Archivo de la etiqueta: algebra

Álgebra Superior II: Forma polar y cambios de coordenadas de un complejo

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores comenzamos a hablar acerca de cómo resolver algunas ecuaciones en $\mathbb{C}$. Platicamos de ecuaciones cuadráticas y la fórmula general. Luego, vimos sistemas de ecuaciones lineales y varios métodos para resolverlos. Lo siguiente que haremos será resolver ecuaciones de la forma $z^n=w$, en donde $w$ en $\mathbb{C}$ y $n$ en $\mathbb{N}$ están dados y $z$ es la variable a determinar. Antes de resolver esta ecuación, necesitamos entender mejor la multiplicación en $\mathbb{C}$, y para ello vamos a estudiar la forma polar de un complejo.

En esta entrada comenzaremos recordando las coordenadas rectangulares de un número complejo, además definiremos sus coordenadas polares. Veremos cómo pasar de coordenadas rectangulares a polares de manera biyectiva, con lo cual podremos definir qué es la forma polar.

Más adelante, la forma polar nos ayudará a entender mejor la geometría de la multiplicación y exponenciación en $\mathbb{C}$. Esto será muy útil cuando queramos «sacar raíces $n$-ésimas», lo cual necesitaremos para resolver ecuaciones del estilo $z^n=w$.

De coordenadas rectangulares a coordenadas polares

Tomemos un número complejo $z=x+yi$ y pensémoslo como un punto del plano complejo, es decir, como el punto $(x,y)$ . Diremos que $(x,y)$ son las coordenadas rectangulares de $z$. Es recomendable recordar la siguiente figura, y regresar a ella frecuentemente.

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

El número complejo $z$ tiene norma $r=\sqrt{x^2+y^2}$. Además, si $z\neq 0$, tenemos que $z$ define un ángulo $\theta$ con el eje real positivo, medido en el sentido contrario al avance de las manecillas del reloj a partir del eje real positivo, al cual le llamaremos el argumento de $z$ y lo denotaremos por $\text{arg}(z)$. Todos los ángulos que manejamos están en radianes.

Sin embargo, este ángulo no es único. El complejo $z$ define al ángulo $\theta$ pero, por ejemplo, también define al ángulo $\theta+2\pi$, pues la suma de $2\pi$ corresponde a dar una vuelta completa alrededor del origen. Por ello, pensaremos que el argumento de $z$ toma todos los valores $$\{\theta+2k\pi:k\in \mathbb{Z}\}.$$ Así, $\text{arg}(z)$ es una multifunción, algo así como una función, pero que toma varios valores. Cuando digamos que un complejo tiene argumento $\theta$, nos referiremos a $\theta$ o cualquier otro ángulo que difiera un múltiplo entero de $2\pi$ Más adelante hablaremos de esto con detalle.

Aunque haya varios ángulos que le correspondan a $z$, hay uno único en el intervalo $[0,2\pi)$.

Definición. Definimos las coordenadas polares de un número complejo $z=x+yi$ como sigue:

  • Si $z=0$, sus coordenadas polares son $(0,0)$.
  • Si $z\neq 0$, entonces tomamos $r=\Vert z \Vert = \sqrt{x^2+y^2}$ y $\theta$ el único ángulo en $[0,2\pi)$ que hace $z$ con el eje real positivo. Las coordenadas polares de $z$ son $(r,\theta)$.

Observa que $r$ siempre es no negativo y es cero si y sólo si $z=0$. Además por trigonometría para el ángulo $\theta$ se cumple que \begin{align*}\sin \theta &= \frac{y}{r}\\ \cos \theta &= \frac{x}{r},\end{align*} lo cual nos da la siguiente forma práctica para encontrar $\theta$:

  • Calculamos $\frac{y}{r}$ o $\frac{x}{r}$ (el que parezca más sencillo).
  • Aplicamos una función trigonométrica inversa para reducir el problema a dos opciones.
  • Elegimos la opción correcta de acuerdo al signo de $x$ o $y$.

Ejemplo. Tomemos al complejo $z=3-3\sqrt{3}i$. Vamos a pasarlo a forma polar. Su norma es $\sqrt{9+27}=\sqrt{36}=6$. Para determinar el ángulo $\theta$ que define con el eje real, podemos notar que $$\cos{\theta}=\frac{3}{6}=\frac{1}{2},$$ así que $\theta = \frac{\pi}{3}$ ó $\theta= 2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$, pues son los únicos ángulos en $[0,2\pi)$ con ese coseno. Como la parte imaginaria es negativa, se da el segundo caso. Por lo tanto, las coordenadas polares de $z$ son $\left(6,\frac{5\pi}{3}\right)$.

$\square$

De coordenadas polares a coordenadas rectangulares

También hay una forma de pasar de coordenadas polares a coordenadas rectangulares. En efecto, tomemos un real no negativo $r$ y consideremos la pregunta ¿quienes son los números complejos de norma $r$?

Por un lado, si $r=0$, necesitamos que $x^2+y^2=0^2=0$, de donde $x=y=0$, así que las coordenadas rectangulares deben ser $(0,0)$. Por otro lado, si $r>0$, se necesita que $$x^2+y^2=r^2,$$ lo cual, por el teorema de Pitágoras, define una circunferencia de radio $r$ con centro en el origen.

