Archivo del Autor: Armando Arzola Pérez

Geometría Moderna II: Ejercicios Unidad 1

Por Armando Arzola Pérez

Introducción

Una vez estudiado los temas de esta primera unidad, se dejarán a continuación Ejercicios para reforzar, investigar y pensar distintos problemas relacionados con lo ya visto en esta unidad.

Potencia de un Punto Ejercicios

1.- Dados dos círculos A y A’. Encontrar el lugar de los puntos cuya suma de Potencias respecto a A y A’ es constante.

2.- El lugar geométrico de un punto, cuya diferencia de potencias con respecto a dos circunferencias no concéntricas es constante, es una línea recta paralela a su eje radical.

Eje radical de dos circunferencias Ejercicios

3.- Construir el eje radical de dos circunferencias sin hacer uso de los centros o la línea de los centros de las circunferencias.

4.- Encontrar el eje radical del circuncirculo y el círculo de los nueve puntos de un triángulo dado.

Circunferencias Ortogonales Ejercicios

5.- Determinar cuando es posible para el centro de una de dos circunferencias ortogonales estar en la otra circunferencia.

6.- Dadas dos circunferencias y un punto, trace una circunferencia que sea ortogonal a las dos y que contenga al punto.

Familias Coaxiales Ejercicios

7.- Dos circunferencias distintas dadas, son miembro de uno y solo un conjunto de circunferencias coaxiales.

8.- Demuestra que si cada uno de dos puntos fijos tiene potencias iguales con respecto a tres o más circunferencias, estas son coaxiales.

9.- Demuestra que los ejes radicales de un círculo y cada una de las circunferencias de un conjunto coaxial son concurrentes.

10.- Demuestra que todas las circunferencias cuyos centros son colineales y tales que son ortogonales a una circunferencia dada, son coaxiales.

Circunferencia de Similitud Ejercicios

11.- Demuestre que dos circunferencias y su circunferencia de similitud son coaxiales.

Aplicaciones al Cuadrilátero Completo Ejercicios

12.- Demuestra que las circunferencias cuyos diámetros son las diagonales de un cuadrilátero completo son coaxiales.

Más Adelante…

Se abordará el tema de Inversión respecto a su teoría con distintos temas relacionados.

Entradas relacionadas

Geometría Moderna II: Aplicación al Cuadrilátero Completo

Por Armando Arzola Pérez

Introducción

Una vez analizado las circunferencias coaxiales es necesario ver la Aplicación al Cuadrilátero Completo.

Recordemos que un cuadrilátero completo se define:

Definición (Cuadrilátero Completo)

El Cuadrilátero Completo es una figura que consiste de 4 líneas, tres de las cuales no pasan por el mismo punto y los seis puntos determinados por la intersección de estas líneas.

Cuadrilátero Completo Definición

Observaciones

  • Las cuatro líneas son sus lados y los seis puntos son sus vértices. En este caso a, b, c y d son los lados y los puntos $a \cap c, b \cap c, c \cap d, d \cap b, a \cap d$ y $a \cap b$ son los vértices.
  • Se dice que dos vertices son vertices opuestos si ellos no estan en el mismo lado. En un cuadrilatero completo hay 3 pares de vertices opuestos. Son [$c \cap d $y$ a \cap b$], [$b \cap c$ y $a \cap d$] y [$a \cap c$ y $d \cap b$].
  • Las 3 líneas determinadas por los pares de vértices opuestos de un cuadrilátero completo, son sus diagonales, y el triángulo determinado por estas 3 líneas, es un triángulo diagonal. Las rectas son p, q y r son las rectas diagonales y pqr es el triángulo diagonal.

Una aplicación de la teoría de circunferencias coaxiales, es el siguiente teorema:

Teorema 1 (Aplicación al Cuadrilátero Completo)

Las circunferencias, cuyos diámetros son las diagonales de un cuadrilátero completo, son coaxiales.

Cuadrilátero Completo Aplicación Teorema 1

Demostración

Se tiene el cuadrilátero completo con lados p, q, r y s, donde se puede sacar el ortocentro $H_1$ del $\triangle ABC$ y $A’, B’ $y$ C’$ los pies de las alturas $A, B $y$ C$.

Puesto que $A, C, C’, A’$ y $ B, C, C’, B’$ son conjuntos de puntos conciclicos. Entonces $H_1A \cdot H_1A’=H_1B \cdot H_1B’=H_1C \cdot H_1C’$.

