Archivo de la etiqueta: geometría

Geometría Analítica I: Introducción a resultados de clasificación

Por Leonardo Ignacio Martínez Sandoval

Introducción

En tu formación matemática muchas veces te encontrarás con resultados de clasificación. Pero, ¿qué es clasificar en este contexto? A grandes rasgos, consiste en poder decir de manera sencilla cómo son todos los objetos matemáticos que se estén estudiando en un contexto dado.

En esta entrada hablaremos un poco más del problema de clasificar ciertos objetos matemáticos. Iniciaremos con un ejemplo «de juguete» muy básico. Luego, hablaremos de cómo en las clasificaciones geométricas podemos usar transformaciones. Finalmente, daremos un ejemplo sencillo de cómo usar estas ideas en la clasificación de los segmentos del plano.

Ejemplo básico de clasificación

Cuando queremos hacer una clasificación, en el sentido matemático, lo que queremos hacer es tomar algunos objetos matemáticos y decir, bajo algún criterio cómo son todos los «tipos posibles» que existen para esos objetos. Esto puede ser respondido de muchas formas, así que es fundamental acordar dos cosas con precisión:

  1. ¿Cuáles son los objetos que queremos clasificar?
  2. ¿Bajo qué criterio diremos que dos de esos objetos son «del mismo tipo»?

Al final del proceso, nos gustaría tener una lista relativamente fácil de escribir de todas las posibilidades. Esto puede ayudar posteriormente a resolver otros problemas matemáticos o bien a desarrollar más teoría.

Comencemos con un ejemplo «de juguete». Será muy sencillo, pero nos permitirá hablar de algunas de las sutilezas que nos encontraremos en contextos más abstractos. Considera la siguiente figura en la que hay varias figuras geométricas.

Imagina que nos piden «clasificar todas las figuras que están aquí». Lo que nos gustaría obtener al final es una lista con la clasificación, es decir con «todas las posibilidades» de figuras que hay. Si sólo nos dan esta instrucción, entonces estaríamos en problemas: hay muchas formas de clasificar estos objetos.

Una posible clasificación es por forma. Si consideramos equivalentes a dos de estas figuras cuando tienen la misma forma, entonces nuestra lista de posibilidades se reduce a tres: triángulos, cuadrados y círculos. Nuestro teorema de clasificación se vería así:

Teorema. Cualquier figura de la imagen tiene alguna de las siguientes formas:

  1. Triángulo
  2. Cuadrado
  3. Círculo

Este teorema de clasificación está padre. Pero puede ser inútil en algunos contextos. Por ejemplo, imagina que las figuras son muestras que está regalando una tienda de pinturas para que puedas llevarlas a tu casa y usarlas para ver si te gustaría pintar una pared con el color dado. Para estos fines es (prácticamente) lo mismo que te den un cuadrado azul o un triángulo azul. Lo único que importa es el color.

Pensar de esta manera nos da otra manera de clasificar a las figuras: por color. Si usamos esta noción de equivalencia, entonces nuestro resultado de clasificación sería muy distinto.

Teorema. Cualquier figura de la imagen es de alguno de los siguientes colores:

  1. Rojo
  2. Naranja
  3. Amarillo
  4. Verde
  5. Azul

Pero podríamos querer ser mucho más estrictos y querer clasificar considerando ambos criterios: tanto la forma como el color. Quizás uno podría pensar que como hay tres figuras y cinco colores, entonces hay $3\cdot 5=15$ posibilidades en esta clasificación. Obtendríamos el siguiente resultado.

Teorema. Cualquier figura de la imagen es de alguno de los siguientes 15 tipos: triángulo rojo, triángulo naranja, triángulo amarillo, triángulo verde, triángulo azul, cuadrado rojo, cuadrado naranja, cuadrado amarillo, cuadrado verde, cuadrado azul, círculo rojo, círculo naranja, círculo amarillo, círculo verde, círculo azul.

Estrictamente hablando, este resultado es correcto: cualquier figura es de alguno de esos tipos. Pero el teorema tiene algo incómodo: nos está dando posibilidades que no suceden. Por ejemplo, no hay cuadrados amarillos, ni círculos azules.

Una clasificación con forma y color que nos dejaría más satisfecho sería la siguiente:

Teorema. Cualquier figura de la imagen es de alguno de los siguientes 11 tipos:

  1. Triángulo rojo
  2. Triángulo naranja
  3. Triángulo amarillo
  4. Triángulo azul
  5. Cuadrado rojo
  6. Cuadrado naranja
  7. Cuadrado azul
  8. Círculo rojo
  9. Círculo naranja
  10. Círculo amarillo
  11. Círculo verde

Más aún, cualquiera de estas posibilidades sucede.

Este resultado se siente mucho más satisfactorio. Por un lado, no está agregando a la lista «opciones de más». Por otro lado, a partir de él podemos demostrar proposiciones sin tener que volver a ver la figura. Algunos ejemplos son los siguientes:

  • Ningún círculo de nuestra figuras es azul.
  • Todas las figuras verdes son círculos.
  • Ninguna figura amarilla es un cuadrado.

Para mostrar cualquiera de estas, basta ver nuestra clasificación.

¿Podemos dar una clasificación mucho más estricta? Sí, por supuesto. Por ejemplo, podemos considerar dos figuras iguales sólo cuando tienen exactamente la misma figura, color y posición. En este caso nuestro teorema de clasificación tendría un tipo por cada una de las 19 figuras. Esta clasificación también se siente un poco insatisfactoria pues en realidad no estamos «agrupando» figuras, sino simplemente «poniendo a cada una en su propio grupo». Pero bueno, es una clasificación válida también.

Uso de relaciones de equivalencia y particiones

Una manera de formalizar una clasificación es a partir de relaciones de equivalencia y particiones. Recordemos las siguientes dos definiciones:

Definición. Una relación de equivalencia en un conjunto $X$ es una colección de parejas $(x,y)$ en $X\times X$ tales que:

  • (Reflexividad) Para cualquier $x$ en $X$ la pareja $(x,x)$ está en la colección.
  • (Simetría) Si para algunos $x,y$ en $X$ se cumple que la pareja $(x,y)$ está en la colección, entonces la pareja $(y,x)$ también está en la colección.
  • (Transitividad) Si para algunos $x,y,z$ en $X$ se cumple que tanto las parejas $(x,y)$ como $(y,z)$ están en la colección, entonces la pareja $(x,z)$ también está.

Las relaciones de equivalencia nos ayudan a decir cuándo dos objetos de $X$ «son iguales» o «son el mismo» bajo algún criterio usualmente más relajado que la igualdad.

Definición. Una partición de un conjunto $X$ es una colección de conjuntos $(A_i)_{i \in I}$ para algún conjunto de índices $I$ tal que ninguno de los $A_i$ es vacío, cualesquiera dos de ellos tienen intersección vacía y $X=\cup_{i\in I}A_i$.

Un resultado clásico de teoría de conjuntos dice que «una relación de equivalencia da una partición, y viceversa». Formalmente, dada una relación de equivalencia $R$ en un conjunto $X$, podemos crear la clase de equivalencia de un elemento $x$ en $X$ como sigue: $$\overline(x):=\{y \in X: (x,y)\in R\}.$$ El conjunto $\{\overline{x}:x\in X\}$ da una colección de conjuntos que es una partición de $X$. Y viceversa, si tenemos una partición $(A_i)_{i \in I}$, entonces podemos considerar las parejas $(x,y)$ de elementos tales que $x$ y $y$ están en un mismo $A_i$, de donde obtenemos una relación de equivalencia.