Circunferencia de complejos de norma r.
Circunferencia de complejos de norma $r$

Si además elegimos un ángulo, $\theta$ en $[0,2\pi)$, que el complejo haga con el eje real, entonces queda determinado de manera única. Supongamos que este complejo es $z=x+yi$

Por trigonometría, tenemos que
\begin{align*}x&=r\cos \theta\\ y &= r\sin \theta.\end{align*}

Problema. Determina en la forma $x+yi$ al número complejo cuyas coordenadas polares son $\left(7,\frac{3\pi}{4}\right)$.

Solución. Usamos las fórmulas obtenidas arriba. Tenemos que

\begin{align*}\\
x&=7\cos \frac{3\pi}{4}=7\cdot \left(-\frac{1}{\sqrt{2}}\right)=-\frac{7}{\sqrt{2}}\\
y &= 7\sin \frac{3\pi}{4}= 7\cdot \frac{1}{\sqrt{2}}=\frac{7}{\sqrt{2}}.
\end{align*}

De este modo, el complejo buscado es el $$-\frac{7}{\sqrt{2}}+\frac{7}{\sqrt{2}}.$$

$\square$

Los cambios de coordenadas son inversos entre sí

La primer sección explica cómo de coordenadas rectangulares podemos pasar a coordenadas polares. La anterior dice cómo pasar de coordenadas polares a rectangulares. Resulta que estas operaciones son inversas la una de la otra como veremos en la siguiente:

Proposición. Si tomamos coordenadas polares $(r,\theta)$ de un complejo, las pasamos a coordenadas rectangulares $(x,y)$ y luego éstas las pasamos a coordenadas polares $(r’,\theta’)$ de nuevo, tenemos que $$(r,\theta)=(r’,\theta’).$$

Demostración. En el caso $r=0$, sólo definimos coordenadas polares con $\theta=0$. Al ir a coordenadas rectangulares vamos al punto $(0,0)$, que de nuevo regresa a polares $(0,0)$. Podemos suponer entonces que $r>0$.

Como mencionamos en la segunda sección, las coordenadas rectangulares correspondientes a $(r,\theta)$ son exactamente $$(x,y)=(r\cos \theta,r\sin \theta).$$ Pasemos este complejo a coordenadas polares $(r’,\theta’)$. Usando la identidad pitagórica $\cos ^2\theta + \sin^2 \theta = 1$, la norma de este complejo es
\begin{align*}
\sqrt{r^2\cos^2\theta+r^2\sin^2 \theta} &= r\sqrt{\cos ^2\theta +\sin^2 \theta}\\
&=r\sqrt{1}\\
&=r,
\end{align*}

lo que prueba $r=r’$. Además, como discutimos en la primer sección, tenemos que
\begin{align*}
\sin \theta’ = \frac{r\sin \theta}{r} = \sin \theta\\
\cos \theta’ = \frac{r\cos \theta}{r}=\cos \theta.
\end{align*}

De esta forma, $\theta$ y $\theta’$ son ángulos en $[0,2\pi)$ con el mismo seno y coseno, lo cual implica $\theta=\theta’$.

$\square$

Corolario. El cambio de coordenadas rectangulares a polares , visto como una función de $$\mathbb{R}\times \mathbb{R}$$ a $$(\mathbb{R}^+\times [0,2\pi))\cup \{(0,0)\}$$ es biyectivo.

La forma polar de un número complejo

En las secciones anteriores pensamos a los complejos como parejas ordenadas. Podemos regresar los resultados obtenidos a la forma $x+yi$ de los complejos para justificar la siguiente definición.

Definición. La forma polar de un número complejo $z=x+yi$ es $z=r(\cos \theta + i\sin \theta)$, donde $(r,\theta)$ son las coordenadas polares de $(x,y)$.

Por costumbre, en la forma polar se pone $i$ antes de $\sin \theta$, a diferencia de la forma rectangular, en donde se pone $i$ después de $y$. A veces en expresiones como las de la forma polar aparecen ángulos $\theta$ fuera del rango $[0,2\pi)$. Podemos hacer las cuentas que necesitemos fuera de este rango sin problema. Al final podemos sumar o restar un múltiplo entero de $2\pi$ para caer en el rango $[0,2\pi)$. Esto no cambia el seno ni coseno del ángulo, por lo que no cambia al número complejo.

Como la expresión $ \cos \theta + i\sin \theta$ se usa mucho, usualmente se abrevia.

Definición. Para un ángulo $\theta$ definimos $\text{cis}(\theta) = \cos \theta + i \sin \theta$.

Problema. Determina la forma polar de los complejos $1$, $-1$, $i$ y $-i$.

Solución. Todos estos números tienen norma $1$. Además, hacen ángulos $0, \pi, \frac{\pi}{2}, \frac{3\pi}{2}$ con el eje real positivo, respectivamente. De esta forma, sus coordenadas polares son
\begin{align*}
(1,0)\quad (1,\pi)\quad\left(1,\frac{\pi}{2}\right)\quad \left(1,\frac{3\pi}{2}\right),
\end{align*}

respectivamente.

De esta forma, la forma polar de cada uno es:
\begin{align*}
1&=\cos 0+i \sin 0=\text{cis} (0)\\
-1&=\cos \pi + i \sin \pi = \text{cis} (\pi) \\
i&=\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \text{cis} \left(\frac{\pi}{2}\right)\\
-i&= \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = \text{cis} \left( \frac{3\pi}{2}\right).
\end{align*}

$\square$

Una aclaración muy importante es que la forma polar de $z=x+yi$ no es $r+\theta i$. La forma polar es exactamente el mismo número complejo que el original, simplemente escrito de manera diferente.

