to \mathbb{R}^n$. Tomemos un vector fijo $\bar{a}\in Int=(S)$. Coloquemos una flecha que comience en $\bar{a}$ y tenga dirección dada por otro vector dado $\bar{y}\in \mathbb{R}^{n}$. Si multiplicamos a $\bar{y}$ por un escalar $h$ positivo, esto estira o encoge al vector $\bar{y}$, pero lo deja con la misma dirección. En el ejemplo de la Figura 3, al variar sobre todos los valores de $h$ se genera la recta $\bar{a}+h\bar{y}$. Si a los puntos de esta recta le aplicamos la función $f$, se obtiene un cierto lugar geométrico $$f(\bar{a}+h\bar{y})=(f_1(\bar{a}+h\bar{y}),\ldots,f_m(\bar{a}+h\bar{y})),$$ conforme se varían los valores de $h$. Lo que definiremos como derivada direccional nos permitirá hablar de un espacio afín tangente de dimensión $m$ a este lugar geométrico en el punto $f(\bar{a})$.

Figura 3

A continuación tenemos nuestra definición de derivada direccional para campos vectoriales.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Tomemos $\bar{a}\in Int(S)$, $\bar{y}\in \mathbb{R}^{n}$. Definimos la derivada direccional de $f$ en $\bar{a}$ en la dirección $\bar{y}$ como: \[ f'(\bar{a};\bar{y})=\lim\limits_{h\to 0}\frac{f(\bar{a}+h\bar{y})-f(\bar{a})}{h}, \] siempre y cuando el límite exista.

Notemos que $f'(\bar{a};\bar{y})$ es un vector de $\mathbb{R}^{m}$.

En los campos escalares teníamos derivadas parciales. En este caso también las tenemos y describen a las derivadas direccionales en el mismo sentido que en el caso escalar. Para formalizar las cosas, damos la definición a continuación.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ un campo vectorial. Tomemos $\bar{a}\in Int(S)$, $\bar{y}\in \mathbb{R}^{n}$. Definimos la derivada direccional de $f$ en la coordenada $x_i$ en $a$ como la derivada parcial $f'(\bar{a};\hat{e}_i)$, donde $\hat{e}_i$ es el $i$-ésimo vector de la base canónica, siempre y cuando esta exista.

Como en el caso de los campos escalares, las derivadas direccionales pueden entenderse en términos de las derivadas parciales bajo suficiente regularidad. Tomemos $\hat{e}_1,\ldots,\hat{e}_n$ la base canónica de $\mathbb{R}^n$. Tomemos $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$. Pensemos que todas las derivadas parciales de $f$ existen en un punto dado $\bar{a}$ y que son continuas. Expresemos a $\bar{y}$ como $\bar{y}=\alpha_1\hat{e}_1+\alpha_2\hat{e}_2+\ldots+\alpha_n\hat{e}_n$ con $\hat{e}_1,\ldots,\hat{e}_n$ la base canónica de $\mathbb{R}^n$. En esta entrada discutiremos hacia el final que bajo estas condiciones tendremos que $f'(\bar{a};\bar{y})$ existe y de hecho que $$f'(\bar{a};\bar{y})=\sum_{i=1}^n \alpha_i f'(\bar{a};\bar{e}_i).$$

El tener derivadas parciales continuas resultará una hipótesis muy fuerte y de hecho implicará todavía más que la existencia de derivadas direccionales. De hecho, como en el caso de campos escalares, esta hipótesis implicará diferenciabilidad. Antes de discutir esto, veremos en la siguiente sección qué pasa componente a componente.

Si las derivadas parciales no son continuas, no deberíamos esperar que las derivadas direccionales existan: ¡hay muchas posibles direcciones y sólo sabemos que pasa en dos de ellas! Como tarea moral, puedes pensar en un contraejemplo de un campo escalar $f:\mathbb{R}^2\to \mathbb{R}^2$ con derivadas parciales en cierto punto $\bar{a}$, pero sin alguna (o algunas) derivadas direccionales en $\bar{a}$.

Derivadas por componente

Las derivadas direccionales pueden entenderse mediante las derivadas parciales, pero también, como en el caso de las trayectorias, pueden entenderse mediante las derivadas por componente. Para pensar en ello, tomemos $\hat{e}_1,\ldots,\hat{e}_m$ la base canónica de $\mathbb{R}^m$. Tomemos $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ con funciones coordenadas $f(\bar{x})=\left( f_{1}(\bar{x}),\dots ,f_{m}(\bar{x})\right)$. Pensemos que las derivadas direccionales de $f_1,\ldots, f_m$ en $\bar{a}$ en la dirección $\bar{y}$ existen.

Tenemos entonces:

\begin{align*} \lim\limits_{h\to 0}\frac{f(\bar{a}+h\bar{y})-f(\bar{a})}{h} &=\lim\limits_{h\to 0}\frac{\left( f_{1}(\bar{a}+h\bar{y}),\dots ,f_{m}(\bar{a}+h\bar{y})\right) -\left( f_{1}(\bar{a}),\dots ,f_{m}(\bar{a})\right)}{h}\\ &=\lim\limits_{h\to 0}\left( \frac{f_{1}(\bar{a}+h\bar{y})-f_{1}(\bar{a})}{h},\dots ,\frac{f_{m}(\bar{a}+h\bar{y})-f_{m}(\bar{a})}{h}\right)\\ &=\lim\limits_{h\to 0}\sum_{i=1}^{m}\frac{f_{i}(\bar{a}+h\bar{y})-f_{i}(\bar{a})}{h}{\hat{e}_{i}}\\
&=\sum_{i=1}^{m}\lim\limits_{h\to 0}\frac{f_{i}(\bar{a}+h\bar{y})-f_{i}(\bar{a})}{h}{\hat{e}_{i}}\\ &=\sum_{i=1}^{m}f_{i}'(\bar{a};\bar{y}){\hat{e}_{i}}. \end{align*}

En la última igualdad estamos usando la suposición de que las derivadas existen componente a componente. Como mostramos que el límite planteado inicialmente existe, obtenemos entonces que
\begin{equation} \label{eq:porcomponente} f'(\bar{a};\bar{y})=\sum_{i=1}^{m}f_{i}'(\bar{a};\bar{y}){\hat{e}_{i}} .\end{equation}

Lo que tenemos aquí es que la derivada direccional de $f$ en $\bar{a}$ en dirección de $\bar{y}$ es la suma vectorial de cada vector de la base escalado por la derivada direccional del campo escalar $f_{i}$ en $\bar{a}$ con respecto a la dirección de $\bar{y}$.

Diferenciabilidad implica derivadas direccionales

La noción de diferenciabilidad que dimos implica la diferenciabilidad de cada una de las funciones componente $f_i$ de una función $f:\mathbb{R}^n\to \mathbb{R}^m$. Es decir, si el campo vectorial es diferenciable, entonces cada uno de los campos escalares $f_1,\ldots,f_m$ componentes son también diferenciables, pues el límite $$\lim_{\bar{v}\to \bar{0}}\frac{||f(\bar{a}+\bar{v})-f(\bar{a})-T_{\bar{a}}(\bar{v})||}{||\bar{v}||}=0$$ se cumple, y por lo tanto se cumple componente a componente. En el caso de $T_{\bar{a}}$ el $i$-ésimo componente es precisamente hacer el producto interior del $i$-ésimo renglon de la matriz que representa a $T_{\bar{a}}$ con $\bar{v}$, y entonces la derivada $\triangledown f_i(\bar{a})$ del campo escalar $f_i$ está dada precisamente por dicho $i$-ésimo renglón.