Regresando a la idea de clasificar, podemos realizar una clasificación a través de una relación de equivalencia o de una partición. Las clases de equivalencia son los «tipos» de objetos que tenemos. Podemos dar un representante «sencillo» dentro de cada clase de equivalencia para hacer nuestra lista de los posibles «tipos» que existen.

Ejemplo. En los números enteros podemos decir que dos enteros $x$ y $y$ están relacionados cuando $x-y$ es un número par. Es fácil mostrar que esto da una relación de equivalencia y que las clases de equivalencia en este caso son los conjuntos:

\begin{align*}
P&=\{\ldots,-4,-2,0,2,4,\ldots\},
Q&=\{\ldots,-3,-1,1,3,\ldots\}.
\end{align*}

Tenemos que $P$ y $Q$ forman una partición del conjunto $\mathbb{Z}$ de números enteros. Así, esta relación clasifica a los enteros en dos tipos: los pares y los impares. Otra forma de dar esta clasificación es diciendo que «Cualquier entero es equivalente al $0$ o al $1$», o más explícitamente, «Para cualquier entero $z$ se tiene que o bien $z$ es par, o bien $z-1$ es par».

$\triangle$

Clasificación de segmentos del plano con transformaciones

Hacia donde queremos ir es hacia una clasificación relacionada con la geometría. Por esta razón, las relaciones de equivalencia, particiones o «tipos» de objetos que obtendremos estarán relacionados con nociones geométricas. Una manera de hacer esto es mediante las transformaciones que estuvimos estudiando en la unidad anterior: transformaciones afines, traslaciones, isometrías, transformaciones ortogonales, etc.

Por ejemplo, pensemos en que estamos hablando de los segmentos cerrados y acotados en el plano cartesiano. Es decir, de acuerdo a lo que estudiamos en la primera unidad, para cualesquiera dos puntos distintos $P$ y $Q$ en el plano estamos considerando el conjunto $$\overline{PQ}=\{pP+qQ:0\leq p \leq 1, 0 \leq q \leq 1, p+q=1\}.$$ En la siguiente figura puedes ver algunos de los (muchos) segmentos que hay en el plano:

Familia de segmentos

¿Cómo podemos clasificar a todos los segmentos que hay en el plano? Antes de cualquier cosa, tenemos que ponernos de acuerdo en la clasificación. Una manera de hacer esto es mediante transformaciones del plano. Veamos un par de ejemplos.

Ejemplo. Una primer opción es que digamos que dos segmentos son del mismo tipo cuando podamos trasladar uno de ellos al otro. Si hacemos esto, casi todos los segmentos de la siguiente figura serían del mismo tipo.

Familia de segmentos

El único que no es del mismo tipo que los demás sería el segmento punteado que, aunque lo dibujamos intencionalmente de la misma longitud que los demás, no resulta ser equivalente pues es imposible trasladarlo a alguno de los otros segmentos. Con esta noción de segmentos equivalentes, ¿qué posibilidades tendríamos? Es más o menos fácil convencerse de que para que dos segmentos sean del mismo tipo con esta clasificación necesitamos que a) sean paralelos y b) tengan la misma longitud. Por ello mismo, no es tampoco difícil convencerse del siguiente teorema de clasificación.

Teorema. Cualquier segmento del plano es equivalente bajo traslaciones a un segmento tal que uno de sus extremos es el origen.

$\square$

Veamos otra manera de clasificar los segmentos del plano.

Ejemplo. Diremos que dos segmentos son del mismo tipo si podemos llevar uno al otro a través de una isometría. Si hacemos esto entonces ahora sí todos los segmentos de la siguiente figura son equivalentes (pensando en que el segmento punteado tiene la misma longitud que los otros).

De hecho, por lo que sabemos de las isometrías podemos afirmar que bajo este criterio dos segmentos son del mismo tipo si y sólo si tienen la misma longitud. Esto nos llevaría a un teorema de clasificación un poco distinto.

Teorema. Cualquier segmento se puede mediante isometrías a un segmento que sale del origen y termina en un punto del la forma $(x,0)$ con $x>0$. Más aún, todos estos segmentos son de distinto tipo.

$\square$

En los dos ejemplos anteriores hemos sido un poco informales, pues dejamos varias cosas sin demostrar. Seguramente podrás detectarlas e intentar completar los argumentos que faltan. Algunas de estas cosas faltantes están en los ejercicios.

Más adelante…

En esta entrada hablamos de la noción de «clasificar» de manera muy general, con el fin de entenderla y ver algunas de las sutilezas que nos encontraremos más adelante. A partir de ahora nos enfocaremos en probar resultados de clasificación muy específicos, relacionados con las cónicas.

Sin embargo, queremos ser muy precisos con respecto a la clasificación que daremos. Por esta razón, en las siguientes dos entradas hablaremos de los objetos específicos que queremos clasificar y de las nociones de equivalencia que permitiremos.

Tarea moral

  1. Verifica que en nuestro ejemplo de juguete la relación «tener el mismo color» es una relación de equivalencia.
  2. Para cada una de las clasificaciones que dimos en nuestro ejemplo de juguete encuentra cuántas de las figuras originales hay en cada una de las clases.
  3. Demuestra que la relación en $\mathbb{Z}$ en la cual tenemos a $(x,y)$ si y sólo si $x-y$ es un número par es una relación de equivalencia. Muestra que en este caso la partición consiste en el conjunto de los números pares, y el conjunto de los números impares.
  4. Sea $S$ el conjunto de segmentos en el plano. Diremos un elemento $s_1$ de $S$ es traslacionalmente equivalente a otro elemento $s_2$ de $S$ si existe una traslación $T$ de $\mathbb{R}^2$ tal que $T(s_1)=s_2$. Demuestra que «ser traslacionalmente equivalente a» es una relación de equivalencia en $S$.
  5. Da teoremas de clasificación de las rectas en $\mathbb{R}$ usando transformaciones para cada una de las siguientes posibilidades:
    1. Dos rectas son del mismo tipo si se puede llevar una a otra mediante una traslación.
    2. Dos rectas son del mismo tipo si se puede llevar una a la otra mediante una rotación.
    3. Dos rectas son del mismo tipo si se puede llevar una a la otra mediante una isometría.

Entradas relacionadas

Geometría Moderna I: Teorema de Ptolomeo

Por Rubén Alexander Ocampo Arellano

Introducción

El teorema de Ptolomeo nos da una caracterización del cuando un cuadrilátero convexo es cíclico en términos de los productos entre sus lados y sus diagonales. Necesitaremos antes una caracterización diferente de cuadrilátero cíclico.

Cuadriláteros cíclicos

Definición. Si los vértices de un polígono están en una misma circunferencia decimos que está inscrito en ella o que es cíclico.

Teorema 1. Un cuadrilátero convexo es cíclico si y solo si los ángulos opuestos son suplementarios.

Demostración. Sea $\square ABCD$ un cuadrilátero cíclico inscrito en $(O, r)$, la circunferencia con centro en $O$.