Si la forma polar de un complejo es exactamente el mismo número que el original, ¿de qué nos sirve tenerlo en coordenadas polares? Resulta que la multiplicación compleja se entiende mucho mejor en términos de la forma polar. En la siguiente entrada veremos esto y cómo lo podemos usar para encontrar potencias de números complejos fácilmente.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina la forma polar de los siguientes complejos: $7-7i$ y $-2+2\sqrt{3}i$.
  2. Determina la forma rectangular de los complejos con coordenadas polares $\left(2,\frac{\pi}{3}\right)$ y $\left(1, \frac{11\pi}{6}\right)$.
  3. Si la forma polar del complejo $z$ es $r\text{cis} \theta$, ¿quién es la forma polar del conjugado?
  4. ¿Cuáles son aquellos números complejos que se obtienen al variar $\theta$ en la forma polar $3\text{cis}(\theta)$?
  5. ¿Qué figura en el plano definen aquellos números complejos que se obtienen al variar $r$ en la forma polar $r\text{cis}(\pi)$?

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Entradas relacionadas

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si $A$ es la matriz asociada a la transformación $T$ con respecto a ciertas bases, entonces $^tA$ es la matriz asociada de la transformación $^tT$ con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática $q$ nos recupera la única forma bilineal simétrica de la cuál viene $q$.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones $l_p$ , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema. Considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $$T(x,y,z)=(x+3y, x+y-z).$$
Sea $\mathcal{B}^*=\{e_1^*, e_2^*\}$ la base dual canónica de $\mathbb{R}^2$.
Calcula $^tT(e_1^*+e_2^*)$ y $^tT(e_1^*-e_2^*)$ en términos de la base dual canónica $\{f_1^\ast, f_2^\ast, f_3^\ast\}$ de $\mathbb{R}^3$.

Solución. Primero observemos que para un vector cualquiera de $\mathbb{R}^2$ se tiene que
\begin{align*}
e_1^*(x,y)&=x\\
e_2^*(x,y)&=y.
\end{align*}

entonces
\begin{align*}
(e_1^* + e_2^* )(x,y)&=x+y\\
(e_1^* – e_2^* )(x,y)&=x-y.
\end{align*}

Así,

\begin{align*}
(^tT(e_1^*&+e_2^*))(x,y,z)\\=&(e_1^* + e_2^*)(T(x,y,z))\\
=&(e_1^* + e_2^*)(x+3y, x+y-z)\\=&x+3y+x+y-z\\
=&2x+4y-z.
\end{align*}

Esto nos dice que $^tT(e_1^*+e_2^*)=2f_1^\ast+4f_2^\ast – f_3^\ast$.

Por otro lado,

\begin{align*}
(^tT(e_1^*&-e_2^*))(x,y,z)\\
=&(e_1^* – e_2^*)(T(x,y,z))\\
=&(e_1^* – e_2^*)(x+3y, x+y-z)\\
=&x+3y-x-y+z\\
=&2y+z.
\end{align*}

Por lo tanto, $ ^tT(e_1^*-e_2^*)) =2f_2^\ast+f_3^\ast.$

$\square$

Problema. Encuentra la matriz de $^tT$ con respecto a la base canónica de $\mathbb{R}^3$ sabiendo que

$T(x,y,z)=(x+y, y-z,x+2y-3z).$

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la $i$-ésima columna la imagen del $i$-ésimo vector canónico. Por esto, calculamos los siguientes valores

$T(e_1)=T(1,0,0)=(1,0,1)$
$T(e_2)=T(0,1,0)=(1,1,2)$
$T(e_3)=(0,0,1)=(0,-1,-3).$

Entonces la matriz asociada a $T$ es

$A=\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & -1\\
1 & 2 & -3\end{pmatrix}.$

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a $^tT$ es justamente la matriz

$^tA=\begin{pmatrix}
1 & 0 & 1\\
1 & 1 & 2\\
0 & -1 & -3\end{pmatrix}$.

$\square$

Problemas de formas bilineales y cuadráticas

Problema. Demuestra que la transformación

$b:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$
$b((x,y),(z,t))=xt-yz$

es una forma bilineal sobre $\mathbb{R}^2$. Describe la forma cuadrática asociada.

Demostración. Sea $(x,y)\in \mathbb{R}^2$ fijo. Queremos ver que

$b((x,y), \cdot):\mathbb{R}^2 \to \mathbb{R}$
definida por
$(u,v)\mapsto b((x,y),(u,v))$
es lineal.

Sean $(u,v),(z,t)\in \mathbb{R}^2$.

\begin{align*}
b(&(x,y),(u,v)+(z,t))\\&=b((x,y),(u+z, v+t))\\&=x(v+t)-y(u+z)\\&=(xv-yu)+(xt-yz)\\
&=b((x,y),(u,v))+b((x,y),(z,t)).
\end{align*}

Sea $k \in \mathbb{R}$.
\begin{align*}
b((x,y),k(u,v))&=b((x,y),(ku,kv))\\
&=kxv-kyu\\
&=k(xv-yu)\\
&=kb((x,y),(u,v)).
\end{align*}

Así, $(u,v)\mapsto b((x,y),(u,v))$ es lineal.

Ahora veamos que dado $(u,v)\in\mathbb{R}^2$ fijo, la transformación $(x,y)\mapsto b((x,y),(u,v))$ es lineal.