A su vez, sabemos que si un campo escalar es diferenciable, entonces existen todas las derivadas parciales. Por lo que hemos platicado en unidades anteriores, si $\bar{y}\in \mathbb{R}^{n}$ se escribe en la base canónica como $\bar{y}=\sum_{j=1}^{n}y_{j}{\hat{e}_{j}}$, al aplicar $\triangledown f_i(\bar{a})$ obtenemos

\begin{align*}
\triangledown f_i(\bar{a})(\bar{y})&=\sum_{j=1}^n y_j\triangledown f_i(\bar{a})(\hat{e}_j)\\
&=\sum_{j=1}^n y_j \frac{\partial f_i}{\partial x_j}(\bar{a}),\\
\end{align*}

lo cual abreviamos como

$$f_i'(\bar{a};\bar{y})=\left(\frac{\partial f_i}{\partial x_1}(\bar{a}), \ldots, \frac{\partial f_i}{\partial x_n}(\bar{a})\right) \cdot \bar{y}.$$

Usando esta igualdad para cada $i$ y sustituyendo la ecuación \eqref{eq:porcomponente} que obtuvimos al analizar componente por componente, obtenemos entonces que

$$f^{\prime}(\bar{a};\bar{y})=\sum_{i=1}^m \left(\left(\frac{\partial f_i}{\partial x_1}(\bar{a}), \ldots, \frac{\partial f_i}{\partial x_n}(\bar{a})\right) \cdot \bar{y}\right)\hat{e}_i.$$

¡Pero esto se puede denotar de manera mucho más compacta mediante un producto matricial! Reflexiona un poco por qué la expresión anterior dice exactamente lo mismo que la siguiente:

$$f'(\bar{a};\bar{y})= \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial y_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}.$$

Como tarea moral, tendrás que verificar que en un campo vectorial diferenciable en $\bar{a}$ se debe cumplir que $f'(\bar{a};\bar{y})=T_{\bar{a}}(\bar{y})$. Por lo discutido, debe pasar entonces para cada $y$ que \[ T_{\bar{a}}(\bar{y})=\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}.\]

Esto precisamente nos está diciendo que si $f$ es diferenciable en $a$, entonces sus derivadas parciales deben existir y se debe cumplir que la forma matricial de $T_{\bar{a}}$ en las bases canónicas de $\mathbb{R}^n$ y $\mathbb{R}^m$ debe ser \begin{equation}\label{eq:jacobiana}\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}.\end{equation}

Matriz jacobiana

Toda la discusión anterior nos lleva a lo siguiente.

Definición. Dado un campo vectorial $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ diferenciable en un punto $\bar{a}\in Int(S)$ con derivada $T_{\bar{a}}$, a la matriz que representa a $T_{\bar{a}}$ en las bases canónicas la denotamos por $Df(\bar{a})$ y le llamamos la matriz jacobiana de $f$ en $\bar{a}$.

Por lo discutido en la sección anterior,

$$Df(\bar{a})=\begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{a}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{a}) \end{pmatrix}.$$

Escribiremos $Df(\bar{a})(\bar{x})$ para referirnos al producto de la matriz $Df(\bar{a})$ con el vector (columna) $\bar{x}$, que precisamente coincide con $T_{\bar{a}}(\bar{x})$. Así, bajo la hipótesis de diferenciabilidad, hemos recuperado entonces lo que hace $T_{\bar{a}}$ como una multiplicación matricial, donde la matriz tiene como elementos a las derivadas parciales de las funciones coordenada en el punto $\bar{a}$.

Ejemplos de diferenciabilidad en campos vectoriales

Con todo lo discutido hasta ahora, obtenemos un método para obtener la derivada para campos vectoriales, lo que nos permitirá, por ejemplo, encontrar la transformación lineal de forma explícita y encontrar hiperplanos tangentes.

Ejemplo. Consideremos $f(x,y)=(x^{2},xy,y^{2}).$ Calculemos su diferencial en el punto $(1,-1)$. Las funciones coordenada son

\begin{align*}
f_{1}(x,y)&=x^{2}\\
f_{2}(x,y)&=xy\\
f_{3}(x,y)&=y^{2},
\end{align*}

de donde tenemos: \[ \frac{\partial f_{1}}{\partial x}(1,-1)=\left. 2x\right|_{_{(1,-1)}}=2;\hspace{3cm} \frac{\partial f_{1}}{\partial y}(1,-1)=0;\hspace{3cm}\frac{\partial f_{2}}{\partial x}(1,-1)=\left. y\right|_{_{(1,-1)}}=-1;\] \[ \frac{\partial f_{2}}{\partial y}(1,-1)=\left. x\right|_{_{(1,-1)}}=1;\hspace{3cm}\frac{\partial f_{3}}{\partial x}(1,-1)=0;\hspace{3cm}\frac{\partial f_{3}}{\partial y}(1,-1)=\left. 2y\right|_{_{(1,-1)}}=-2.\] Así \[ Df(1,-1)=\begin{pmatrix} \frac{\partial f_{1}}{\partial x}(1,-1) & \frac{\partial f_{1}}{\partial y}(1,-1) \\ \frac{\partial f_{2}}{\partial x}(1,-1) & \frac{\partial f_{2}}{\partial y}(1,-1) \\ \frac{\partial f_{3}}{\partial x}(1,-1) & \frac{\partial f_{3}}{\partial y}(1,-1) \end{pmatrix}= \begin{pmatrix} 2 & 0 \\ -1 & 1 \\ 0 & -2 \end{pmatrix}.\]

$\triangle$

Ejemplo. Ahora obtengamos el plano tangente a una superficie dada en un punto dado. Sea $\mathcal{S}$ la superficie de $\mathbb{R}^{3}$ descrita por la imagen de la función $f(x,y)=(x,y,xy^{2})$. Vamos a determinar el plano tangente a dicha superficie en el punto $(1,1,1)$. Comencemos calculando $Df(1,1)$. En primer lugar calculemos las parciales: \[ \frac{\partial f_{1}}{\partial x}(1,1)=1;\hspace{3cm}\frac{\partial f_{1}}{\partial y}(1,1)=0;\hspace{3cm}\frac{\partial f_{2}}{\partial x}(1,1)=0 \] \[ \frac{\partial f_{2}}{\partial y}(1,1)=1;\hspace{3cm}\frac{\partial f_{3}}{\partial y}(1,1)=1;\hspace{3cm}\frac{\partial f_{3}}{\partial y}(1,1)=2.\]

Por lo tanto \[ Df(1,1)=\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}.\]

Esta transformación manda al punto $(x,y)$ del plano $\mathbb{R}^2$ al punto\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}=\begin{pmatrix} x \\ y \\ x+2y \end{pmatrix}.\]

De modo que el plano centrado en el origen es el conjunto $$H=\{(x,y,x+2y)\in \mathbb{R}^{3}|(x,y)\in \mathbb{R}^{2}\}.$$

Pero este plano debemos todavía trasladarlo por el vector $(1,1,1)$ para que pase por el punto $f(1,1)$. Concluimos entonces que el plano tangente buscado es el conjunto

$$\{(x+1,y+1,x+2y+1)\in \mathbb{R}^{3}|(x,y)\in \mathbb{R}^{2}\}.$$

En la Figura 4 tenemos la en rojo la imagen del campo vectorial de este ejemplo y en verde la del plano tangente, el punto negro es el punto $(1,1,1)$.

Figura 4

$\triangle$

¿Y derivadas parciales implica diferenciabilidad?