Los ángulos opuestos $\angle ADC$ y $\angle CBA$ son subtendidos por los arcos $AC$ y $CA$ respectivamente y por el teorema de la medida del ángulo inscrito tenemos que
$\angle ADC + \angle CBA = \dfrac{\angle AOC}{2} + \dfrac{\angle COA}{2} = \dfrac{2\pi}{2} = \pi$.

Figura 1

De manera análoga se ve que $\angle BAD$ y $\angle DCB$ son suplementarios.

Por lo tanto, los ángulos opuestos de un cuadrilátero cíclico son suplementarios.

$\blacksquare$

Ahora supongamos que los ángulos opuestos $\angle ADC$ y $\angle CBA$ de $\square ABCD$ son suplementarios.

Consideremos el circuncírculo de $\triangle ABC$, entonces todos los puntos en el arco $\overset{\LARGE{\frown}}{CA}$ que no contiene a $B$ subtienden un ángulo $\angle ADC$ suplementario a $\angle CBA$, pero este lugar geométrico es único.

Por lo tanto $D \in \overset{\LARGE{\frown}}{CA}$ y en consecuencia $\square ABCD$ es cíclico.

$\blacksquare$

Teorema de Ptolomeo

Teorema 2, desigualdad de Ptolomeo. En todo cuadrilátero convexo la suma de los productos entre lados opuestos es mayor o igual al producto de las diagonales, y la igualdad se da si y solo si es el cuadrilátero es cíclico.

Demostración. Sea $\square ABCD$ un cuadrilátero convexo, construyamos sobre el segmento $AB$ (figura 2), un triángulo $\triangle ABE$ semejante a $\triangle ADC$ tal que $\angle ABE = \angle ADC$ y $\angle BAE = \angle CAD$ entonces

$\begin{equation} \dfrac{EA}{CA} = \dfrac{BA}{DA} \Leftrightarrow \dfrac{EA}{BA} = \dfrac{CA}{DA}. \end{equation}$

Figura 2

Dado que $\angle CAE = \angle BAD$ y por $(1)$, por criterio lado, ángulo, lado, los triángulos $\triangle EAC$ y $\triangle BAD$ son semejantes, entonces de la primera y segunda relaciones de semejanza tenemos que
$\dfrac{EB}{CD} = \dfrac{AB}{AD}$ y $\dfrac{EC}{BD} = \dfrac{AC}{AD}$
$\Leftrightarrow$ $EB = \dfrac{AB \times CD}{AD}$ y $EC = \dfrac{AC \times BD}{AD}$.

Ahora notemos que tenemos dos casos:

Caso 1. (izquierda figura 2)
$B \in EC$ $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE = \pi$ $\Leftrightarrow$ $\square ABCD$ es cíclico,
y en tal caso $EC = EB + BC$ $\Leftrightarrow$ $\dfrac{AC \times BD}{AD} = \dfrac{AB \times CD}{AD} + BC$
$\Leftrightarrow$ $AC \times BD = AB \times CD + AD \times BC$.

Caso 2. (derecha figura 2)
$E$, $B$ y $C$ son tres puntos no colineales $\Leftrightarrow$ $\angle CBA + \angle ADC = \angle CBA + \angle ABE \ne \pi$ $\Leftrightarrow$ $\square ABCD$ no es cíclico, entonces aplicando la desigualdad del triángulo a $\triangle EBC$ tenemos que
$EC < EB + BC$ $\Leftrightarrow$ $AC \times BD < AB \times CD + AD \times BC$.

De lo anterior se sigue que $AB \times CD + AD \times BC \geq AC \times BD$, con la igualdad si y solo si $\square ABCD$ es cíclico.

$\blacksquare$

Construcción del cuadrilátero cíclico

Problema 1. Construir un cuadrilátero convexo y cíclico dados sus cuatro lados $a$, $b$, $c$ y $d$.

Solución. Notemos primero que es necesario que la suma de cualesquiera tres de los lados dados sea mayor que el lado restante.

Si un lado es mayor que la suma de los otros tres no es posible construir ningún cuadrilátero y si es igual entonces solo es posible construir un cuadrilátero degenerado donde todos los vértices están alineados.

Supongamos que $AB = a$, $BC = b$, $CD = c$ y $DA = d$, la prueba del teorema de Ptolomeo nos sugiere una manera de resolver este problema.

Trazamos el segmento $BC$ y lo extendemos del lado de $B$ hasta un punto $E$ tal que $EB = \dfrac{ac}{d}$, el cual es posible construir pues podemos construir el producto de dos magnitudes y el inverso de una magnitud dadas.

Aquí usaremos que $B \in EC$ $\Leftrightarrow$ $\square ABCD$ es cíclico y que los triángulos $\triangle ABE$ y $\triangle ADC$ son semejantes, como en la prueba anterior.

La razón de semejanza está dada por $\dfrac{AE}{AC} = \dfrac{BE}{CD} = \dfrac{ac}{dc} = \dfrac{a}{d}$.

Esto último nos dice que la razón entre las distancias de $A$ a los puntos $E$ y $C$ es una razón fija por lo tanto $A$ esta en la circunferencia de Apolonio determinada por $E$, $C$ y la razón $\dfrac{a}{d}$.

Por otro lado, el vértice $A$ se encuentra en la circunferencia con centro en $B$ y radio $a$, por lo tanto, $A$ esta determinado por la intersección de $(B, a)$ y la circunferencia de Apolonio mencionada.

Ahora que conocemos la diagonal $AC$ podemos completar el triángulo $\triangle ACD$ trazando circunferencias $(A, d)$ y $(C, c)$, una de las intersecciones será el cuarto vértice del cuadrilátero buscado.

Figura 3

Por construcción $\triangle ABE$ y $\triangle ADC$ son semejantes por lo que $\angle CBA$ y $\angle ADC$ son suplementarios.

Por lo tanto $\square ABCD$ es cíclico.

$\blacksquare$

Distancia de los vértices de un polígono cíclico a un punto del circuncírculo

Problema 2. Sean $\triangle ABC$ isósceles con $AB = AC$ y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, muestra que $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

Figura 4

Solución. Aplicando el teorema de Ptolomeo a $\square ABPC$ tenemos que
$PA \times BC = AB \times PC + AC \times PB $
$= AC \times PC + AC \times PB = AC(PC + PB)$.

Por lo tanto, $\dfrac{PA}{PB + PC} = \dfrac{AC}{BC}$.

$\blacksquare$

Problema 3. Sean $ABCDE$ un pentágono regular inscrito en una circunferencia y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$, muestra que $PA + PD = PB + PC + PE$.

Solución. Como el pentágono es regular, entonces sus diagonales tienen la misma longitud.

Figura 5

Aplicando el teorema de Ptolomeo a $\square ABPC$  y $\square BPCD$ obtenemos
$BC \times PA = AB \times PC + AC \times PB = BC \times PC + AC \times PB$
$BC \times PD = PB \times CD + PC \times BD = PB \times BC + PC \times AC$.

Sumando estas dos últimas igualdades tenemos
$\begin{equation} BC(PA + PD) = BC(PB + PC) + AC(PB + PC). \end{equation}$

Por otra parte dado que $\triangle BEC$ es isósceles podemos aplicar el resultado del problema anterior y obtenemos $\dfrac{PE}{PB + PC} = \dfrac{EC}{BC}$

$\Leftrightarrow$ $\begin{equation} \dfrac{PE \times BC}{PB + PC} = EC = AC. \end{equation}$

Sustituyendo $(3)$ en $(2)$ resulta
$BC(PA + PD) = BC(PB + PC) + \dfrac{PE \times BC}{PB + PC} (PB + PC)$.

