Archivo de la etiqueta: algebra

Álgebra Superior I: Conectores: negaciones, conjunciones y disyunciones

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada de introducción a este curso ya acordamos que una proposición matemática (o simplemente proposición) es un enunciado que puede ser verdadero o falso (pero no ambos), y que habla de objetos matemáticos.

Ahora hablaremos de algunas reglas que nos permiten comenzar con una o más proposiciones y combinarlas para obtener otras proposiciones. Hablaremos de la negación, de la conjunción y de la disyunción. De manera informal, la primera antepone un «no es cierto que» a cualquier proposición, y le cambia su veracidad. La segunda y tercera combinan dos proposiciones en una sola. De manera informal, ponen «y» y «o» entre las oraciones, respectivamente.

A estas reglas se les conoce como conectores o conectivos. Discutiremos cada uno de ellos de manera intuitiva y después definiremos qué quieren decir de manera formal.

Conectores lógicos

De tu experiencia previa, ya sabes que hay formas en las que podemos combinar, por ejemplo, a números enteros para obtener nuevos números. Si tomamos el número $2$ y el número $3$ y les aplicamos la operación «suma», entonces debemos entreponer un signo $+$ entre ellos para obtener la expresión $2+3$. Esta expresión es de nuevo un número entero: el $5$. Así como hacemos operaciones entre números, también podemos hacer operaciones entre proposiciones.

Un conector lógico (o simplemente conector) es una regla que permite tomar una o más proposiciones, «operarlas» y de ahí construir una nueva proposición «resultado». Como lo que más nos importa de las proposiciones es si son verdaderas o falsas, entonces lo más importante de cada conector que demos es decir cómo se determina la veracidad de la proposición que obtuvimos como resultado. En estas entradas hablaremos a detalle de los siguientes conectores:

  • Negaciones: Usan el símbolo $\neg$. Toman una proposición $P$ y la convierten en la proposición $\neg P$ cuyo valor de verdad es opuesto al de $P$.
  • Conjunciones: Usan el símbolo $\land$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\land Q$, que para ser verdadera necesita que tanto $P$ como $Q$ sean verdaderas.
  • Disyunciones: Usan el símbolo $\lor$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\lor Q$, que para ser verdadera necesita que alguna de $P$ o $Q$ lo sean (o ambas).
  • Implicaciones: Usan el símbolo $\Rightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\Rightarrow Q$, que para ser verdadera se necesita o bien que $P$ sea falsa (y $Q$ puede ser lo que sea), o bien que tanto $P$ como $Q$ sean verdaderas.
  • Dobles implicaciones: Usan el símbolo $\Leftrightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P \Leftrightarrow Q$, que para ser verdadera necesita que $P\Rightarrow Q$ sea verdadera y que $Q\Rightarrow P$ sea verdadera.

Ahora profundizaremos en las primeras tres y las últimas dos las dejaremos para más adelante.

Negaciones

Lo que hacen las negaciones a nivel de texto es anteponer un «no es cierto que» a una proposición. Por ejemplo si comenzamos con la proposición $$A=\text{«El cielo es azul.»}$$ entonces su negación es $$\neg A=\text{«No es cierto que el cielo es azul.»}$$ Observa que si pensamos a $A$ como una proposición verdadera, entonces la proposición $\neg A$ es falsa.

Hay que tener cuidado. El efecto que hacen las negaciones simplemente es anteponer «no es cierto que» a una proposición. Puede ser tentador intentar poner un «no» en alguna parte de la oración de manera arbitraria, pero esto puede llevar a problemas. Por ejemplo, la negación de la oración $$B=\text{«El número $2$ es par y múltiplo de $3$.»}$$ es simplemente $$\text{«No es cierto que el número $2$ es par y múltiplo de $3$.»}$$ Si hacemos la negación con poco cuidado, podríamos llegar a $$\text{«El número $2$ no es par ni múltiplo de $3$.»}$$ que no funciona, pues no tiene el valor opuesto de verdad: la oración original es falsa, y esta también.

Más adelante hablaremos con cuidado del conector «y» que usamos en el ejemplo anterior. Veremos cómo se pueden negar de manera correcta a las proposiciones que lo usan.

Tabla de verdad de negaciones

De manera formal, dada una proposición $P$ definimos a la negación de $P$, que denotamos por $\neg P$ como la proposición que tiene valor opuesto de verdad al de $P$. De esta forma, por definición, se tiene que $\neg P$ es la proposición con la siguiente tabla de verdad:

$P$$\neg P$
$0$ $1$
$1$$0$ 

Ya que al aplicar una negación obtenemos una nueva proposición, entonces ahora podemos volverle a aplicar negación a la nueva proposición obtenida. Así, si comenzamos con $$P=\text{«El cielo es azul.»}$$ y lo negamos, obtenemos $$\neg P = \text{«No es cierto que el cielo es azul.»}$$ y luego podemos negar de nuevo para obtener $$\neg(\neg P) = \text{«No es cierto que no es cierto que el cielo es azul.»}$$

Como la negación cambia el valor de verdadero a falso y viceversa, entonces $P$ y $\neg(\neg P)$ tienen el mismo valor de verdad. Esto lo podemos verificar en la siguiente tabla de verdad, llenando primero la segunda columna y luego la tercera a partir de la segunda.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Observa que las columnas de $P$ y de $\neg(\neg P)$ tienen exactamente los mismos valores. Diremos entonces que $P=\neg(\neg P)$. Observa cómo se parece mucho a la igualdad $-(-x)=x$ en los números reales. En la siguiente entrada hablaremos con más formalidad de cuándo podemos decir que dos proposiciones $P$ y $Q$ son iguales.