Sean $(x,y),(z,t)\in\mathbb{R}^2$ y $k\in \mathbb{R}$. Tenemos que
\begin{align*}
b((x&,y)+k(z,t),(u,v))\\
=&b((x+kz,y+kt),(u,v))\\
=&(x+kz)v – (y+kt)u\\
=& xv-kzv-yu-ktu\\
=&(xv-yu)+k(zv-tu)\\
=&b((x,y),(u,v))+kb((z,t),(u,v)).
\end{align*}

Así, $(x,y)\mapsto b((x,y),(u,v))$ es lineal y por consiguiente $b$ es una forma bilineal.

Ahora, tomemos $q:\mathbb{R}^2\to \mathbb{R}$ definida por $$q(x,y)=b((x,y),(x,y)).$$
Entonces $q(x,y)=xy-yx=0$. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal $b$.

$\square$

Problema. Para un real $p\geq 0$, definimos el espacio $$l_p:=\left\{(x_n)_{n\in\mathbb{N}} : x_n\in\mathbb{R} \forall n\in \mathbb{N} ; \displaystyle\sum_{i\in \mathbb{N}}|x_i| ^p < \infty \right\}.$$

Notemos que para $p\in[1,\infty)$, $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma $|\cdot |_p$. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera $H:l_2\times l_2 \to\mathbb{R}$ definida por

$H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})=\displaystyle\sum_{n\in\mathbb{N}}x_ny_n$.


Demuestra que $H$ es una forma bilineal simétrica sobre $l_2$.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada $n\in\mathbb{N}$ se tiene que

$0\leq(|x_n|- |y_n|)^2.$

Entonces ,
\begin{align*}
0&\leq |x_n| ^2 -2|x_ny_n|+ |y_n |^2\\
|x_n y_n|&\leq \frac{1}{2}(|x_n|^2 + |y_n|^2).
\end{align*}


Por consiguiente,

$\displaystyle\sum_{n\in\mathbb{N}}|x_n y_n|\leq \frac{1}{2}\left (\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 + \displaystyle\sum_{n\in\mathbb{N}}|y_n|^2 \right ) < \infty$.

Lo anterior se debe a que

$\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 < \infty$ ya que $(x_n)_{n\in \mathbb{N}}\in l_2$

y análogamente para $(y_n)_{n\in \mathbb{N}}$.

Así, $\displaystyle\sum_{n\in\mathbb{N}}x_n y_n < \infty$, pues converge absolutamente, y por lo tanto $H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ siempre cae en $\mathbb{R}$.

Ahora veamos que $H$ es bilineal. Sea $x=(x_n)_{n\in \mathbb{N}}\in l_2$ fija. Queremos ver que $$(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$$ es lineal.

Sean $y=(y_n)_{n\in \mathbb{N}},z=(z_n)_{n\in \mathbb{N}}\in l_2$ y $k\in \mathbb{R}$.

Entonces

\begin{align*}
H(x,&y+kz)\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n +kx_nz_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n + k\displaystyle\sum_{n\in\mathbb{N}}x_n z_n\\
&= H(x,y) + k H(x,z).
\end{align*}

Así, $(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

De manera análoga se ve que si $(y_n)_{n\in \mathbb{N}} \in l_2$ fija, entonces $(x_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

Además
\begin{align*}
H(x,y)&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}y_n x_n \\
&= H(y,x).
\end{align*}

Por lo tanto, $H$ es una forma bilineal simétrica sobre $l_2$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas entrada a entrada.

Entradas relacionadas

Álgebra Superior II: Problemas de norma y la ecuación general de segundo grado

Por Claudia Silva

Introducción

Estudiamos ya la norma de un número complejo, así como la ecuación general de segundo grado en $\mathbb{C}$ y un método para obtener raíces complejas. Abordaremos ahora varios ejemplos y ejercicios del libro de Álgebra Superior de Bravo, Rincón, Rincón, así como un ejercicio de norma.

Ejemplo de ecuaciones cuadráticas

Comenzaremos viendo con detalle el ejemplo 134 del libro. Antes de eso, hacemos un pequeño recordatorio de cómo se resuelven ecuaciones cuadráticas en los complejos. El ejemplo 134 dice lo siguiente.

Ejercicio. Encontrar las raíces de $z^2-2iz-9-6i=0$.

Ejemplo de resolución de ecuación cuadrática compleja (parte 1)
Ejemplo de resolución de ecuación cuadrática compleja (parte 2).

Problemas de raíces cuadradas y ecuaciones cuadráticas

A continuación, un par de incisos del ejercicio 326. Los incisos de este ejercicio consisten en encontrar raíces (cuadradas) complejas:

Ejercicio. Encuentra las raíces cuadradas de $1+\sqrt{3}i$ y las de $-1$.

Cómo encontrar raíces cuadradas complejas

Posteriormente, un ejercicio de resolución de una ecuación cuadrática compleja.

Ejercicio. Resuelve la ecuación cuadrática $z^2-3z+3-i=0$.

Resolución de una ecuación cuadrática compleja

Problema de norma compleja

Finalmente, resolvemos el siguiente problema de norma compleja.

Problema. Encuentra todos los complejos de la forma $z=2a+(1-3a)i$ en donde $a$ es un real y $z$ tiene norma $1$.