Por lo tanto, $PA + PD = PB  + PC + PE$.

$\blacksquare$

Hexágono cíclico

Problema 4. Sea $ABCDEF$ un hexágono convexo inscrito en una circunferencia. Consideremos las diagonales que dividen al hexágono en dos cuadriláteros cíclicos, $AD = d$, $CF = e$ y $BE = f$ y los lados del hexágono que no comparten vértices con dichas diagonales $BC = a$, $EF = a’$, $DE = b$, $AB = b’$, $AF = c$, $CD = c’$ respectivamente, entonces $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

Figura 6

Demostración. Aplicando el teorema de Ptolomeo a $\square ABCD$ y $\square BCDE$ obtenemos
$ad + b’c’ = AC \times BD$ y $ab + c’f = BD \times CE$.

Multiplicamos por $a’$ y $c$ respectivamente y después sumamos el resultado y obtenemos:
$aa’d + a’b’c’ + abc + cc’f $
$= a’(AC \times BD) + c(BD \times CE) = BD(a’AC + cCE)$.

Aplicando Ptolomeo a $\square ACEF$ obtenemos $a’AC + cCE = eAE$.

Por lo tanto $aa’d + a’b’c’ + abc + cc’f = BD(eAE) = e (BD \times AE)$.

Ahora consideramos $\square ABDE$ y por el teorema de Ptolomeo obtenemos
$BD \times AE = df -bb’$.

En consecuencia tenemos $aa’d + a’b’c’ + abc + cc’f = e(df – bb’)$.

Por lo tanto, $def = aa’d + bb’e + cc’f + abc +a’b’c’$.

$\blacksquare$

Más adelante…

En la próxima entrada estudiaremos trigonometría y mostraremos algunas identidades trigonométricas aplicando el teorema de Ptolomeo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que un cuadrilátero convexo es cíclico si y solo si:
    $i)$ un ángulo interno formado con una diagonal y un lado es igual al ángulo interno formado con la otra diagonal y el lado opuesto,
    $ii)$ las mediatrices de los lados del cuadrilátero son concurrentes.
  2. Sean $l_{1}$, $l_{2}$ y $l_{3}$, $l_{4}$ dos pares de rectas tales que la bisectriz del primer par es transversal al segundo par y forma ángulos internos iguales entonces decimos que $l_{3}$ y $l_{4}$ son antiparalelas respecto a $l_{1}$ y $l_{2}$. Muestra que un cuadrilátero convexo es cíclico si y solo si un par de lados opuestos es antiparalelo respecto al otro par de lados opuestos.
Figura 7
  1. Como podrás haber notado nuestra construcción del cuadrilátero cíclico no es única pues partimos de una suposición arbitraria, que $AB = a$, $BC = b$, $CD = c$ y $DA = d$ para $a$, $b$, $c$ y $d$ dados. Muestra que es posible construir tres cuadriláteros cíclicos diferentes con los mismos lados y que de estos se obtienen tres diagonales diferentes.
  2. Expresa la razón de las diagonales de un cuadrilátero cíclico en términos de sus lados.
  3. Considera $\triangle ABC$ equilátero y $P$ un punto en el arco $\overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$, prueba que $PA = PB + PC$.
  4. Sean $\square ABCD$ un cuadrado y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\square ABCD$, muestra que $\dfrac{PA +PC}{PD + PB} = \dfrac{PD}{PA}$.
  5. Si $ABCDEF$ es un hexágono regular y $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $ABCDEF$, muestra que $PE + PF = PA + PB + PC + PD$.
  6. Sean $\triangle ABC$ equilátero, $P \in \overset{\LARGE{\frown}}{BC}$ del circuncírculo de $\triangle ABC$ y $D$ la intersección de $BC$ con $AP$, demuestra que $\dfrac{1}{PD} = \dfrac{1}{PB} + \dfrac{1}{PC}$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 127-131.
  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 15-19, 31-34.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 33-35.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 62-66.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

Bienvenido al curso de Geometría Analítica I. A través de esta serie de entradas cubriremos el temario oficial del programa de la materia tal y como se requiere en la Facultad de Ciencias de la UNAM. Esto incluye desarrollar no sólo habilidades para ejecutar procedimientos («hacer cuentitas»), sino también aquellas que nos permitan deducir los resultados que obtendremos a través de razonamientos lógicos («demostrar»).

Pre-requisitos del curso

En la mayoría de las entradas seguiremos un flujo matemático, en el cual escribiremos definiciones, proposiciones, ejemplos, teoremas y otro tipo de enunciados matemáticos. Siempre que digamos que algo sucede, es importante argumentar o justificar por qué es esto, es decir, que demos una demostración. Las demostraciones nos ayudarán a justificar que ciertos procedimientos (para encontrar distancias, ángulos, etc.) son válidos.

Para entender un poco más al respecto, te recomendamos leer las siguientes dos entradas, o incluso llevar a la par un curso de Álgebra Superior I:

Además de estos pre-requisitos de pensamiento lógico, también es importante que recuerdes algunos de los conceptos fundamentales de geometría (punto, línea, segmento, triángulo, distancia, etc.). Si bien todo lo construiremos «desde cero», el recordar estos conceptos te ayudará mucho en la intuición de por qué ciertas cosas las definimos como lo haremos, y por qué ciertos enunciados que planteamos «deben ser ciertos».

Finalmente, también supondremos que sabes manejar a buen nivel las operaciones y propiedades en $\mathbb{R}$, los números reales. Por ejemplo, que la suma es conmutativa ($a+b=b+a$), que se distribuye con el producto ($a(b+c)=ab+ac$), etc. Si bien en otros cursos se definen a los reales con toda formalidad, para este curso sólo será importante que sepas hacer estas operaciones.

La idea fundamental

La geometría se trata de figuras, de ver, de medir. El álgebra se trata de sumar, de operar, de comparar. La idea clave que subyace a la geometría analítica, como la veremos en este curso, es la siguiente:

La geometría y el álgebra son complementarias e inseparables, ninguna con más importancia sobre la otra. Podemos entender al álgebra a partir de la geometría, y viceversa.

Un ejemplo muy sencillo que se ve desde la educación básica es que la suma de reales se corresponde con «pegar segmentos». Si en la recta real tenemos un segmento de longitud $a$ y le pegamos un segmento de longitud $b$, entonces el segmento que se obtiene tiene longitud $a+b$. Si bien es obvio, cuando estemos estableciendo los fundamentos tendremos que preguntarnos, ¿por qué pasa? ¿qué es pegar segmentos?

Nuestro objetivo será entender a profundidad muchas de estas equivalencias.

Interactivos

En este curso procuraremos incluir interactivos para que explores las ideas que vayamos introduciendo. Si bien un interactivo no reemplaza a una demostración, lo cierto es que sí ayuda muchísimo a ver más casos en los cuales una proposición o teorema se cumple. Nuestros interactivos están hechos en GeoGebra y necesitarás tener activado JavaScript en tu navegador.

En el siguiente interactivo puedes mover los puntos $A$, $B$ y $C$. Observa como la suma de dos segmentos siempre es igual al tercero. ¿Qué pasa si $B$ «se pasa de $C$»? ¿Cuál segmento es la suma de los otros dos?