Ahora $AA’, BB’, CC’$ cuerdas de las circunferencias que tiene como diámetros a $AF, BE$ y $CD$ respectivamente. Y por las ecuaciones anteriores $H_1$ tiene la misma potencia respecto a cada una de estas circunferencias.

Y al saber que $H_1$ tiene las mismas potencias, entonces se concluye que las circunferencias son coaxiales. $\blacksquare$

Corolario (Aplicación al Cuadrilátero Completo)

Los ortocentros de los cuatro triángulos determinados por los cuatro lados del cuadrilátero tomados tres a un tiempo son colineales.

Demostración

Por la demostración anterior, se puede demostrar que los ortocentros de los triángulos $ADE, BDF, CEF$ tiene cada uno iguales potencias con respecto a estas tres circunferencias. Por lo cual las tres circunferencias son coaxiales, los cuatro ortocentros están en el eje radical y los centros o puntos medios de las diagonales, están en una línea recta.

Además, la línea en la que están los cuatro ortocentros, es perpendicular a la línea que pasa por los puntos medios de las diagonales. $\blacksquare$

Más adelante…

Una vez visto y estudiado esta primera unidad se pondrán ejercicios para practicar en la siguiente entrada.

Entradas relacionadas

Geometría Moderna II: Circunferencia de Similitud

Por Armando Arzola Pérez

Introducción

Definición Circunferencia de Similitud o de Homotecia

La circunferencia de Similitud o de Homotecia de dos círculos no concéntricos, es la circunferencia que tiene como diámetro el segmento que une sus centros de similitud o de homotecia.

Definición Centro de Similitud o de Homotecia

Sean dos círculos no concéntricos. Se unirá el centro $O$ de uno de ellos a cualquier punto $B$ de su círculo, no colineal con los centros. Si dibujamos el diámetro del otro círculo paralelo a $OB$ entonces interseca la circunferencia en $B’$ y $B$.

Si hacemos que $BB’$ y $BB’$$’$ intersequen la línea de los centros de las circunferencias en $H$ y $K$, entonces $\triangle OBH \sim \triangle O’B’H$, y $\triangle OBK \sim \triangle O’B’$$’K$. De lo anterior los dos circulos son homoteticos y $H$ y $K$ los centros de Homotecia.

Circunferencia de Similitud, estudio del centro de similitud.

Teorema Circunferencia de Similitud

La circunferencia de similitud de dos círculos no concéntricos es el lugar geométrico de los puntos, tales que la razón de las distancias entre sus centros es igual a la razón entre sus radios.

Demostración (Circunferencia de Similitud)

Sean dos circunferencias dadas $C_1(O,r)$ y $C_2(O’,r’)$, donde existen $H$ y $K$ sus centros de Homotecia.

Teorema Circunferencia de Similitud

$\boldsymbol{\Rightarrow} ]$

Sea un punto $P$ talque $PO:PO’ =r:r’$, esto se ve como $\frac{PO}{PO’}=\frac{r}{r’}$. Queremos demostrar que $P$ es un punto del lugar geométrico.

Entonces como $KO:KO’=OH:HO’=r:r’$, se sigue que $K$ y $H$ son puntos del lugar geometríco. Ahora como $PO’:PO=r’:r$ entonces $PO’:PO=KO’:KO=O’H:HO.$

Por el Teorema de la Bisectriz interna y externa $PH$ y $PK$ son las bisectrices interior y externa del angulo $\angle O’PO$. Entonces $PH$ y $PK$ son perpendiculares, y $P$ está en el círculo de similitud. $\blacksquare$

$\boldsymbol{\Leftarrow} ]$

Supongamos que $P$ está en el círculo de similitud. En la línea de los centros tenemos $O’$$’$ tal que $PH$ bisecta el angulo $O’PO’$$’$.

Entonces, ya que $PH$ y $PK$ son perpendiculares y que bisecan los ángulos interior y exterior en $P$ del triángulo $\triangle O’$$’PO’$, entonces

$O’$$’H:HO’=-O’$$’K:KO’$

además

$OH:HO’=-OK:KO’$

Entonces

$HO’$$’:O’$$’K=HO:OK$

Entonces $O’$$’$ coincide con $O$. Se tiene que $PO:PO’=r:r’$ $\blacksquare$

Del teorema anterior es necesario que $r \neq r’$, ya que si $r=r’$ syss $r/r’ =1$. Si dos círculos son iguales, su círculo de similitud degenera en la mediatriz del segmento que une sus centros y la línea al infinito.