Ejercicio de norma compleja

Más adelante…

Tarea moral

Entradas relacionadas

Seminario de Resolución de Problemas: Identidad de Gauss e identidad de suma de cubos

Por Leonardo Ignacio Martínez Sandoval

[latexpage]

Introducción

En la entrada anterior comenzamos a platicar acerca de identidades algebraicas útiles en la resolución de problemas matemáticos. Vimos algunas identidades básicas y platicamos acerca del teorema del binomio de Newton. En esta entrada veremos dos identidades más: la identidad de Gauss para suma de cuadrados y la identidad para factorizar $a^3+b^3+c^3-3abc$. Damos más de una demostración de cada una de ellas para seguir explorando ideas algebraicas.

Identidad de cuadrados de Gauss

Proposición. Para $a,b,c,d$ números reales se cumple que $$(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2.$$

Demostración 1. Simplemente desarrollamos. Por un lado,
\begin{align*}
(a^2+b^2)(c^2+d^2) = a^2c^2+a^2d^2+b^2c^2+b^2d^2.
\end{align*}

Por otro lado, $ (ac-bd)^2+(ad+bc)^2$ es
\begin{align*}
&a^2c^2-2abcd+b^2d^2+a^2d^2+2abcd+b^2c^2\\
= &a^2c^2+a^2d^2+b^2c^2+b^2d^2.
\end{align*}

$\square$

La siguiente demostración nos ayuda a entender un poco mejor la identidad y tiene una idea que se puede aplicar en varios contextos.

Demostración 2. Vamos a dar un pequeño brinco a los números complejos, pues ahí podemos hacer la factorización $x^2+y^2=(x+yi)(x-yi)$.

Usando esa identidad:
\begin{align*}
&(a^2+b^2)(c^2+d^2) \\
=&(a+bi)(a-bi)(c+di)(c-di)\\
=&(a+bi)(c+di)(a-bi)(c-di)\\
=&((ac-bd)+(ad+bc)i) ((ac-bd)-(ad+bc)i)\\
=&(ac-bd)^2+(ad+bc)^2.
\end{align*}

$\square$

La idea que se puede recuperar de la demostración anterior es la siguiente: a veces una identidad no se puede factorizar en los números reales (racionales, enteros, etc), pero sí en los números complejos (otro sistema numérico más grande). Aunque el problema hable de números reales, es posible que podamos ir a los complejos y regresar a los reales con información.

Problema ejemplo para identidad de Gauss

Problema. Muestra que si tienes un número $x$ de la forma $r^2+7s^2$, con $r$ y $s$ números enteros, entonces el número $x^{2020}$ también es de esa forma.

Sugerencia pre-solución. Aquí, el exponente $2020$ es sospechoso, y sugiere que en realidad el problema debe ser más general. Haz algunos casos pequeños para buscar un patrón de cómo se comporta el producto de dos números de esa forma. Después, para estudiar las potencias, usa el principio de inducción.

Solución. Notemos que $$x=r^2+7s^2=(r+\sqrt{7}si)(r-\sqrt{7}si)$$ Tomemos otro número de esa forma, digamos $$y=t^2+7u^2= (t+\sqrt{7}ui)(t-\sqrt{7}ui).$$ Al hacer el producto de $x$ y $y$, aparecerá un factor $$ (r+\sqrt{7}si)(t+\sqrt{7}ui)=((rt-7su)+(ru+st)\sqrt{7}i)$$ y un factor $$ (r-\sqrt{7}si)(t-\sqrt{7}ui)=((rt-7su)-(ru+st)\sqrt{7}i),$$ que multiplicados son iguales a $$(rt-7su)^2+7(ru+st)^2.$$ Con todo esto, concluimos que el producto de cualesquiera dos números de la forma buscada, también es de la forma buscada. De aquí, $x^2$ es de la forma buscada, e inductivamente $x^n$ es de la forma buscada para todo entero $n\geq 1$. En particular, $x^{2020}$ es de la forma que se quiere.

$\square$

Identidad para $a^3+b^3+c^3-3abc$

Proposición. Para $a,b,c$ números reales, se tiene que $$a^3+b^3+c^3-3abc$$ es igual a $$(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$

Esta identidad también tiene varias demostraciones, que en conjunto guardan varias ideas. Veamos dos de ellas.

Demostración 1. Simplemente hacemos el producto de la segunda expresión para verificar que nos de la primera. Claramente aparece un único $a^3$ y por simétría aparecen $b^3$ y $c^3$ exactamente una vez. También, claramente aparece tres veces la expresión $-abc$. Todas las expresiones que aparecen son cúbicas y ya contamos las «de la forma» $x^3$ y $xyz$, así que por simetría basta ver qué pasa con cada expresión de la forma $x^2y$. Estas se obtienen ya sea de elegir $x$ en la primera y $-xy$ en la segunda, o bien $y$ en la primera y $x^2$ en la segunda, de modo que todas ellas se cancelan.

Sólo para asegurarnos que hicimos todo bien, deberíamos haber contado $3\cdot 6=18$ monomios. Hay tres de la forma $x^3$, tres de la forma $xyz$ y cada uno de los seis la forma $x^2y$ ya lo encontramos $2$ veces, una vez positivo y una vez negativo. Así, nuestra cuenta abarca $3+3+6\cdot 3= 18$ monomios, así que ya contamos todos los términos.

$\square$

Hay una segunda demostración, que usa ideas de álgebra lineal. Daremos la idea general, y más adelante, cuando hablemos de matrices y determinantes, platicaremos de estas ideas más a detalle.