Te recomendamos fuertemente que dediques por lo menos un rato a jugar con los interactivos: intenta ver qué se puede mover, qué no, qué cosas piensas que suceden siempre y para cuales crees que haya ejemplos que fallen.

Más adelante…

En esta entrada platicamos de cómo son las notas del curso en general. Platicamos de pre-requisitos y de la idea fundamental que subyace al curso. A partir de la siguiente entrada comenzaremos con el tratamiento teórico de la materia. Hablaremos de dos visiones de geometría: la sintética y la analítica. Veremos un primer resultado que nos dice que, en realidad, ambas están muy relacionadas entre sí.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe en una hoja de papel o en un documento digital qué significan para ti los siguientes términos: punto, línea, círculo, plano, semiplano, elipse, intersección, alineado, longitud, ángulo, dirección, vector. ¿En cuáles de estas palabras tuviste que usar las otras? ¿En cuáles no? Más adelante formalizaremos cada una de estas.
  2. Explora el inicio del siguiente libro digital: Euclides de Byrne.
  3. Si aprendes a manejar GeoGebra por tu cuenta, podrás hacer interactivos tú mismo. Si te interesa esto, revisa el siguiente curso de GeoGebra.
  4. ¿Cómo le harías para a cada punto del plano asociarle una pareja de números reales? ¿Cómo le harías para a cada pareja de números reales asociarle un punto en el plano?
  5. Si la suma de números corresponde a pegar segmentos, ¿a qué corresponde la multiplicación de números?

Entradas relacionadas

Seminario de Resolución de Problemas: Vectores en geometría

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, comenzamos esta serie de entradas de geometría platicando de algunas técnicas euclideanas o sintéticas que se pueden usar para resolver problemas en el plano. Después, tomamos herramientas de la geometría analítica, las cuales nos permiten poner problemas en términos de coordenadas y ecuaciones. Lo que haremos ahora es ver varios ejemplos del uso de vectores en geometría.

A diferencia de la geometría analítica, cuando hablamos de soluciones por vectores estamos hablando de aquellas que aprovechan la estructura de espacio vectorial en $\mathbb{R}^2$. En otras palabras, usamos argumentos en los cuales pensamos a los puntos del plano como vectores, los cuales tienen una dirección y una magnitud. Los vectores tienen operaciones de suma y de producto por un escalar. Además, tienen producto punto, norma y transformaciones dadas por matrices. Apenas tocaremos la superficie del tipo de teoría que se puede usar. Un buen curso de álgebra lineal te puede dar más herramientas para resolver problemas geométricos.

Interpretar puntos como vectores

Pongamos un origen $O$ en el plano. A cada punto $P$ le corresponden ciertas coordenadas dadas por parejas de reales $(x,y)$, que identificaremos con $P$. Al origen le corresponden las coordenadas $(0,0)$. Si tenemos otro punto $Q=(w,z)$, entonces su suma es el vector $P+Q=(x+w,y+z)$. Si tomamos un real $r$, el vector $rP$ es el vector de coordenadas $(rx,ry)$.

Suma de vectores
Suma de vectores

La suma $P+Q$ se puede encontrar mediante la ley del paralelogramo: los puntos $O,P,P+Q,Q$ hacen un paralelogramo en ese orden cíclico. La resta $Q-P$ está definida por $Q+(-1)P$, y la llamamos el vector $PQ$. Geométricamente coincide con el vector que va «de $P$ a $Q$». Observa que el orden es importante y que $OP=P$.

Resta de vectores
Resta de vectores

Proposición (de la razón). Si tenemos dos puntos $P$ y $Q$ distintos y $m,n$ son reales, entonces podemos encontrar al único punto $R$ en la recta por $P$ y $Q$ tal que $$\frac{PR}{RQ}=\frac{m}{n}$$ así: $$R=\frac{n}{m+n}P + \frac{m}{m+n} Q.$$

Punto en una recta con cierta razón
Punto en una recta con cierta razón

Veamos dos problemas en los que se usan estas ideas de vectores en geometría, en particular, la proposición de la razón.

Problema. En el triángulo $ABC$ se toman puntos $D,E,F$ sobre los segmentos $BC,CA,AB$ tales que $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}=\frac{1}{4}$. Muestra que $ABC$ y $DEF$ tienen el mismo gravicentro.

Sugerencia pre-solución. Encuentra una fórmula en términos vectoriales para el gravicentro de un triángulo $ABC$.

Solución. Tomemos un triángulo $PQR$ y pensemos a sus vértices como vectores. Afirmamos que su gravicentro $X$ es el punto correspondiente a $\frac{P+Q+R}{3}$ Demostraremos esto.

El gravicentro está a un tercio del punto medio hacia el vértice correspondiente
Razón del gravicentro en la mediana

Primero haremos un argumento de geometría sintética. El gravicentro es por definición el punto de intersección de las medianas de un triángulo. Si $L$ es el punto medio de $QR$ y $M$ es el punto medio de $RP$, entonces $X$ es el punto de intersección de $PL$ y $QM$. Tenemos que $$\frac{RL}{LQ}=1=\frac{RM}{MP},$$ así que por el teorema de Tales se tiene que la recta por $L$ y $M$ es paralela al lado $PQ$, y $\frac{LM}{PQ}=\frac{1}{2}$. Esto muestra que los triángulos $XLM$ y $XPQ$ son semejantes en razón $1$ a $2$. Por lo tanto, $\frac{LX}{XP}=\frac{1}{2}$.

Ahora hagamos el argumento vectorial, pensando a los puntos como vectores. El punto $L$ está a la mitad de $QR$, así que por la proposición de la razón, $$L=\frac{Q+R}{2}.$$ El punto $X$ cumple $\frac{LX}{XP}=\frac{1}{2}$, así que de nuevo por la proposición de la razón.
\begin{align*}
X&=\frac{2L+P}{2+1}\\
&=\frac{Q+R+P}{3}\\
&=\frac{P+Q+R}{3}.
\end{align*}

Esto es el resultado auxiliar que queríamos mostrar. Regresemos al problema.

De acuerdo al resultado auxiliar, el gravicentro de $ABC$ es $$G:=\frac{A+B+C}{3}.$$ Usando una vez más la proposición de la razón, los puntos $D$, $E$ y $F$ los podemos calcular como sigue:
\begin{align*}
D&=\frac{4B+C}{4+1}=\frac{4B+C}{5}\\
E&=\frac{4C+A}{4+1}=\frac{4C+A}{5}\\
F&=\frac{4A+B}{4+1}=\frac{4A+B}{5}.
\end{align*}

De esta forma, el gravicentro $G’$ de $DEF$ lo podemos encontrar como sigue:
\begin{align*}
G’&=\frac{D+E+F}{3}\\
&=\frac{\frac{4B+C}{5}+\frac{4C+A}{5}+\frac{4A+B}{5}}{3}\\
&=\frac{A+B+C}{3}\\
&=G.
\end{align*}

Esto termina la solución del problema.

$\square$

Problema. En el paralelogramo $ABCD$ el punto $F$ es el punto medio de $CD$. Muestra que el segmento $AF$ corta a la diagonal $BD$ en un punto $E$ tal que $\frac{DE}{DB}=\frac{1}{3}$.

Sugerencia pre-solución. Hay varias formas de hacer las cuentas en este problema, pero el uso de una notación adecuada te hará simplificar muchas operaciones.