Observación: la generalización del concepto de circunferencia de similitud es la circunferencia de Apolonio.

Teorema Circunferencia de Apolonio

El lugar geométrico de los puntos, cuyas razones de sus distancias a dos puntos fijos es una constante, es la circunferencia de Apolonio.

Sean los puntos fijos $O$ y $O’$ la razón de sus distancias a $P$ desde $O$ y $O’$, sea $r:r’$. Construiremos círculos con centros en $O$ y $O’$ cuyos radios tengan la razón $r:r’$. Por la demostración anterior, el lugar geométrico de los puntos $P$ es el círculo de similitud.

Más adelante…

Ya analizadas las circunferencias coaxiales, se verán aplicaciones al cuadrilátero completo.

Entradas relacionadas

Geometría Moderna II: Familias Coaxiales

Por Armando Arzola Pérez

Introducción

Definición Familias Coaxiales

Un conjunto de círculos se llaman (Familias Coaxiales) círculos coaxiales si y solo si existe una recta llamada eje radical, que además es el eje radical de cada par de círculos del conjunto.

Además, como el eje radical de 2 circunferencias es ortogonal a la línea de los centros, entonces los centros de las circunferencias del sistema coaxial de circunferencias son colineales.

Se tienen distintas propiedades:

  1. Si dos círculos de un conjunto coaxial son tangentes, todos los círculos del conjunto son tangentes.
  2. Si dos círculos de un conjunto coaxial se intersecan en dos puntos, todos los círculos del conjunto pasan por estos dos puntos.
  3. El eje radical de un conjunto coaxial es el lugar geométrico de los puntos cuya potencia respecto a todos los círculos del conjunto son iguales.
  4. Dos circunferencias pertenecen a una única familia coaxial.
  5. Dos circunferencias determinan una única familia coaxial.
  6. Si dos puntos tienen la misma potencia respecto a 3 circunferencias, entonces las circunferencias son coaxiales.
  7. Si una circunferencia corta ortogonalmente a 2 circunferencias de un sistema coaxial, entonces corta ortogonalmente a todos los círculos del sistema coaxial.
  8. Dado un conjunto coaxial de círculos, entonces el conjunto de círculos ortogonales a estos círculos forman un conjunto coaxial de círculos.

Proposición 1 (Familias Coaxiales):

Sea una familia de circunferencias con centros colineales. Estas son un sistema coaxial de circunferencias si y solo si existe una circunferencia ortogonal a todas ellas.

Denotaremos como ${\{C_i\}}^n_{i=1}$ una familia de circunferencias con centros colineales.

Demostración:

Familias Coaxiales

$\boldsymbol{\Rightarrow} ]$

Denotemos $l$ al eje radical. Sea $C(O,r)$ una circunferencia donde $O$ está en $l$ y además $C(O,r)$ es ortogonal a $C_1(O_1,r_1)$ una circunferencia del sistema.

Ahora, como $O$ está en $l$ y $C(O,r)$ es ortogonal a $C_1(O_1,r_1)$, usando la proposición: Si el centro de una circunferencia está en el eje radical de 2 circunferencias dadas y es ortogonal a una de ellas, entonces la circunferencia es ortogonal también a la otra. Por lo cual $C(O,r)$ es ortogonal a cada circunferencia de ${\{C_i\}}^n_{i=1}$. $\lrcorner$

$\boldsymbol{\Leftarrow} ]$

Sea $C(O,r)$ una circunferencia ortogonal a ${\{C_i\}}^n_{i=1}$. Además, $C(O,r)$ es ortogonal a $C_1(O_1,r_1)$ y $C_2(O_2,r_2)$ donde $C_1$ y $C_2$ pertenecen a ${\{C_i\}}^n_{i=1}$.

Llamemos a $l$ el eje radical de $C_1(O_1,r_1)$ y $C_2(O_2,r_2)$, sabemos que $l$ es ortogonal a la línea $O_1O_2$, y recordando la proposición: Si una circunferencia es ortogonal a 2 circunferencias dadas, entonces su centro está en el eje radical de las 2 circunferencias, por lo cual $O$ está en $l$. Como $O_1, O_2, … , O_n$ son puntos colineales y los ejes radicales de cada par de circunferencias son líneas perpendiculares a $O_1O_2$ que pasan por $O$, entonces $l$ es el eje radical de cada par de circunferencias.