Cuando un campo vectorial es diferenciable, existen todas las derivadas parciales de todos sus campos escalares coordenados. El regreso no es cierto. Sin embargo, sí se vale bajo una condición adicional de regularidad.

Definición. Diremos que un campo vectorial $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ es de clase $C^1$ (o simplemente es $C^1$) en un punto $\bar{a}\in S$ si todas las derivadas parciales de todas las funciones componentes de $f$ existen y son continuas en $\bar{a}$. Definimos de manera análoga lo que significa que $f$ sea de clase $C^1$ en todo $S$.

Teorema. Si $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^m$ es un campo vectorial, $\bar{a}\in S$ y $f$ es $C^1$ en $\bar{a}$, entonces $f$ es diferenciable y su derivada $T_a$ tiene como forma matricial a la matriz jacobiana \eqref{eq:jacobiana}.

La prueba de este resultado se hace coordenada a coordenada, aplicando en cada una de ellas el teorema de diferenciabilidad y derivadas parciales para campos escalares que demostramos en la entrada del teorema del valor medio para campos escalares.

Más adelante

En esta entrada introdujimos el concepto de diferenciabilidad, de derivadas parciales, direccionales y por componente. Además, mostramos que cuando una función es diferenciable, entonces su derivada tiene una forma matricial muy sencilla, dada por las derivadas parciales de las componentes. Esto es nuestra primera señal de que las derivadas y las matrices están muy relacionadas entre sí. Lo que veremos en la siguiente entrada es que esta conexión se sigue dando, y de hecho nos permitirá enunciar de manera muy elegante la regla de la cadena para campos vectoriales: ¡será una multiplicación de matrices!

Después de entender mejor la diferenciabilidad, presentaremos y demostraremos teoremas clásicos e importantes de campos vectoriales: el teorema de la función inversa, y el teorema de la función implícita.

Tarea moral

  1. Completa los detalles faltantes del primer ejemplo que dimos de diferenciabilidad.
  2. Calcula la matriz jacobiana de la función $g(x,y,z)=(xz,xy,x^{2}y^{2}z^{2})$. Úsala para encontrar la ecuación del espacio tangente a la gráfica en el punto $g(2,1,0)$.
  3. Halla el campo vectorial cuya imagen es el plano tangente a la superficie dada por la ecuación $F(x,y)=x^{2}y^{2}+1$ en el punto $(1,1)$. Como ayuda al graficar $F$ en $\mathbb{R}^{3}$ nos dibuja la misma superficie que obtenemos de la imagen del campo vectorial $f(x,y)=(x,y,x^{2}y^{2}+1)$ que esta contenida en $\mathbb{R}^{3}$.
  4. Verifica que en efecto las dos definiciones de diferenciabilidad que dimos son equivalentes.
  5. Demuestra que si las parciales de cada componente de un campo vectorial existen, y son continuas, entonces la función es diferenciable. Tendrás que seguir la sugerencia dada en la última sección. Después, justifica la igualdad que dimos que escribe a las derivadas direccionales en términos de las parciales.
  6. Explica a detalle por qué la expresión a la que llegamos para $f^{\prime}(\bar{a};\bar{y})$ en efecto se puede pensar como el producto matricial mencionado.
  7. Encuentra un ejemplo de campo vectorial $f:\mathbb{R}^2\to \mathbb{R}^2$ en donde las derivadas parciales existen en algún punto $\bar{a}$, pero no todas las derivadas direccionales existen.

Entradas relacionadas

Geometría Analítica II: Cilindros sobre cónicas

Por Brian Manzano

Introducción

Con esta entrada comenzamos nuestra exploración de los objetos en el espacio de tres dimensiones. Lo primero que haremos es estudiar los cilindros que se construyen sobre cónicas. La mayoría de nosotros tiene una noción bastante buena sobre ellos, o por lo menos de los «cilindros usuales», en donde las secciones horizontales son círculos. Sin embargo, si bien entendemos muy bien su forma de manera intuitiva, ¿cómo los podemos representar en el lenguaje matemático?

A continuación definiremos qué entenderemos por un cilindro sobre una cónica. Veremos algunos ejemplos y luego haremos cilindros con objetos que hemos estudiado en el curso de Geometría Analítica I: con cónicas.

Definición de cilindros sobre curvas

Los cilindros que conocemos de manera intuitiva comienzan con una circunferencia y luego esta se extiende sin cambios a lo largo de un eje. Los cilindros con los que nos encontramos cotidianamente (por ejemplo, un vaso) se extienden sólo de manera acotada. Pero podemos pensar en qué sucedería si los extendemos indefinidamente. Si hacemos esto, llegamos a la siguiente definición.

Definición. Un cilindro es una superficie en $\mathbb{R}^3$ que se pueda obtener tomando un plano $\Pi$, tomando en él una curva $\mathcal{C}$ y tomando para cada punto $p$ de $\mathcal{C}$ una recta ortogonal a $\Pi$ que pase por $p$. La unión de estas rectas son el cilindro. A cada una de las rectas le llamamos una directriz del cilindro y a la curva $\mathcal{C}$ le llamamos la curva generatriz del cilindro.

Así, un cilindro es un conjunto de lineas paralelas que se encuentran «guiadas» o «dirigidas» de acuerdo a una curva plana. Podemos imaginarlo como sigue: dibujamos la curva sobre un papel, y luego sobre ella pegamos palos perpendiculares a la hoja

Cilindros a partir de cónicas

La definición de cilindro, tal y como está arriba, no restringe el tipo de cónicas que podemos tener. Sin embargo, hay una familia de cónicas que conocemos bien debido a cursos anteriores: las cónicas. Ya que podemos elegir con libertad la curva plana, pensemos en lo que sucede si usamos de las cónicas que conocemos. Para simplificar la situación, supondremos que dibujamos la cónica en el plano XY y entonces que las directrices son perpendiculares al plano $XY$, es decir, paralelas al eje $Z$. Podemos entonces hacer ejemplos de acuerdo a subfamilia de cónicas que usemos.

Cilindros elípticos

Recordemos que una elipse en el plano $XY$ puede pensarse (salvo rotaciones y traslaciones) como el lugar geométrico de los puntos $(x,y)$ que satisfacen una ecuación del estilo $$\frac{x^2}{a^2}+\frac{y^2}{b^2} =1,$$ donde $a$ y $b$ son parámetros que determinan la longitud de los ejes de la elipse.

Si ahora pensamos en todo $\mathbb{R}^3$ y nos preguntamos por el lugar geométrico de los puntos $(x,y,z)$ que satisfacen la ecuación, la respuesta es similar. Los valores de $(x,y)$ están dados por la ecuación y el valor de $z$ no está restringido de ninguna manera por la ecuación, de modo que puede ser lo que sea. ¡Hemos logrado «levantar la cónica» a líneas perpendiculares al plano $XY$!

De tener $a=b$, tendremos un cilindro circular en el origen. Si $a=b=1$, entonces es un cilindro mucho más especial, pues es uno que se obtiene de levantar la circunferencia unitaria canónica.

Por supuesto, pudimos haber comenzado con una elipse en el plano $YZ$, que tendría una ecuación del estilo $$\frac{y^2}{a^2}+\frac{z^2}{b^2} =1.$$ En este caso, el valor de $x$ sería libre, así que puede valer lo que sea. Así, esta ecuación pensada en todo $\mathbb{R}^3$ nos daría un cilindro cuya curva directriz es una elipse, y cuyas generatrices son paralelas al eje $x$.