Demostración. Calculemos el determinante $D$ de la matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a\end{pmatrix}$$ de dos formas distintas. Por un lado, podemos sumar los renglones $2$ y $3$ al primer renglón sin que cambie el determinante, así, $$D=\begin{vmatrix} a+b+c & a+b+c & a+b+c\\ c & a & b \\ b & c & a\end{vmatrix}.$$ De aquí, podemos factorizar $a+b+c$ pues está en cada entrada del primer renglón $$D=(a+b+c)\begin{vmatrix} 1 & 1 & 1\\ c & a & b \\ b & c & a\end{vmatrix}.$$

Finalmente, desarrollando el determinante que queda usando el primer renglón, tenemos que
\begin{align*}
D&=(a+b+c)((a^2-bc)-(ca-b^2)+(c^2-ab))\\
&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).
\end{align*}

Por otro lado, usando el truco para desarrollar un determinante de $3\times 3$ por diagonales,
\begin{align*}
D&=a^3+b^3+c^3-abc-abc-abc\\
&= a^3+b^3+c^3-3abc.
\end{align*}

Igualando ambas expresiones para $D$, obtenemos la identidad deseada.

$\square$

Problema ejemplo de factorización de $a^3+b^3+c^3-3abc$

Problema. Sean $a,b,c$ números reales. Muestra que $a^3+b^3+c^3=3abc$ si y sólo si $a+b+c=0$ o $a=b=c$.

Sugerencia pre-solución. Necesitarás la identidad anterior y un análisis de casos. También, para uno de los casos necesitarás usar la factorización de $x^2-2xy+y^2$ algunas veces.

Solución. De acuerdo a la identidad de la sección anterior, $a^3+b^3+c^3=3abc$ si y sólo si $$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0.$$

Notemos que $$a^2+b^2+c^2-ab-bc-ca=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2},$$ que siempre es mayor o igual que cero y es igual a $0$ si y sólo si $a-b=b-c=c-a=0$, si y sólo si $a=b=c$.

Así, $a^3+b^3+c^3=3abc$ si y sólo si alguno de los factores que lo conforman es cero, lo cual pasa si y sólo si $a+b+c=0$ o $a=b=c$.

$\square$

Más problemas

Puedes ver más problemas que usan identidades algebraicas en la entrada anterior de este tema. Además, puedes encontrar más problemas de identidades algebraicas en la Sección 4.1 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Identidades algebraicas y binomio de Newton

Por Leonardo Ignacio Martínez Sandoval

Introducción a entradas de álgebra

Cuando en matemáticas hablamos de álgebra, se abarca una gran cantidad de ideas, que van desde el álgebra de secundaria, en la cual factorizamos, despejamos y usamos identidades algebraicas, hasta el álgebra abstracta, que estudia estructuras algebraicas más generales como grupos, anillos y campos. Todas estas ideas tienen amplias aplicaciones en la resolución de problemas. En esta entrada, y las que vendrán a continuación, veremos numerosos ejemplos de esto

Para empezar, hablaremos de álgebra en el sentido de secundaria y preparatoria. Veremos que estas ideas, aunque sencillas, son muy versátiles. Después hablaremos de polinomios y de dos resultados fundamentales en su teoría: el teorema de factorización única y el teorema de la identidad. Los polinomios abundan en las matemáticas, y un correcto entendimiento de ellos abre muchas puertas en la resolución de problemas. En una entrada final daremos algunas ideas de otras estructuras algebraicas como grupos, anillos y campos.

Más adelante en el curso hablaremos con detalle de otros dos temas relacionados con álgebra: desigualdades y álgebra lineal.

Como lo hemos hecho hasta ahora, la idea no es profundizar demasiado en el desarrollo de la teoría algebraica. Para eso, es más recomendable llevar buenos cursos de distintos tipos de álgebra a nivel superior. Aquí en el blog hay material de los cursos Álgebra Superior II y Álgebra Lineal I que imparto en la Facultad de Ciencias de la UNAM.

Identidades algebraicas

Comenzaremos hablando de identidades algebraicas. Una identidad algebraica es una igualdad que se satisface para ciertas variables, independientemente del valor que tomen. Algunos ejemplos son las igualdades que se aprenden a nivel secundaria y bachillerato:

\begin{gather*}
a^2-b^2=(a-b)(a+b),\\
a^2+2ab+b^2=(a+b)^2,\\
a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2,\\
a^n-b^n = (a-b)(a^{n-1}+a^{n-2}b+\ldots+ab^{n-2}+b^{n-1}).
\end{gather*}

Varias de las identidades algebraicas nos permiten desarrollar o factorizar una expresión. Factorizarla es bastante útil en problemas de teoría de números, en donde es importante conocer qué números dividen a la expresión. Desarrollarla a veces nos permite trabajar con una suma de términos simétricos, que podemos estudiar con técnicas de polinomios o con desigualdades.

Veamos algunos ejemplos.

Problema. Muestra que si $n$ es un entero, entonces $n^4-20n^2+4$ no es un número primo.

Sugerencia pre-solución. Intenta formular un problema equivalente al factorizar la expresión. Hay más de un camino por el que puedes proceder para factorizar, pero no todos te llevan a una solución. Intenta completar cuadrados de distintas formas y ve si encuentras un patrón.