$\therefore$ ${\{C_i\}}^n_{i=1}$ es un sistema de circunferencias coaxiales. $\blacksquare$

Existen 3 tipos de sistemas de (Familias Coaxiales) circunferencias coaxiales: tangentes, que se intersecan y ajenas.

Circunferencias Coaxiales Tangentes

Se tiene un sistema de circunferencias coaxiales tangentes, además la familia de circunferencias con centro en el eje radical del sistema y que son ortogonales a todas y cada una de las circunferencias del sistema, también forman otro sistema coaxial de circunferencias tangentes.

Familias Coaxiales Tangentes

Circunferencias Coaxiales que se Intersecan

Se tiene un sistema de circunferencias coaxiales que se intersecan en 2 puntos, la familia de circunferencias con centro en el eje radical del sistema y que son ortogonales a todas las circunferencias del sistema, forman un sistema coaxial de circunferencias ajenas.

Familias coaxiales que se intersecan

Circunferencias Coaxiales Ajenas

Se tiene un sistema de circunferencias coaxiales ajenas, la familia de circunferencias con centro en el eje radical del sistema y que son ortogonales a todas las circunferencias del sistema, forman un sistema coaxial de circunferencias que se intersecan.

Familias Coaxiales Ajenas

Más adelante…

Se abordará en la siguiente entrada la Circunferencia de Similitud.

Al final de los temas de esta primera unidad se dejará unas series de ejercicios.

Entradas relacionadas

Geometría Moderna II: Circunferencias Ortogonales

Por Armando Arzola Pérez

1.3 Circunferencias Ortogonales

Definición Circunferencias Ortogonales:

Dos circunferencias que se intersecan son ortogonales si sus tangentes a un punto de contacto forman un ángulo recto, o también si los radios que van de los centros a los puntos de intersección son ortogonales.

Teorema:

El centro de una circunferencia que corta a 2 circunferencias ortogonales, está en el eje radical de estas últimas.

Demostración:

Sean \(C_1(O_1,r_1)\) y \(C_2(O_2,r_2)\) dos circunferencias dadas, y sea \(C_3(O_3,r_3)\) una circunferencia ortogonal a $C_1$ y $C_2$.

Denotaremos a $T_1$ a uno de los puntos de intersección de $C_1$ y $C_3$, y a $T_2$ un punto de intersección de $C_2$ y $C_3$. Por demostrar que $O_3$ está en el eje radical de $C_1$ y $C_2$, solo falta demostrar que

$Pot(O_3,C_1)$ $=$ $Pot(O_3,C_2)$

Circunferencias Ortogonales del primer teorema.

Ahora como $O_3T_2$ y $O_3T_1$ son radios de $C_3$, entonces

$O_3T_1$ $=$ $O_3T_2$ $\Longleftrightarrow$ $(O_3T_1)^2=(O_3T_2)^2$

Por proposición 3 de potencia:

$Pot(O_3,C_1)=(O_3T_1)^2=(O_3T_2)^2=Pot(O_3,C_2)$

$Pot(O_3,C_1)=Pot(O_3,C_2)$

$\therefore$ $O_3$ es un punto del eje radical de $C_1$ y $C_2$. $\blacksquare$

Teorema:

Si una circunferencia cuyo centro está en el eje radical de dos circunferencias, y es ortogonal una de ellas, es también ortogonal a la otra.

Demostración:

Tomando como referencia la figura anterior.

Sea $C_3$ una circunferencia tal que su centro $O_3$ está en el eje radical de $C_1$ y $C_2$ dos circunferencias dadas y $C_3$ es ortogonal a $C_2$.

Se quiere demostrar que $C_3$ es ortogonal a $C_1$ o sea por Pitágoras

$(O_3O_1)^2-r_1^2= (O_3T_1)^2$

Dado que $C_3$ es ortogonal a $C_2$, el triángulo $\triangle O_3T_2O_2$ es rectángulo, entonces por Pitágoras $(O_3O_2)^2-r_2^2= (O_3T_2)^2$. Ahora como $O_3$ está en el eje radical de $C_1$ y $C_2$, y por propiedad de potencias se tiene:

$(O_3O_2)^2 – r_2^2=(O_3O_1)^2-r_1^2$ y como $O_3T_1=O_3T_2$

$\Rightarrow$ $(O_3T_1)^2=(O_3T_2)^2=(O_3O_2)^2-r_2^2=(O_3O_1)^2-r_1^2$

$\therefore$ $C_3$ es ortogonal a $C_1$. $\blacksquare$

Teorema:

Sean 2 circunferencias $C_1$ y $C_2$, y sea $C_3(O_3,r_3)$ una circunferencia ortogonal a $C_1$ y $C_2$. Entonces se generan 3 casos:

  1. Si $C_1$ y $C_2$ se intersecan, entonces $C_3$ no interseca a $O_1O_2$ la línea de los centros.
  2. Si $C_1$ y $C_2$ son tangentes, $C_3(O_3,r_3)$ es tangente a $O_1O_2$ la línea de los centros.
  3. Si $C_1$ y $C_2$ no se intersecan, entonces $C_3$ interseca a $O_1O_2$ la línea de los centros.

Demostración:

Sea $C_3$ una circunferencia ortogonal a 2 circunferencias dadas $C_1$ y $C_2$. Sea $X$ a la intersección de $O_1O_2$ con «$l$» el eje radical de las circunferencias $C_1$ y $C_2$. Ahora, dado que $C_3$ es ortogonal a $C_1$ y $C_2$, se tienen dos triángulos rectángulos:

$\triangle O_3T_1O_1$ y $\triangle O_3XO_1$

$\Rightarrow$ Por Pitágoras:

$(O_3T_1)^2+r_1^2=(O_3O_1)^2=(O_1X)^2+(O_3X)^2$

$\Longleftrightarrow$ $r_1^2-(O_1X)^2=(O_3X)^2-r_3^2$

Caso 1

Sean $C_1$ y $C_2$ dos circunferencias que no se intersecan. Por demostrar que $C_3$ no interseca a $O_1O_2$ la línea de los centros.

Circunferencias Ortogonales

Como

$r_1>O_1X$ $\Longleftrightarrow$ $r_1^2>O_1X^2$

$\Rightarrow$ $r_1-O_1X>0$ $\Longleftrightarrow$ $r_1^2-O_1X^2>0$

$\Rightarrow$ $r_1^2-(O_1X)^2$ $=$ $(O_3X)^2-r_3^2$

$\Rightarrow$ $(O_3X)^2-r_3^2>0$ $\Longleftrightarrow$ $(O_3X)^2>r_3^2$

$\Longleftrightarrow$ $O_3X>r_3$

$\therefore$ $C_3(O_3,r_3)$ no interseca la línea de los centros $O_1O_2$ $\blacksquare$

Caso 2

Sean $C_1$ y $C_2$ tangentes. Por demostrar que $C_3(O_3,r_3)$ es tangente a $O_1O_2$ la línea de los centros.

$r_1=O_1X$ $\Longleftrightarrow$ $r_1^2=O_1X^2$

$\Rightarrow$ $r_1-O_1X=0$ $\Longleftrightarrow$ $r_1^2-O_1X^2=0$

$\Rightarrow$ Por Pitágoras $r_1^2-(O_1X)^2$ $=$ $(O_3X)^2-r_3^2$

$\Rightarrow$ $(O_3X)^2-r_3^2=0$ $\Longleftrightarrow$ $(O_3X)^2=r_3^2$

$\Longleftrightarrow$ $O_3X=r_3$

$\therefore$ $C_3(O_3,r_3)$ es tangente a $O_1O_2$ la línea de los centros.$\blacksquare$

Caso 3

Sean $C_1$ y $C_2$ que no se interceptan. Por demostrar que $C_3$ interseca a $O_1O_2$ la línea de los centros.

Circunferencias Ortogonales

$r_1<O_1X$ $\Longleftrightarrow$ $r_1^2<O_1X^2$

$\Rightarrow$ $r_1-O_1X<0$ $\Longleftrightarrow$ $r_1^2-O_1X^2<0$

$\Rightarrow$ Por Pitágoras $r_1^2-(O_1X)^2$ $=$ $(O_3X)^2-r_3^2$

$\Rightarrow$ $(O_3X)^2-r_3^2<0$ $\Longleftrightarrow$ $(O_3X)^2<r_3^2$

$\Longleftrightarrow$ $O_3X<r_3$

$\therefore$ $C_3(O_3,r_3)$ interseca a $O_1O_2$ la línea de los centros.$\blacksquare$

Más adelante…

Se abordará en la siguiente entrada las Familias Coaxiales.

Al final de los temas de esta primera unidad se dejará unas series de ejercicios.

Entradas relacionadas