Cilindros parabólicos

Para crear cilindros parabólicos podemos proceder de la misma manera. Para ellos, comenzamos con una parábola, por ejemplo, en el plano $XY$. Sabemos que una parábola así está dada, salvo rotaciones y traslaciones, por una ecuación del siguiente tipo: $$y^2 = 2px.$$ Una vez más, si en vez de pensar en esto como una ecuación en $\mathbb{R}^2$, la pensamos como una ecuación en $\mathbb{R}^3$, entonces el valor de $z$ es arbitrario y entonces al tomar el lugar geométrico en efecto obtenemos una línea perpendicular al plano $XY$ por cada punto de la parábola.

Cilindros hiperbólicos

La tercer familia sería la de cilindros hiperbólicos. En este caso, la curva generatriz es una hipérbola. Recordemos que salvo rotaciones y traslaciones, una hipérbola es el lugar geométrico de los puntos $(x,y)$ del plano $XY$ tales que satisfacen una ecuación del estilo $$\frac{x^2}{a^2}-\frac{y^2}{b^2} =1.$$ Al pensar a esta ecuación como una restricción para puntos $(x,y,z)$ de $\mathbb{R}^3$, obtenemos entonces un cilindro hiperbólico.

Problemas ejemplo de cilindros

Para aterrizar las ideas anteriores, veamos algunos ejemplos concretos.

Ejemplo. Tomemos el lugar geométrico de los puntos $(x,y,z) \in $ $\mathbb{R} ^3$ que cumplen con la siguiente ecuación: $$\frac{x^2}{4}+\frac{y^2}{25} = 1.$$

Podemos comenzar detectando la ausencia de la variable $z$, con lo que las generatrices serán rectas paralelas al eje $Z$. De hecho, el eje del cilindro precisamente será será el eje $Z$. Esto no siempre ocurre ya que no necesariamente el centro de la curva dada está en el origen del plano $XY$, pero debido a que no tenemos constantes que acompañen los valores $x$ o $y $ su centro no se encontrará desplazado.

¿Qué nos dicen los valores $4,25$ que acompañan a sus variables correspondientes ?Con todo en mente veamos su gráfica

Veamos desde otra perspectiva, no solo sobre el plano, sino con una vista incluyendo el otro eje coordenado obtenemos la siguiente gráfica.

$\square$

Ejemplo. Tomemos el lugar geométrico en $\mathbb{R}^3$ de los puntos $(x,y,z)$ que cumplen la siguiente ecuación: $$y^2=6x.$$

De manera muy similar notamos que la ausencia de la variable $z$ llevara a que su directriz se encuentre en el plano $XY$ de forma que vista desde este plano:

¿Puedes decir a que cónica pertenece esta gráfica?

Agregando la perspectiva con el eje faltante obtenemos:

Nota importante. Como habrás notado al graficar obtenemos estas representaciones que parecen estar cortadas o seccionadas por planos paralelos al $XY$ , en realidad estos cilindros se extienden sin límite.

$\square$

Ejemplo. Para la siguiente ecuación: $$\frac{z^2}{4}-\frac{y^2}{9} = 1,$$ ¿cuál es el lugar geométrico de los puntos $(x,y,z)$ en $\mathbb{R}^3$ que la cumplen?

Notemos ahora que además de representar otro tipo de cónica tenemos ahora un cambio importante, ya no contamos de manera explicita con la $y$ en la ecuación, ¿Qué cambios conllevara esto? ¿En que plano podremos observar la cónica correspondiente?

Veamos si tu intuición fue correcta

Gráfica de la ecuación en el plano YZ

Desde otra perspectiva donde podremos ver su profundidad, tenemos ahora que las generatrices se extienden desde $- \infty$ hasta $\infty$.

$\square$

Más adelante…

En esta primer entrada del curso hablamos de los primeros objetos geométricos de tres dimensiones que nos interesan: los cilindros con cierta curva generatriz. En la siguiente entrada veremos otra manera con la cual podemos crear un objeto de tres dimensiones a partir de rectas: las superficies de revolución. Un poco más adelante estudiaremos una versión más general de objetos que podemos obtener de esta manera: los conjuntos cero de ecuaciones de segundo grado en tres variables.

Tarea moral

Estos ejercicios te ayudaran a comprender de mejor forma los conceptos vistos.

  1. Reescribe las ecuaciones de los ejemplos que dimos para que sus directrices se encuentren en diferentes planos.
    Sugerencia: Nota qué pasa con el tercer ejemplo.
  2. Ahora que hemos cambiado los planos donde se encuentran las directrices, grafica estas ecuaciones, ¿Cómo cambian los cilindros? Realiza un cambio de variable para el segundo ejemplo haciendo el reemplazo $x\to x-3$. ¿Qué cambia? ¿pasa lo mismo para el primer ejemplo?
  3. Determina la ecuación para un cilindro parabólico cuya parábola directriz esté contenida en el plano XY y cuyo foco sea el punto $(2, 0)$ de este plano. Hay varias de estas parábolas. Puedes usar la que gustes.
  4. Gráfica los cilindros asociados a cada una de las siguientes ecuaciones:
    1. $x^2-z^2=0$.
    2. $(y-9)^2+(z-4)^2=0$.
    3. $x^2=y$.

Entradas relacionadas

Geometría Moderna II: Circunferencias ortogonales

Por Armando Arzola Pérez

Introducción

En esta entrada introduciremos un nuevo concepto: el de circunferencias ortogonales. Veremos cómo se relaciona este concepto con el de eje radical, que estudiamos en la entrada anterior.

Circunferencias ortogonales

La definición que nos interesa estudiar ahora es la siguiente.

Definición. Dos circunferencias $\mathcal{C_1}$ y $\mathcal{C_2}$ que se intersecan en un punto $P$ son ortogonales si sus tangentes en $P$ forman un ángulo recto.

Hagamos algunas observaciones de esta definición. Primero, dos circunferencias tangentes no pueden ser ortogonales pues si el punto de tangencia es $P$, entonces tienen la misma tangente en $P$. Así, las circunferencias deben intersectarse en al menos dos puntos $P$ y $Q$. Por simetría, las tangentes en $P$ son ortogonales si y sólo si las tangentes en $Q$ lo son.

Además, si los centros son $O_1$ y $O_2$, respectivamente, entonces sabemos que $O_1P$ es ortogonal a la tangente a $\mathcal{C}_1$ por $P$ y análogamente $O_2P$ es ortogonal a la tangente a $\mathcal{C}_2$ por $P$. Así, las tangentes son ortogonales si y sólo si los radios $O_1P$ y $O_2P$ lo son.

Algunas conexiones entre circunferencias ortogonales y eje radical

Veamos un primer resultado que relaciona circunferencias ortogonales y el eje radical.

Teorema. Sean $\mathcal{C_1}$ y $\mathcal{C_2}$ circunferencias de centros distintos. Si $\mathcal{C}_3$ es ortogonal a ambas circunferencias, entonces su centro $O_3$ se encuentra en el eje radical de ambas.

Demostración. Denotaremos por $T_1$ a uno de los puntos de intersección de $\mathcal{C}_1$ y $\mathcal{C}_3$, y por $T_2$ a uno de los puntos de intersección de $\mathcal{C}_2$ y $\mathcal{C}_3$ (ver la figura a continuación). Debemos mostrar que $O_3$ está en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$, es decir, que $$\text{Pot}(O_3,\mathcal{C}_1)=\text{Pot}(O_3,\mathcal{C}_2).$$

Circunferencias Ortogonales del primer teorema.