Solución. Reescribimos la expresión como sigue:
\begin{align*}
n^4-20n^2+4&=n^4-4n^2+4-16n^2\\
&=(n^2-2)^2-(4n)^2\\
&=(n^2-4n-2)(n^2+4n-2).
\end{align*}

Para ver que la expresión no es un primo, basta con ver que ninguno de estos factores puede ser igual a $1$ o $-1$. Si $n^2-4n-2=1$ o $n^2+4n-2=1$, entonces $n^2=\pm 4n+3$. Trabajando módulo $4$, tendríamos $n^2\equiv 3 \pmod{4}$, lo cual es imposible.

Si $n^2-4n-2=-1$ o $n^2+4n-2=-1$, entonces sumando $6$ de ambos lados tenemos $$(n\pm 2)^2=n^2\pm 4n+4=5.$$ Esto es imposible pues $5$ no es el cuadrado de un entero. Así, $n^4-20n^2+4$ se puede factorizar en factores distintos de $1$ y $-1$ y por lo tanto no es primo.

$\square$

El siguiente problema fue parte de la 1a Olimpiada Mexicana de Teoría de Números. Veremos dos soluciones. Ambas usan ideas algebraicas, pero son distintas entre sí.

Problema. Sean $a,b,c,d$ enteros tales que

\begin{align*}
ab + bc + ca &= 1\\
ad + dc + ca &= 1\\
ab + bd + da &= 1.
\end{align*}

Determina todos los valores posibles que puede tomar $bc+cd+db$.

Sugerencia pre-solución 1. Hay varias formas de aprovechar la simetría del problema. Intenta manipular las ecuaciones para obtener información y recuerda que es importante usar que $a$, $b$, $c$ son enteros.

Solución 1. A partir de la primera y segunda ecuación, tenemos que $$ab+bc+ca=ad+dc+ca,$$

de donde $0=ad+dc-ab-bc=(a+c)(d-b)$. De aquí tenemos dos opciones: $a=-c$ o $b=d$. Si $a=-c$, de la segunda ecuación obtenemos $$1=ad+dc+ca=-c^2,$$ lo cual es imposible. Así, concluimos que $b=d$.

Por simetría, concluimos que $c=b$, así que $b=c=d$. Tras esto, las tres ecuaciones se reducen a una sola $$1=2ab+b^2=b(2a+b).$$ Las únicas factorizaciones de $1$ en enteros son $1=1\cdot 1$ o $1=(-1)(-1)$, de modo que $b=2a+b$, de donde $a=0$ y $b=\pm 1$. De cualquier forma, la expresión que buscamos es $bc+cd+db=3b^2=3$.

$\square$

Sugerencia pre-solución 2. Formula un problema equivalente sumando $a^2$ en ambos lados en cada una de las ecuaciones.

Solución 2. Sumando $a^2$ en ambos lados de la primer ecuación obtenemos $$a^2+1=a^2+ab+bc+ca=(a+b)(a+c).$$ Las otras dos ecuaciones dan expresiones simétricas. Multiplicando las tres, tenemos $$(a^2+1)(a^2+1)^2=(a+b)^2(b+c)^2(c+a)^2.$$

El lado derecho es el cuadrado de un entero, así que el izquierdo también debe serlo, de modo que $a^2+1$ debe ser el cuadrado de un entero. Pero los únicos cuadrados a distancia $1$ son $0$ y $1$, de donde $a^2+1=1$, y así $a=0$. Las ecuaciones se convierten entonces en $bc=dc=bd=1$, de donde la suma de las tres es $3$.

$\square$

Demostraciones del binomio de Newton

La siguiente es una de las identidades algebraicas más importantes.

Teorema (binomio de Newton). Para $a$ y $b$ números reales y $n$ un entero no negativo, se tiene que
\begin{align*}
(a+b)^n=\sum_{j=0}^n \binom{n}{j}a^{n-j}b^j
\end{align*}

El término de la derecha es $$a^n+\binom{n}{1}a^{n-1}b+\ldots+\binom{n}{n-1}ab^{n-1} + b^n.$$

Veamos algunas demostraciones del teorema de binomio de Newton, que usan ideas un poco distintas. La primera usa ideas combinatorias. La segunda, ideas más algebraicas. La tercera es menos general, pero usa ideas geométricas.

Demostración combinatoria

Demostración 1. Pensemos al lado izquierdo como el producto $$(a+b)(a+b)\ldots(a+b)(a+b).$$ ¿Cómo se obtienen factores al desarrollar esta expresión? En cada uno de los $n$ paréntesis hay que elegir o un $a$, o un $b$. Así, cada sumando es producto de $n$ letras.

Si elegimos $j$ veces $b$, entonces elegimos $n-j$ veces $a$. ¿De cuántas formas podemos elegir $j$ veces $b$? Tantas como subconjuntos de tamaño $j$ de un conjunto de $n$ elementos, es decir, $\binom{n}{j}$.Así, el término $a^{n-j}b^j$ aparece $\binom{n}{j}$ veces.

Para terminar, notemos que $j$ puede ir desde $0$ (no elegir ningún $b$), hasta $n$ (no elegir ningún $a$).

$\square$

La demostración anterior es combinatoria, pues está usando argumentos de conteo. Está contando de dos formas distintas los términos que aparecen en el producto desarrollado. Además, está usando la interpretación combinatoria de los coeficientes binomiales.