Solución. Pensemos a los puntos de la figura como vectores. Coloquemos al punto $A$ en el origen. El punto $C$ está dado por $B+D$, de modo que $$F:=\frac{C+D}{2}=\frac{B+2D}{2}.$$

Vectores en geometría: problema de paralelogramo
Figura auxiliar para problema de paralelogramo

Para encontrar al punto $E$, notemos que está en las rectas $AF$ y $BD$. De esta forma, deben existir reales $r$ y $s$ tales que $$E=rF$$ y $$E=sB+(1-s)D.$$ Expresando $F$ en términos de $B$ y $D$ en la primer ecuación, tenemos que $$E=\frac{rB+2rD}{2}=\frac{rB}{2}+rD.$$ De ambas expresiones para $E$, concluimos que
\begin{align*}
s=\frac{r}{2}\\
1-s=r.
\end{align*}

Este sistema de ecuaciones tiene solución $r=\frac{2}{3}$, $s=\frac{1}{3}$, y por lo tanto $E=\frac{B+2D}{3}$. De aquí se obtiene $\frac{DE}{EB}=\frac{1}{2}$, o bien $\frac{DE}{DB}=\frac{DE}{DE+EB}=\frac{1}{3}$, como queríamos mostrar.

$\square$

Producto punto, norma y ángulos

Para dos vectores $P=(x,y)$ y $Q=(w,z)$ definimos su producto punto como la cantidad $P\cdot Q = xw+yz$. El productos puntos es:

  • Conmutativo: $P\cdot Q = Q\cdot P$
  • Abre sumas: $P\cdot (Q+R)=P\cdot Q + P\cdot R$
  • Saca escalares: $(rP)\cdot Q = r(P\cdot Q)$.

La norma de $P$ se define como $\norm{P}=\sqrt{P\cdot P}$, y coincide con la distancia de $P$ al origen. La norma de $PQ$ es entonces $\norm{PQ}=\sqrt{(Q-P)\cdot (Q-P)}$ y coincide con la distancia de $P$ a $Q$.

El ángulo entre dos vectores $PQ$ y $RS$ se define como el ángulo cuyo coseno es $$\frac{PQ \cdot RS}{\norm{PQ}\norm{RS}},$$ y coincide precisamente con el ángulo (orientado) geométrico entre las rectas $PQ$ y $RS$. De esta forma, las rectas $PQ$ y $RS$ son perpendiculares si y sólo si el producto punto $PQ\cdot RS$ es cero.

Problema. Sea $ABC$ un triángulo con sus vértices pensados como vectores. Sean $H$ y $O$ su ortocentro y circuncentro respectivamente. Supongamos que el circuncentro $O$ está en el origen. Muestra que $H=A+B+C$.

Sugerencia pre-solución. Trabaja hacia atrás. Define al punto $A+B+C$ y ve que las rectas que unen a los vértices con este punto en efecto son alturas. Para calcular los ángulos, usa el producto punto y sus propiedades.

Solución. Como el circuncentro equidista de $A$. $B$ y $C$, tenemos que $$\norm{A}=\norm{B}=\norm{C}.$$ Tomemos el punto $H’=A+B+C$.

Vectores en geometría para encontrar el ortocentro
Ortocentro con vectores

Calculemos el ángulo entre las rectas $BC$ y $AH’$, haciendo su producto punto:
\begin{align*}
BC\cdot AH’ &= (C-B)\cdot (H’-A)\\
&=(C-B)\cdot(C+B)\\
&=C\cdot C + C\cdot B – B\cdot C – B\cdot B\\
&=\norm{C}^2 – \norm{B}^2\\
&=0.
\end{align*}

Observa que estamos usando la linealidad y conmutatividad del producto punto. Al final usamos que $A$ y $C$ tienen la misma norma.

Esto muestra que la recta $AH’$ es la altura al lado $BC$. De manera análoga, $BH’$ y $CH’$ son las alturas a los lados $CA$ y $AB$ respectivamente. Por lo tanto, $H’$ es el ortocentro, así que $H=A+B+C$.

$\square$

Cualquier triángulo $ABC$ en el plano se puede trasladar para que su circuncentro $O$ quede en el origen. El ortocentro estará en $H=A+B+C$ y el gravicentro, como vimos antes, en $G=\frac{A+B+C}{3}$, que es un múltiplo escalar de $H$. Por lo tanto, $O$, $H$ y $G$ están alineados. Acabamos de demostrar con vectores en geometría un clásico resultado euclideano.

Teorema (recta de Euler). En cualquier triángulo $ABC$, el circuncentro $O$, el gravicentro $G$ y el ortocentro $H$ están alineados. Además, $$\frac{OG}{GH}=\frac{1}{2}.$$

Teorema de la recta de Euler
Teorema de la recta de Euler

Si el circuncentro no está en el origen, ahora podemos usar el teorema de la recta de Euler y la proposición de la razón para concluir que $G=\frac{2O+H}{3}$. Usando que $G=\frac{A+B+C}{3}$, obtenemos el siguiente corolario

Corolario. Sea $ABC$ un triángulo en el plano, $H$ su ortocentro y $O$ su circuncentro. Entonces al pensar a los puntos como vectores tenemos que $$A+B+C=2O+H.$$

Más problemas

Puedes encontrar más problemas del uso de vectores en geometría en la sección 8.3 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Introducción a problemas de geometría y geometría euclideana

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta semana veremos algunas herramientas para resolver problemas de geometría. Como con otros temas que hemos visto, sería imposible tratar a profundidad el área. En vez de eso, lo que haremos es ver un poco de varias de las herramientas que se pueden usar en la solución de problemas geométricos, comenzando con geometría euclideana. Veremos ideas de lo siguiente:

  • Geometría triángulos y circunferencias
  • Geometría analítica
  • Vectores en geometría
  • Números complejos en geometría
  • Geometría discreta

En esta entrada comenzaremos con la parte de geometría euclideana. Más adelante hablaremos de las demás ideas.

Geometría euclideana

Cuando en geometría nos referimos a una solución por geometría euclideana o geometría sintética nos referimos a un argumento que no use parametrizaciones de los objetos del plano en términos de coordenadas, vectores o complejos. Simplemente usamos conceptos geométricos como ángulos, distancias, semejanza, congruencia, etc. Todas estas se pueden pensar como propiedades que se mantienen invariantes bajo movimientos rígidos del plano. Dentro de los resultados más versátiles del área tenemos los siguientes.

Teorema (de Tales). Tomemos puntos $P$ y $Q$ sobre los lados $AB$ y $AC$ de $\triangle ABC$. Se tiene que $AP/AQ = AB/AC$ si y sólo si la recta $PQ$ es paralela a la recta $BC$.

El teorema de Tales
Teorema de Tales

Teorema (criterios de congruencia). Sean $\triangle ABC$ y $\triangle DEF$ triángulos. Cualquiera de las siguientes condiciones (o sus simétricos) implican que $\triangle ABC$ y $\triangle DEF$ son congruentes:

  • (LLL) $AB=DE$, $BC=EF$ y $CA=FD$
  • (LAL) $AB=DE$, $\angle BAC = \angle EDF$ y $CA=FD$
  • (ALA) $\angle BAC = \angle EDF$, $CA=FD$ y $\angle BCA – \angle EFD$.