Como $O_3T_2$ y $O_3T_1$ son radios de $\mathcal{C}_3$, entonces $$O_3T_1^2=O_3T_2^2.$$

En la entrada de potencia de un punto vimos que podemos calcular la potencia en términos de la longitud de una tangente como sigue: $$\text{Pot}(O_3,\mathcal{C}_1)=O_3T_1^2=O_3T_2^2=\text{Pot}(O_3,\mathcal{C}_2).$$

Así, concluimos lo que queríamos, que $O_3$ está en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$.

$\square$

El siguiente resultado es similar, y en cierto sentido es un «regreso» del anterior.

Teorema. Sean $\mathcal{C_1}$ y $\mathcal{C_2}$ circunferencias de centros distintos. Sea $\mathcal{C}_3$ una circunferencia cuyo centro $O_3$ está en el eje radical de las dos circunferencias dadas. Si $\mathcal{C}_3$ es ortogonal a $\mathcal{C}_2$, entonces también es ortogonal a $\mathcal{C}_1$.

Demostración. Tomaremos como referencia la figura anterior. A partir de las hipótesis, queremos demostrar que $\mathcal{C}_3$ es ortogonal a $\mathcal{C}_1$. Sea $r_1$ el radio de $\mathcal{C}_1$. Por el teorema de Pitágoras, lo que queremos sucede si y sólo si $$O_3O_1^2-r_1^2= O_3T_1^2.$$

Dado que $\mathcal{C}_3$ es ortogonal a $\mathcal{C}_2$, el triángulo $\triangle O_3T_2O_2$ es rectángulo. Por el teorema de Pitágoras se cumple entonces que $O_3O_2^2-r_2^2= O_3T_2^2$. Como $O_3$ está en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$, y por cómo se calcula la potencia en términos de la distancia al centro y del radio, tenemos que: $$O_3O_2^2 – r_2^2=\text{Pot}(O_2,\mathcal{C}_3)=\text{Pot}(O_2,\mathcal{C}_2)=O_3O_1^2-r_1^2.$$

De este modo, $$O_3T_1^2=O_3T_2^2=O_3O_2^2-r_2^2=O_3O_1^2-r_1^2.$$

Esto es justo lo que necesitábamos para concluir que $\mathcal{C}_3$ es ortogonal a $\mathcal{C}_1$.

$\square$

Posición de una circunferencia ortogonal a dos dadas con respecto a su eje radical

Veamos un resultado más, que nos habla acerca de la posición de una circunferencia en relación a otras dos a las que es tangente.

Teorema. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias de centros distintos $O_1$ y $O_2$. Sea $\mathcal{C}_3$ una circunferencia ortogonal a $\mathcal{C}_1$ y $\mathcal{C}_2$. La circunferencia $\mathcal{C}_3$ está posicionada con respecto a la línea de los centros $O_1O_2$ de acuerdo a los siguientes tres casos:

  1. Si $\mathcal{C}_1$ y $\mathcal{C}_2$ se intersectan en dos puntos, entonces $\mathcal{C}_3$ no intersecta a $O_1O_2$.
  2. Si $\mathcal{C}_1$ y $\mathcal{C}_2$ son tangentes, entonces $\mathcal{C}_3$ es tangente a $O_1O_2$.
  3. Si $\mathcal{C}_1$ y $\mathcal{C}_2$ no se intersectan, entonces $\mathcal{C}_3$ intersecta a $O_1O_2$ en dos puntos.

Demostración. Sea $\mathcal{C}_3$ una circunferencia ortogonal a dos circunferencias dadas $\mathcal{C}_1$ y $\mathcal{C}_2$. Sean $r_1$, $r_2$, $r_3$ los radios de $\mathcal{C}_1$, $\mathcal{C}_2$ y $\mathcal{C}_3$, respectivamente. Sea $X$ la intersección de $O_1O_2$ con el eje radical $l$ de las circunferencias $\mathcal{C}_1$ y $\mathcal{C}_2$. Sea $T_1$ un punto de intersección de $O_3$ con $O_1$ y $T_1$ un punto de intersección de $O_3$ con $O_2$. La figura a continuación muestra el dibujo para el primer caso.

Circunferencias Ortogonales

Dado que $\mathcal{C}_3$ es ortogonal a $\mathcal{C}_1$ y $\mathcal{C}_2$, se tienen dos triángulos rectángulos: $$\triangle O_3T_1O_1 \quad \text{y} \quad \triangle O_3XO_1.$$

Por el teorema de Pitágoras, tenemos que $$O_3T_1^2+r_1^2=O_3O_1^2=O_1X^2+O_3X^2,$$

de donde $r_1^2-O_1X^2=O_3X^2-r_3^2$. Tratemos ahora sí cada caso por separado.

Caso 1. Supongamos que $\mathcal{C}_1$ y $\mathcal{C}_2$ se intersectan en dos puntos. Mostraremos que $\mathcal{C}_3$ no intersecta a $O_1O_2$.

Como las circunferencias se intersectan en dos puntos, el eje radical es la recta que une las intersecciones. Por ello, $r_1>|O_1X|$. Usando las cuentas de arriba:

\begin{align*}
& r_1>|O_1X|\\
\Rightarrow &r_1^2>O_1X^2\\
\Rightarrow &r_1^2-O_1X^2 >0\\
\Rightarrow & O_3X^2-r_3^2>0\\
\Rightarrow & O_3X^2>r_3^2.
\end{align*}

Esto último sucede si y sólo si $|O_3X|>r_3$. Esto nos dice que $X$ está fuera de la circunferencia $\mathcal{C}_3$ y entonces dicha circunferencia no intersecta a $O_1O_2$.

Caso 2. Supongamos ahora que $\mathcal{C}_1$ y $\mathcal{C}_2$ son tangentes. Debemos demostrar que $\mathcal{C}_3$ es tangente a $O_1O_2$. En este caso, $r_1=|O_1X|$. Y entonces tenemos la siguiente cadena de implicaciones:

\begin{align*}
& r_1>=O_1X|\\
\Rightarrow &r_1^2=O_1X^2\\
\Rightarrow &r_1^2-O_1X^2 =0\\
\Rightarrow & O_3X^2-r_3^2=0\\
\Rightarrow & O_3X^2=r_3^2.
\end{align*}

Esto, junto con el hecho de que $O_3X$ es perpendicular a $O_1O_2$, implica que $O_1O_2$ es tangente a $\mathcal{C}_3$.

Caso 3. Finalmente, supongamos que $\mathcal{C}_1$ y $\mathcal{C}_2$ no se intersectan. Debemos mostrar que $\mathcal{C}_3$ sí intersecta a $O_1O_2$ en dos puntos. Para ello basta mostrar que $|O_3X|<r_3$. La suposición de que las circunferencias no se intersectan implica que $r_1<|O_1X|$.

Circunferencias Ortogonales

Una vez más procedemos con las siguientes implicaciones:

\begin{align*}
& r_1<|O_1X|\\
\Rightarrow &r_1^2<O_1X^2\\
\Rightarrow &r_1^2-O_1X^2 <0\\
\Rightarrow & O_3X^2-r_3^2<0\\
\Rightarrow & O_3X^2<r_3^2.
\end{align*}

Por ello, $|O_3X|<r_3$, como queríamos.

$\square$

Más adelante…

Hemos abordado algunos resultados de circunferencias ortogonales. Lo que haremos en la siguiente entrada es estudiar a las familiar coaxiales de circunferencias. Sabemos que cualesquiera dos circunferencias tienen un eje radical pero, ¿qué sucede tenemos más de dos circunferencias que comparten eje radical?