Demostración algebraica

Demostración 2. Si $b=0$, entonces en ambos lados tenemos $a^n$, ya que el único sumando en el que no aparece $b$ es el primero. Tenemos algo análogo si $a=0$. De otra forma, podemos asumir que $a$ y $b$ no son cero y dividir ambos lados de la igualdad que queremos entre $b^n$. Definiendo $x=a/b$, tenemos que mostrar que:

$$(x+1)^n= \sum_{j=0}^n \binom{n}{j}x^{n-j}.$$

Esta igualdad es claramente cierta para $n=0$, pues en ambos lados obtenemos $1$, y para $n=1$, pues en ambos lados obtenemos $x+1$. Procediendo por inducción (explicamos cada paso con un poco de detalles más abajo):

\begin{align*}
(x+1)^{n+1}&=(x+1)(x+1)^n\\
& = (x+1)\sum_{j=0}^n \binom{n}{j} x^{n-j}\\
&=\sum_{j=0}^n \binom{n}{j} x^{n-j+1}+\sum_{j=0}^n \binom{n}{j}x^{n-j}\\
& = \sum_{j=0}^{n+1} \binom{n}{j-1} x^{n-j}+\sum_{j=0}^{n+1} \binom{n}{j}x^{n-j}\\
&=\sum_{j=0}^{n+1}\left(\binom{n}{j-1}+\binom{n}{j}\right) x^{n-j}\\
&=\sum_{j=0}^{n+1}\binom{n+1}{j} x^{n-j}.
\end{align*}

El primer paso es claro. En el segundo usamos hipótesis inductiva. Luego, hacemos la multiplicación por $x+1$. El siguiente paso puede ser un poco confuso, pues parece que «agregamos términos», pero en la segunda suma sólo agregamos $\binom{n}{n+1}x^{-1}=0$. En la primer suma hicimos un shift o desfase: los términos que estaban antes para $j$ de $0$ a $n$, ahora están para $j$ de $1$ a $n+1$. Además, agregamos el término $\binom{n}{-1}x^{n}=0$. En el siguiente paso usamos la identidad de Pascal: $$\binom{n}{j-1}+\binom{n}{j}=\binom{n+1}{j},$$ que se puede demostrar combinatoriamente, o directamente de manera algebraica a partir de la fórmula para coeficientes binomiales.

Con esto termina la demostración por inducción.

$\square$

Esta segunda demostración es mucho más algebraica, es decir, usa ideas de cómo se manipulan las expresiones con variables. El primer paso, en el que reducimos el problema a cuando un término es $1$, se llama homogenización. En realidad no era estrictamente necesario hacerlo, pero simplifica la notación. En las sumas hicimos un shift, que es otra técnica que se usa al estudiar sumas y series.

Demostración geométrica

Daremos una última demostración del teorema del binomio de Newton, pero sólo para el caso $n=2$. Lo que tenemos que demostrar es simplemente la identidad $$(a+b)^2=a^2+2ab+b^2.$$ Para este caso, hay una bonita «demostración sin palabras»:

Binomio al cuadrado mostrado geométricamente
Demostración visual del binomio al cuadrado

Esta demostración es geométrica, pues estamos interpretando a la igualdad como una igualdad de áreas. Estamos usando una fórmula de área para cuadrados y rectángulos. Además, estamos usando que el área de una figura es aditiva, es decir, que es igual a la suma de áreas de figuras en las que queda subdividida.

Puedes elegir tu demostración favorita del binomio de Newton. Sin embargo, en resolución de problemas es importante saber proceder con varios acercamientos. Hay problemas en los que el acercamiento combinatorio, el algebraico o el geométrico es ventajoso, y por ello es mejor tener buena práctica en todos ellos.

Una aplicación del binomio de Newton en teoría de números

En entradas anteriores ya hemos usado el teorema del binomio de Newton en repetidas ocasiones, por ejemplo, en la entrada de aritmética de números complejos. Veamos un ejemplo más.

Problema. Sean $a$ y $b$ enteros primos relativos. Muestra que para todo entero positivo $n$, se tiene que $a^n$ y $b^n$ son primos relativos.

Sugerencia pre-problema. Hay varias formas de dar una solución de esto. Una es analizando a los enteros primo por primo. Sin embargo, existe una solución usando binomio de Newton y la caracterización en términos de combinaciones lineales enteras para primos relativos.

Solución. Como $a$ y $b$ son primos relativos, existe una combinación lineal entera de ellos que da $1$, digamos $$ax+by=1.$$ Elevando esta igualdad a la $2n-1$ tenemos $$1=1^{2n-1}=(ax+by)^{2n-1}.$$ Abriendo el último término con binomio de Newton queda
$$\sum_{j=0}^{n-1} \binom{2n-1}{j} a^{2n-1-j}b^j + \sum_{j=n}^{2n-1} \binom{2n-1}{j} a^{2n-1-j}b^j,$$ y factorizando $a^n$ del primer sumando y $b^n$ del segundo,
$$a^n \sum_{j=0}^{n-1} \binom{2n-1}{j} a^{n-1-j}b^j + b^n \sum_{j=n}^{2n-1} \binom{2n-1}{j} a^{2n-1-j}b^{j-n}.$$

Lo que queda a la derecha es una combinación lineal entera de $a^n$ y $b^n$ igual a $1$, y por lo tanto son primos relativos.

$\square$

Más problemas

En la siguiente entrada hablaremos de la identidad de Gauss para suma de cuadrados y de la identidad para $x^3+y^3+z^3-3xyz$, las cuales se usan frecuentemente en resolución de problemas. Además, puedes encontrar más problemas de identidades algebraicas en la Sección 4.1 del libro Problem Solving through Problems de Loren Larson.