Teorema (criterios de semejanza). Sean $\triangle ABC$ y $\triangle DEF$ triángulos. Cualquiera de las siguientes condiciones (o sus simétricos) implican que $\triangle ABC$ y $\triangle DEF$ son semejantes.

  • (LLL) $\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}$.
  • (LAL) $\frac{AB}{DE}=\frac{CA}{FD}$ y $\angle BAC = \angle EDF$.
  • (AA) $\angle BAC = \angle EDF$ y $\angle BCA – \angle EFD$.

Veamos un ejemplo en el que se usan estos hechos básicos.

Problema. Sobre los lados $AB$ y $AC$ de un triángulo $ABC$ se construyen cuadrados $ABPQ$ y $ACRS$ como en la figura. Muestra que $CQ=BS$.

Sugerencia pre-solución. En geometría es típico modificar un problema. En vez de intentar medir los segmentos requeridos, es útil preguntarse si forman parte de triángulos que sean congruentes, o que sea pueda ver que son congruentes por algún criterio. Por supuesto, en todo problema de geometría es útil hacer muchas figuras.

Problema de geometría euclidiana con cuadrados
Figura auxiliar para problema de cuadrados en un triángulo.

Solución. Consideremos los triángulos $ABS$ y $AQC$. Tenemos que $AB=AQ$ pues ambos son lados del cuadrado $ABPQ$. De manera similar, $AC=AS$. Finalmente, tenemos que $\angle BAS = \angle QAC$, pues ambos ángulos son iguales a $$90^\circ + \angle BAC.$$

Por esta razón, podemos usar el criterio de congruencia $LAL$ en estos triángulos para concluir que son congruentes. De aquí se concluye que $CQ=BS$, como queríamos.

$\square$

Recordatorio de puntos notables en triángulos

Otro tema relevante para la geometría euclideana es la geometría de triángulos. Tomemos un triángulo $\triangle ABC$. Hay algunos puntos y rectas notables en el triángulo, que se usan en varios problemas. A continuación enunciamos las más importantes.

  • Si $L$, $M$ y $N$ son los puntos medios de $BC$, $CA$ y $AB$, respectivamente, entonces a cada una de las rectas $AL$, $BM$ y $CN$ se le conoce como una mediana. Las medianas de un triángulo concurren en un punto llamado el gravicentro o baricentro, que usualmente se denota por $G$.
Medianas de un triángulo y su gravicentro
Medianas de un triángulo y su gravicentro
  • Si $D$, $E$ y $F$ son las proyecciones desde $A$, $B$, $C$ a los lados $BC$, $CA$ y $AB$ respectivamente, entonces a cada una de las rectas $AD$, $BE$ y $CF$ se le conoce como una altura. Las alturas de un triángulo concurren en un punto llamado el ortocentro, que usualmente se denota por $H$.
Alturas de un triángulo y su ortocentro
Alturas de un triángulo y su ortocentro
  • Las rectas que cortan a la mitad a cada uno de los ángulos internos de $\triangle ABC$ se les conoce como las bisectrices internas del triángulo. Concurren en un punto llamado el incentro, usualmente denotado por $I$. El incentro sirve como centro para la única circunferencia que es tangente a los segmentos $AB$, $BC$ y $CA$.
Bisectrices de un triángulo y su incentro
Bisectrices de un triángulo y su incentro
  • Las rectas perpendiculares a los lados del triángulo y que pasan por sus puntos medios se les llama mediatrices y concurren en un punto llamado el circuncentro, que se suele denotar $O$. Este punto sirve como centro de la única circunferencia que pasa por los tres vértices $A$, $B$ y $C$.
Mediatrices de un triángulo y su circuncentro
Mediatrices de un triángulo y su circuncentro

Veamos las demostraciones de algunas de estas afirmaciones, para repasar algunos argumentos geométricos.

Una idea útil es caracterizar a una recta como el conjunto de puntos que satisfacen cierta propiedad. Por ejemplo, probemos primero la siguiente caracterización de las mediatrices.

Proposición. La recta perpendicular $\ell$ a un segmento $BC$ que pasa por su punto medio $L$ consiste exactamente de los puntos $P$ tales que $PB=PC$.

Demostración. Para ver que cualquier punto en $\ell$ satisface esto, se puede usar el criterio LAL de congruencia en los triángulos $PBL$ y $PCL$, usando el ángulo recto que comparten. Para ver que cualquier punto tal que $PB=PC$ está en $\ell$, se usa que $\angle PBC = \angle PCB$ (por el triángulo isósceles $PBC$), y entonces al bajar la perpendicular desde $P$ a $BC$ a un punto $L’$, los triángulos $PBL’$ y $PCL’$ comparten dos ángulos (y por lo tanto los tres), de donde se puede usar de nuevo el criterio LAL para concluir que $L=L’$.

$\square$

Demostrar que las mediatrices concurren es entonces muy sencillo. Si $P$ es la intersección de la mediatriz en $BC$ y en $CA$, entonces por el resultado anterior tenemos $PB=PC=PA$, y entonces también por el resultado anterior se tiene que $P$ está en la mediatriz de $AB$. De manera análoga se puede mostrar que una bisectriz consiste de los puntos que equidistan de los lados que la definen, y con ello mostrar que las bisectrices internas de un triángulo concurren.

Veamos ahora un problema de geometría euclideana que involucra a las alturas y a las medianas. Es el Problema 1 del Concurso Nacional de la Olimpiada Mexicana de Matemáticas de 2009.

Problema. Sea $ABC$ un triángulo y $D$ el pie de la altura desde $A$. Con centro en $D$ se traza una circunferencia de radio $DA$. Esta circunferencia corta a los lados $AB$ y $AC$ del triángulo en puntos $P$ y $Q$ respectivamente. Muestra que los triángulos $AQP$ y $ABC$ son semejantes.

Sugerencia pre-solución. Para mostrar que estos triángulos son semejantes, basta con mostrar que tienen ángulos iguales.

Solución. Tracemos además los pies de altura $E$ y $F$ desde $B$ y $C$ respectivamente.

Ángulos creados por alturas de un triángulo.
Ángulos creados por alturas de un triángulo.

Observemos que $\triangle ABD$ y $\triangle CBF$ comparten los ángulos rectos y el ángulo en $B$, de modo que son semejantes y por lo tanto su tercer ángulo es igual. Este y argumentos análogos muestran que
\begin{align*}
\alpha&:=\angle ABE = \angle ACF\\
\beta&:=\angle BAD = \angle BCF\\
\gamma&:= \angle CBE = \angle CAD.
\end{align*}

De esta forma, los ángulos internos de $\triangle ABC$ miden $\angle A= \beta+\gamma$, $\angle B = \gamma+\alpha$ y $\angle C = \alpha+\beta$. Ya que la suma interna de los ángulos de un triángulo es $180^\circ$, concluimos que $\alpha+\beta+\gamma = 90^\circ$.

Ahora, usando los triángulos isósceles $\triangle ADP$ y $\triangle ADQ$ del problema, tenemos que
\begin{align*}
\angle DPA &= \angle DAP = \beta\\
\angle DQA &= \angle DAQ = \gamma.
\end{align*}

Figura auxiliar para el problema
Figura auxiliar para el problema

Como $\triangle PDQ$ también es isósceles con $PD=DQ$, tenemos que $$\alpha’=:\angle DPQ = \angle DQP.$$ Por la suma de ángulos en el triángulo $APQ$, tenemos que $\alpha’+\beta + \gamma = 90^\circ$. Así, $\alpha = \alpha’$. Concluimos entonces que en el $\triangle PAQ$ los ángulos internos son $\angle A = \beta+ \gamma$, $\angle P = \alpha+\beta$ y $\angle Q = \gamma + \alpha$.