Entradas relacionadas

Geometría Moderna II: Eje radical de 2 circunferencias

Por Armando Arzola Pérez

Introducción

En la entrada anterior hablamos de la noción de potencia de un punto con respecto a una circunferencia. Lo que haremos ahora es tomar dos circunferencias y preguntarnos por los puntos cuya potencia a ellas coincide. Esto nos llevará a estudiar la noción de eje radical de las circunferencias.

A grandes rasgos, definiremos qué es el eje radical. Luego, mostraremos que es una recta muy específica. Después de hacer eso, estudiaremos qué sucede si tenemos tres circunferencias. Finalmente, hablaremos un poco de cómo dibujar el eje radical de dos circunferencias.

Eje radical de 2 circunferencias

La definición que nos interesa estudiar ahora es el conjunto de puntos del plano cuyas potencias a dos circunferencias coincide. La siguiente definición formaliza esto.

Definición. El eje radical de dos circunferencias no concéntricas $\mathcal{C}_1$ y $\mathcal{C}_2$ es el lugar geométrico de los puntos $P$ tales que $$\text{Pot}(P,\mathcal{C}_1)=\text{Pot}(P,\mathcal{C}_2).$$ Si un punto está en el eje radical de ellas, decimos que es equipotente a ambas.

Ejemplo. Supongamos que tenemos dos circunferencias $\mathcal{C}_1$ y $\mathcal{C}_2$ de centros $O_1$ y $O_2$, y de radios $5$ y $10$ respectivamente. Supongamos que $|O_1O_2|=25$. El punto $X$ entre $O_1$ y $O_2$ que está a distancia $11$ de $O_1$ y a distancia $14$ de $O_2$ es equipotente a ambas circunferencias. Esto se debe a que su potencia a $\mathcal{C}_1$ es $(-6)(-16)=96$ y que su potencia a $\mathcal{C}_2$ es $(4)(24)=96$ también.

$\triangle$

El eje radical es una recta

En esta sección demostraremos el siguiente teorema.

Teorema. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de de centros $O_1$ y $O_2$. El eje radical de ellas es la recta que perpendicular a la recta $O_1O_2$, y que pasa por el punto $M$ de $O_1O_2$ que cumple $\text{Pot}(M,\mathcal{C}_1)=\text{Pot}(M,\mathcal{C}_2).$

La demostración de este teorema la dividiremos en las siguientes partes:

  1. Probar que existe al menos un punto $P$ en el eje radical.
  2. Mostrar que la proyección $M$ de dicho punto a la recta $O_1O_2$ también está en el eje radical.
  3. Ver que todo punto en la perpendicular a $O_1O_2$ por $M$ está en el eje radical.
  4. Mostrar que no existen otros puntos en el eje radical más allá de los ya localizados.

Veamos cada uno de estos puntos como una proposición por separado.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas. Existe al menos un punto $P$ en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$.

Demostración. Vamos a dar una construcción explícita para encontrar un punto en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$:

Eje radical de 2 circunferencias, construcción de un punto equipotente

Para ello, tracemos una tercera circunferencia $\mathcal{C}_3$ que intersecte a cada una de $\mathcal{C}_1$ y $\mathcal{C}_2$ en dos puntos (una manera de hacer esto esto tomar $\mathcal{C}_3$ como el circuncírculo un punto dentro de $\mathcal{C}_1$, uno dentro de $\mathcal{C}_2$ y otro fuera de ambas).

Llamamos $A_1,B_1$ las intersecciones con $\mathcal{C}_1$ y $A_2,B_2$ las intersecciones con $\mathcal{C}_2$. Tomamos el punto $P$ como la intersección de $A_1B_1$ con $A_2B_2$ como en la siguiente figura.

Las siguientes cuentas muestran que $P$ es equipotente a ambas. Estamos usando el resultado de la entrada anterior que muestra que el cálculo de la potencia con respecto a $\mathcal{C}_3$ no depende de los puntos elegidos.

\begin{align*}
\text{Pot}(P,\mathcal{C}_1)&=PA_1 \cdot PB_1\\
&=\text{Pot}(P,\mathcal{C}_3)\\
&=PA_2 \cdot PB_2\\
&=\text{Pot}(P,\mathcal{C}_2).
\end{align*}

Por lo anterior, en efecto existe al menos un punto en el eje radical.

$\square$

Ahora veremos que la proyección de un punto equipotente en la recta de los centros también es un punto equipotente.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de centros $O_1$ y $O_2$. Si $P$ es un punto equipotente con respecto a ellas y $M$ es el pie de la perpendicular desde $P$ a la recta $O_1O_2$, entonces $M$ es equipotente con respecto a las dos circunferencias.

Demostración. Sean $r_1$ y $r_2$ los radios de $\mathcal{C}_1$ y $\mathcal{C}_2$, respectivamente. Como $P$ esta en el eje radical de ambas, entonces por cómo se calcula la potencia con la distancia a los centros y el radio, tenemos que

\begin{equation}\label{eq:pot-ambos}PO_1^2 – r_1^2 = PO_2^2 – r_2^2.\end{equation}

Queremos demostrar que $M$ pertenece al eje radical, osea $\text{Pot}(M,\mathcal{C}_1)=\text{Pot}(M,\mathcal{C}_2)$.

Tracemos los segmentos $O_1P$ y $O_2P$. Los triángulos $\triangle PMO_1$ y $\triangle PMO_2$ son rectángulos, ver la siguiente figura.

Por Pitágoras se sigue que $$PO_1^2=MO_1^2+PM^2$$ y $$PO_2^2=MO_2^2+PM^2.$$

Al sustituir en \eqref{eq:pot-ambos}, obtenemos: $$MO_1^2+PM^2-r_1^2=MO_2^2+PM^2-r_2^2.$$

Cancelando $PM^2$, se obtiene la expresión que muestra que $M$ también es equipotente a ambas circunferencias:

\begin{equation}\label{eq:Mradical}MO_1^2-r_1^2=MO_2^2-r_2^2.\end{equation}

$\square$

Ahora veremos que todos los puntos en la perpendicular por $M$ también son equipotentes.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de centros $O_1$ y $O_2$. Si $M$ es un punto en $O_1O_2$ equipotente a ambas circunferencias, entonces todos los puntos en la perpendicular a $O_1O_2$ por $M$ también lo son.

Demostración. A la perpendicular del enunciado la llamaremos $l$. Sea $X$ un punto en $l$. Debemos mostrar que $$\text{Pot}(X,\mathcal{C}_1)=\text{Pot}(X,\mathcal{C}_2).$$

Para ello, trazamos $O_1X$ y $O_2X$.

Eje radical de 2 circunferencias demostración de proposición.

Como los triángulos $\triangle XMO_1$ y $\triangle XMO_2$ son rectángulos, nuevamente por Pitágoras: $$XO_1^2=MO_1^2+XM^2$$ y $$XO_2^2=MO_2^2+XM^2.$$

Usando las igualdades anteriores y que $M$ está en el eje radical (específicamente, \eqref{eq:Mradical}), tenemos que:

\begin{align*}
\text{Pot}(X,\mathcal{C}_1)&=XO_1^2-r_1^2\\
&= MO_1^2+XM^2 – r_1^2\\
&=MO_2^2+XM^2 – r_2^2\\
&=XO_2^2-r_2^2\\
&=\text{Pot}(X,\mathcal{C}_2).
\end{align*}

Por lo tanto, todo punto $X$ en $l$ es un punto en el eje radical.

$\square$

Ya sólo nos falta ver que no hay más puntos equipotentes.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de de centros $O_1$ y $O_2$. Si $M$ es un punto en $O_1O_2$ equipotente a ambas circunferencias, entonces únicamente los puntos en la perpendicular a $O_1O_2$ por $M$ son equipotentes a las circunferencias.

Demostración. Primero veremos que el único punto en $O_1O_2$ que puede funcionar es $M$. Para buscar una contradicción supongamos que otro punto $N$ en la recta $O_1O_2$, con $N\neq M$ también cumple que $\text{Pot}(N,\mathcal{C}_1)=\text{Pot}(N,\mathcal{C}_2)$. Entonces, $$NO_1^2-r_1^2=NO_2^2-r_2^2.$$

Restando a esta ecuación la ecuación \eqref{eq:Mradical}, obtenemos que $$NO_1^2-MO_1^2 = NO_2^2-MO_2^2,$$ y por diferencia de cuadrados, $$(NO_1+MO_1)(NO_1-MO_1)=(NO_2+MO_2)(NO_2-MO_2).$$

Tenemos que $NO_1-MO_1=NO_1+O_1M=NM$ y lo análogo para $O_2$, de modo que $$(NO_1+MO_1)NM=(NO_2+MO_2)NM.$$

Como $N\neq M$, tenemos $NM\neq 0$ y lo podemos cancelar. $$NO_1+MO_1=NO_2+MO_2,$$

de donde sale la cuarta igualdad de la siguiente cadena:

\begin{align*}
O_2O_1&=O_2N+NO_1\\
&=-NO_2+NO_1\\
&=-MO_1+MO_2\\
&=O_1M+MO_2\\
&=O_1O_2.
\end{align*}

Obtenemos que $O_2O_1=O_1O_2$. ¡Esto es imposible, pues son segmentos dirigidos y $O_1\neq O_2$! Esta contradicción muesta que $M$ es el único punto en $O_1O_2$ equipotente a ambas circunferencias.

Para finalizar, supongamos que existe un punto $P’$ cualquiera del plano equipotente a $\mathcal{C}_1$ y $\mathcal{C}_2$. Por la proposición de la proyección, la proyección $M’$ de $P’$ en $O_1O_2$ también es equipotente. Por lo que acabamos de mostrar, $M=M’$. Y así, $P’$ está en la perpendicular a $O_1O_2$ por $M$, como queríamos.

$\square$

Los ejes radicales por parejas de 3 circunferencias son concurrentes

Si tenemos tres circunferencias, entonces definen tres ejes radicales. Estos tres ejes radicales siempre concurren.

Teorema. Sean $\mathcal{C}_1$, $\mathcal{C}_2$ y $\mathcal{C}_3$ circunferencias de centros no colineales. Sea $e_1$ el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$. Sea $e_2$ el eje radical de $\mathcal{C}_2$ y $\mathcal{C}_3$. Sea $e_3$ el eje radical de $\mathcal{C}_3$ y $\mathcal{C}_1$. Las rectas $e_1,e_2,e_3$ son concurrentes.

Demostración. Consideremos 3 circunferencias $\mathcal{C}_1,\mathcal{C}_2$ y $\mathcal{C}_3$, cuyos centros $O_1$, $O_2$ y $O_3$ no son colineales (en particular, son distintos). Tomemos los ejes radicales $e_1,e_2,e_3$ como en el enunciado.

Llamamos $P$ al punto de intersección de $e_1$ y $e_2$. Como $P$ está en $e_1$, entonces $\text{Pot}(P,\mathcal{C}_1)=\text{Pot}(P,\mathcal{C}_2)$ y como $P$ está en $e_2$, entonces $\text{Pot}(P,\mathcal{C}_2)=\text{Pot}(P,\mathcal{C}_3)$. De esta manera, $$\text{Pot}(P,\mathcal{C}_1)=\text{Pot}(P,\mathcal{C}_3).$$ Esto muestra que también $P$ está en $e_3$. Por lo tanto, los 3 ejes radicales concurren en $P$.

$\square$

Construcción del eje radical

¿Cómo podemos dibujar el eje radical de dos circunferencias no concéntricas $\mathcal{C}_1$ y $\mathcal{C}_2$, digamos, con regla y compás? Podemos seguir la idea que usamos cuando probamos que por lo menos existe un punto en el eje radical. Sean $O_1$ y $O_2$ los centros de estas circunferencias, respectivamente.

Dibujemos una circunferencia $\mathcal{C}$ que corte a las circunferencias $\mathcal{C}_1$ y $\mathcal{C}_2$, en $A,A’$ y $B,B’$. Esto puede hacerse trazando el circuncírculo de $O_1$, $O_2$ y un punto fuera de ambas cirfunferencias. Sean $A$ y $A’$ las intersecciones de $\mathcal{C}$ con $\mathcal{C}_1$. Sean $B$ y $B’$ las intersecciones de $\mathcal{C}$ con $\mathcal{C}_2$. Tomemos $P$ la intersección de $AA’$ y $BB’$. Por lo que mostramos anteriormente, $P$ está en el eje radical de las circunferencias. Y además, también mostramos que la recta perpendicular a $O_1O_2$ por $P$ es el eje radical. Así, al trazar esta perpendicular, obtenemos el eje radical requerido.

Más adelante…

Se seguirá abordando el tema de potencia de un punto y el eje radical con respecto a las circunferencias ortogonales.

Al final de los temas de esta primera unidad se dejará una serie de ejercicios.

Entradas relacionadas

Geometría Analítica I: Teoremas de clasificación de polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Nos hemos estado preparando para enunciar formalmente los resultados de clasificación que nos dirán «cómo son todas las cónicas algebraicamente», o bien que nos dirán «cómo se ven conjuntos de ceros de cualquier polinomio cuadrático en dos variables». En una entrada anterior hablamos de qué es un resultado de clasificación en matemáticas. Después, definimos con toda precisión cuáles son los objetos que clasificaremos: los polinomios cuadráticos en dos variables y las curvas cuadráticas. Finalmente, establecimos las nociones de equivalencia afín y equivalencia isométrica que usaremos para dar nuestra clasificación.

En esta entrada finalmente enunciaremos con toda precisión los teoremas de clasificación que nos interesan. La demostración de estos teoremas no es directa, así que nos tomará algunas entradas más preparar la teoría necesaria para poder hacerlo.

Teoremas de clasificación isométrica

Los primeros teoremas que demostraremos serán bajo la equivalencia dada por las isometrías. Daremos teoremas para clasificar tanto polinomios cuadráticos en dos variables, como curvas cuadráticas.

El resultado para PCDVs es un poco más abstracto. La clasificación es un poco aparatosa, pues habrá muchos posibles parámetros involucrados. Pero tiene la ventaja de que es el que podremos demostrar a partir de las técnicas de matrices que ya conocemos y de algunas más que desarrollaremos sobre la marcha.

El resultado para curvas cuadráticas es muy intuitivo, pues lo podemos pensar en términos puramente geométricos: nos dirá que cualquier curva cuadrática se puede llevar, sin alterar su métrica, a una curva cuadrática mucho más fácil de describir, que viene de una «lista corta» de posibilidades. Como las transformaciones permitidas son las isometrías, esto es lo que más se parece a nuestro entendimiento de «ser la misma figura».

Veamos qué dice cada resultado. El primer teorema clasifica PCDVs a través de isometrías.