De esta forma, los triángulos $ABC$ y $AQP$ son semejantes por el criterio AA.

$\square$

Otra técnica útil para resolver problemas de geometría consiste en mostrar que un punto está en dos rectas notables (por ejemplo, en las medianas $AL$ y $BM$), deducir que entonces es el punto notable correspondiente (en este caso el gravicentro $G$), y usar la información de que entonces la recta por el tercer vértice y el punto es la tercer recta notable (que en el ejemplo diría que $CG$ es la mediana).

Recordatorio de geometría del círculo

Un tercer ingrediente básico para la geometría euclideana es entender qué pasa con las circunferencias. Tomemos una circunferencia $\Gamma$ y dos puntos fijos $A$ y $B$ sobre ella. Tomemos $C$ y $D$ otros dos puntos sobre $\Gamma$ distintos de $A$ y $B$ sobre el mismo arco definido por $A$ y $B$ y sea $E$ otro punto sobre $\Gamma$, en el arco opuesto. Entonces

  • Los ángulos $\angle ACB$ y $\angle ADB$ son iguales.
  • Los ángulos $\angle ACB$ y $\angle AEB$ son suplementarios, es decir, suman $180^\circ$.
Ángulos en cuadriláteros cíclicos
Ángulos en cuadriláteros cíclicos

De hecho, este resultado es un si y sólo si. Para $A$, $B$, $C$, $D$ puntos distintos en el plano:

  • Si $\angle ACB$ y $\angle ADB$ son iguales, entonces $A$, $B$, $C$, $D$ son puntos sobre una circunferencia y $C$ y $D$ están en el mismo arco definido por $A$ y $B$ y
  • Si los ángulos $\angle ACB$ y $\angle ADB$ son suplementarios, entonces $A$, $B$, $C$, $D$ son puntos sobre una circunferencia y $C$ y $D$ están en arcos opuestos definidos por $A$ y $B$.

Cuando $A$, $B$, $C$ y $D$ son puntos distintos que yacen sobre una misma circunferencia, en ese orden, decimos que $ABCD$ es un cuadrilátero cíclico.

Teorema (potencia de un punto). Sea $P$ un punto y $\Gamma$ una circunferencia. Tomemos dos rectas por $P$ que corten a la circunferencia en puntos $A$, $B$, $C$ y $D$ como en alguna de las figuras. Entonces $PA\cdot PB = PC \cdot PD$.

Diagrama para teorema de potencia de un punto
Diagrama para teorema de potencia de un punto

Veamos un problema de la Olimpiada Matemática de la Cuenca del Pacífico en donde confluyen algunas de estas ideas. Es el problema 1 de la edición de 2016.

Problema. Un triángulo $ABC$ es grandioso si para cualquier punto $D$ en el lado $BC$, cuando se toman los pies de las perpendiculares $P$ y $Q$ de $D$ a las rectas $AB$ y $AC$, respectivamente, sucede que la reflexión de $D$ en la recta $PQ$ cae sobre el circuncírculo del triángulo $ABC$.

Muestra que un triángulo $ABC$ es grandioso si y sólo si $\angle A = 90^\circ$ y $AB=AC$.

Sugerencia pre-solución. El problema dice que cierta condición se debe cumplir para todo punto $D$ en el lado $BC$. Considera algunos casos extremos de lo que puede ser $D$, de los que puedas obtener información de cómo debe ser el triángulo.

Solución. Para cualquier punto $D$ en el lado $BC$, vamos a llamar $D’$ a la reflexión de $D$ en la recta $PQ$. Primero veremos que si $ABC$ es grandioso, entonces es isósceles y con ángulo recto en $A$.

Como la hipótesis se cumple para cualquier punto $D$, en particular se cumple para cuando elegimos $D$ como el punto donde la bisectriz desde $A$ intersecta a $BC$. Nota que $P$ y $Q$ están en los rayos $AB$ y $AC$. Además, $P$ y $Q$ son reflexiones entre sí con respecto a la recta $AD$, de modo que $PQ$ es perpendicular a $AD$. Por esto, se tiene que $D’$ está en la recta $AD$, así que o es $A$, o es el segundo punto de intersección de la bisectriz en $A$ con el circuncírculo del triángulo. Como además $APDQ$ es un cuadrilátero cíclico, se tiene que $AD$ intersecta a $PQ$ y por lo tanto $D’=A$.

Imagen auxiliar para problema APMO
Imagen auxiliar para problema APMO

Tenemos entonces las igualdades de ángulos
\begin{align*}
\angle BAC &= \angle PD’Q \\
&= \angle PDQ \\
&= 180^\circ – \angle BAC.
\end{align*}

Concluimos entonces que $\angle BAC = 90^\circ$, que muestra que el triángulo es rectángulo en $A$.

Ahora tomamos a $D$ como el punto medio de $BC$, lo cual hace que $P$ y $Q$ sean los puntos medios de $AB$ y $AC$ respectivamente. Pero entonces $PQ$ es paralelo a $BC$ y por lo tanto $DD’$ es perpendicular a $BC$. La distancia de $D’$ a $BC$ es igual al circunradio del triángulo (pues $D’$ debe caer en el circuncírculo), y es igual a la distancia de $A$ a $BC$. Esto sólo puede suceder cuando $ABC$ es isósceles y con ángulo recto en $A$, como queríamos.

Veamos ahora que si $ABC$ es isósceles y de ángulo recto en $A$, entonces se cumple la propiedad para todo punto $D$ en $BC$. Como $D$ es la reflexión en $PQ$, tendríamos $D’P=DP=BP$. De manera similar, $D’Q=DQ=CQ$.

El cuadrilátero $APDQD’$ es cíclico de diámetro $PQ$, pues todos los ángulos $\angle PAQ$, $\angle PD’Q$ y $\angle PDQ$ son de $90^\circ$. De aquí, $\angle APD’= \angle AQD’$, de donde obtenemos que $\angle BPD’= \angle CQD’$. Con esto concluimos que $\triangle D’PB$ y $\triangle D’QC$ son semejantes. De aquí se sigue que

\begin{align*}
\angle PD’Q &= \angle PD’C+ \angle CD’Q\\
&=\angle PD’C + \angle BD’P\\
&= \angle BD’C.
\end{align*}

Como además tenemos $\frac{D’P}{D’Q}= \frac{D’B}{D’C}$, concluimos que también $\triangle D’PQ$ y $\triangle D’BC$ son semejantes. Pero como $\triangle DPQ$ y $\triangle D’PQ$ son congruentes, se obtiene que $$\angle BD’C=\angle PD’Q = \angle PDQ = 90^\circ.$$ Con esto concluimos que $D’$ yace en la circunferencia de diámetro $BC$, que es precisamente el circuncírculo de $\triangle ABC$.

$\square$

Más problemas

Puedes encontrar más problemas de geometría euclideana en la sección 8.1 del libro Problem Solving through Problems de Loren Larson. Para tener buenos fundamentos en geometría euclideana, se pueden revisar algunos textos en el área, como los cuadernos de la Olimpiada Mexicana de Matemáticas de Geometría y de Geometría: Ejercicios y problemas.