Teorema. Cualquier polinomio cuadrático en dos variables es isométricamente equivalente a exactamente alguno de los siguientes polinomios:

  1. A algún polinomio de la forma $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1$ para $a\geq b$ reales distintos de cero
  2. A algún polinomio de la forma $\frac{x^2}{a^2}-\frac{y^2}{b^2}-1$ para $a\geq b$ reales distintos de cero
  3. A algún polinomio de la forma $y^2-cx$ para $c$ real distinto de cero
  4. A algún polinomio de la forma $c^2x^2-y^2$ para $c$ real distinto de cero
  5. A algún polinomio de la forma $c^2x^2-1$ para $c$ real distinto de cero
  6. Al polinomio $x^2$
  7. A algún polinomio de la forma $c^2x^2+y^2$ para $c$ real distinto de cero
  8. A algún polinomio de la forma $\frac{x^2}{a^2}+\frac{x^2}{b^2}+1$ para $a,b$ reales distintos de cero
  9. A algún polinomio de la forma $c^2x^2+1$ para $c$ real distinto de cero

El segundo teorema clasifica curvas cuadráticas bajo isometrías, y será un corolario del teorema anterior.

Teorema. Cualquier curva cuadrática del plano es isométricamente equivalente a exactamente una de las siguientes:

  1. A alguna elipse canónica con centro en $(0,0)$ y focos en el eje $x$
  2. A alguna hipérbola canónica con centro en $(0,0)$ y focos en el eje $x$
  3. A alguna parábola canónica de vértice $(c,0)$ y directriz $y=-c$
  4. A dos rectas que se intersectan en el origen
  5. A dos rectas paralelas de la forma $x=c$ y $x=-c$
  6. A la recta $x=0$
  7. Al origen $(0,0)$
  8. Al conjunto vacío

Teoremas de clasificación afín

Después de realizar la clasificación isométrica, agrandaremos un poco el conjunto de transformaciones que usaremos: permitiremos utilizar cualquier transformación afín. Al hacer esto, tenemos más transformaciones y por lo tanto deberíamos esperar que nuestra clasificación tenga menos posibilidades. En efecto este es el caso.

De hecho, la razón por la cual hacemos esto es que al permitir a todas las transformaciones afines nuestros polinomios cuadráticos en dos variables (o curvas cuadráticas) quedan clasificadas en muy muy pocos tipos: una cantidad finita. A continuación enunciamos los resultados concretos.

El primer teorema es para polinomios cuadráticos en dos variables.

Teorema. Cualquier polinomio cuadrático en dos variables es afínmente equivalente a exactamente uno de los siguientes polinomios:

  1. $x^2+y^2-1$
  2. $x^2-y^2-1$
  3. $y^2-x$
  4. $x^2-y^2$
  5. $x^2+1$
  6. $x^2$
  7. $x^2+y^2$
  8. $x^2+y^2+1$
  9. $x^2+1$

¡Este resultado es fantástico! Existen muchísimas expresiones de la forma $Ax^2+Bxy+Cy^2+Dx+Ey+F$ y el teorema anterior nos dice que, en realidad, podemos «resumirlas» únicamente en nueve posibilidades muy fáciles de enunciar.

Como corolario, obtendremos el segundo resultado para clasificación mediante transformaciones afines: el correspondiente a las curvas cuadráticas.

Teorema. Cualquier curva cuadrática del plano es afínmente equivalente a exactamente una de las siguientes posibilidades:

  1. La circunferencia unitaria
  2. La hipérbola unitaria
  3. La parábola unitaria
  4. Las rectas $y=x$ y $y=-x$
  5. Las rectas $x=1$ y $x=-1$
  6. La recta $x=0$
  7. El origen
  8. El conjunto vacío

Una vez más, es increíble que existiendo tantísimas curvas cuadráticas en el plano, sea posible resumirlas a tan solo ocho posibilidades.

Y, ¿por qué sirve esta clasificación?

En el transcurso de las siguientes entradas nos encontraremos con muchas situaciones concretas en las que clasificar una cónica será de utilidad. Mientras tanto discutimos esto de manera un poco informal. Imagina que comenzamos con el siguiente polinomio cuadrático en dos variables: $$P((x,y))=x^2-5xy-y^2+2x-y+5.$$

Tras hacer una figura en el plano usando alguna herramienta computacional, obtenemos que la curva cuadrática definida por $P$ se ve como en la siguiente figura.

Parece ser que esta es una hipérbola. Una de las ventajas del teorema de clasificación isométrica de curvas cuadráticas es que nos dirá que, en efecto, esto es una hipérbola. De hecho, tendremos una manera práctica de encontrar de manera explícita la transformación $T$ que manda el polinomio $P$ que define esta hipérbola $\mathcal{H}$ a un polinomio isométricamente equivalente $P’$ de una hipérbola canónica $\mathcal{H}’$.

¿Cuáles son los focos de $\mathcal{H}$? ¿Cuál es el centro de $\mathcal{H}$? ¿Cuál es la longitud de sus ejes? Esto no se aprecia claramente a partir del polinomio $P$. Sin embargo, la hipérbola $\mathcal{H}’$ tiene ecuación canónica, así que en $P’$ podemos leer fácilmente los focos, ejes y centro de $\mathcal{H’}$. Y luego usando precisamente la transformación $T$ podemos transferir esta información que sabemos de $\mathcal{H}’$ a $\mathcal{H}$. Por ejemplo, usando que $T$ es isometría obtenemos que $\mathcal{H}$ y $\mathcal{H}’$ tienen la misma longitud de ejes.

Más adelante…

En las siguientes entradas nos enfocaremos en demostrar los teoremas de clasificación aquí enunciados. Antes de hacer esto, debemos desarrollar un poco más de teoría. Por un lado, necesitamos comprender cómo las traslaciones nos pueden ayudar a «eliminar los términos lineales» de algunos polinomios cuadráticos. Luego, necesitamos comprender cómo las rotaciones nos pueden ayudar a «eliminar el término cruzado $xy$».

Las traslaciones las podremos entender fácilmente. Sin embargo, las rotaciones que «eliminan el término cruzado» requerirán que entendamos un nuevo procedimiento para matrices simétricas: el de diagonalizarlas. Esto nos llevará a discutir los eigenvalores, eigenvectores y el polinomio característico de la matriz.

Tarea moral

  1. Demuestra que cualesquiera dos segmentos del plano son afínmente equivalentes.
  2. Demuestra que cualesquiera dos rectángulos del plano son afínmente equivalentes.
  3. Resuelve los siguientes incisos:
    1. Prueba que dos cuadrados del plano son isométricamente equivalentes si y sólo si tienen la misma longitud de lado.
    2. Demuestra que cualquier cuadrado es isométricamente equivalente a algún cuadrado de vértices $(0,0)$, $(c,0)$, $(0,c)$ y $(c,c)$ para $c>0$.
    3. Demuestra que el cuadrado de vértices $(0,0)$, $(c,0)$, $(0,c)$ y $(c,c)$ tiene diagonal de longitud $\sqrt{2}c$.
    4. Usa todo lo anterior para demostrar que en cualquier cuadrado de lado $c$ se tiene que la diagonal mide $\sqrt{2}c$.
  4. En el teorema de clasificación afín de PCDV tenemos que cualquier PCDV es afínmente equivalente a exactamente una de las posibilidades enunciadas. En particular, esto implica que de esos nueve polinomios, no hay dos de ellos que sean afínmente equivalentes entre sí. Demuestra esto.
  5. Enuncia y demuestra un teorema de clasificación isométrico y un teorema de clasificación afín para triángulos en el plano.

Entradas relacionadas