Conjunciones

Lo que hacen las conjunciones a nivel de texto es anteponer un «y» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $20$ es impar.»}$$ y $$Q=\text{«El número $9$ es un número cuadrado.»}$$ entonces la conjunción de ambas es $$P\land Q=\text{«El número $20$ es impar y el número $9$ es cuadrado.»}$$ Para que esta nueva proposición sea verdadera, debe suceder que cada una de las proposiciones que la conforman deben serlo. En este caso en específico, esto no ocurre. La proposición $Q$ es verdadera, pero la proposición $P$ es falsa. De este modo, la conjunción es falsa.

Veamos algunos ejemplos más. Tomemos las siguientes proposiciones:

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todas las blorg son rojas.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Para determinar la veracidad de cada una de estas, tendríamos que ponernos de acuerdo en la definición de varios términos como «felinos», «blorg», «es mayor que», «cuadrado», «luna», etc. Pero por practicidad, daremos por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La conjunción de $A$ con $B$ es $$A\land B = \text{«Los gatos son felinos y todas las blorg son rojas.»}$$ Como cada una de las proposiciones que conforman la conjunción es verdadera, entonces la conjunción lo es.

La conjunción de $B$ con $E$ es $$B\land E = \text{«Todas las blorg son rojas y la luna es azul».}$$ Por muy cierto que sea que todas las blorg sean rojas, la conjunción no es verdadera pues $E$ es falsa.

Una vez que formamos una conjunción, esta es ahora una nueva proposición. Por lo tanto, se vuelve candidata a aplicarle negaciones y conjunciones. De esta forma, tiene sentido pensar en la proposición $\neg(A\land B)$, en donde los paréntesis implican que primero se hace esa operación. A nivel textual también usaremos los paréntesis para no confundirnos, de modo que escribiremos: \begin{align*}\neg(A\land B) &= \text{«No es cierto que (los gatos son felinos y todas}\\ &\text{las blorg son rojas).»}\end{align*}

También tiene sentido pensar en la proposición $(\neg C) \land E$. O bien en la proposición $A\land( (\neg C) \land E)$. Puedes practicar pasar estas oraciones a texto con paréntesis.

Tabla de verdad de conjunciones

Para formalizar la discusión anterior, definimos a la conjunción de dos proposiciones $P$ y $Q$ como la proposición $P\land Q$ que es verdadera únicamente cuando tanto $P$ como $Q$ son verdaderas. Así, por definición, su tabla de verdad es la siguiente:

$P$$Q$$P\land Q$
$0$$0$$0$ 
$0$$1$$0$ 
$1$$0$$0$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural. Para responderla, podemos hacer la tabla de verdad considerando tanto a las columnas $P\land Q$ como $Q\land P$ y llenándolas por separado.

$P$$Q$$P\land Q$$Q \land P$
$0$$0$ $0$$0$ 
$0$$1$$0$ $0$ 
$1$$0$$0$  $0$
$1$$1$$1$ $1$ 

Observa que las columnas correspondientes a $P\land Q$ y $Q\land P$ son iguales, de modo que podemos concluir que $P\land Q=Q\land P$. Hay otras preguntas muy naturales: ¿qué pasa si hacemos la conjunción de más de dos proposiciones? ¿son iguales $(P\land Q) \land R$ y $P\land(Q \land R)$? ¿qué pasa si combinamos a la negación con la conjunción? Esto lo veremos más adelante.

Disyunciones

Lo que hacen las disyunciones a nivel de texto es anteponer un «o» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $10$ es impar.»}$$ y $$Q=\text{«El número $7$ es un número primo.»}$$ entonces la conjunción de ambas es $$P\lor Q=\text{«El número $10$ es impar o el número $7$ es primo.»}$$ Para que esta nueva proposición sea verdadera, es suficiente con que una de las proposiciones que la conforman lo sea. En este caso en específico, esto sí ocurre. La proposición $Q$ es verdadera, de modo que aunque la proposición $P$ sea falsa, la disyunción resulta ser verdadera.

Retomemos las proposiciones de la sección anterior para ver más ejemplos.

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todas las blorg son rojas.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Recuerda que estamos dando por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La disyunción de $A$ con $B$ es $$A\lor B = \text{«Los gatos son felinos o todas las blorg son rojas.»}$$ Como $A$ es verdadera, esto basta para decir que $A\lor B$ es verdadera. Como $B$ también es verdadera, también esto bastaba para decir que $A\lor B$ es verdadera. No hay ningún problema con que tanto $A$ como $B$ sean verdaderas.

La conjunción de $D$ con $E$ es $$C\lor E = \text{«Un cuadrado tiene ángulos de $60^\circ$ o la luna es azul».}$$ Aquí tanto $D$ como $E$ son falsas, de modo que la disyunción también lo es.

Las disyunciones también crean proposiciones nuevas, a las que se les pueden aplicar negaciones, conjunciones y disyunciones. El uso del paréntesis se vuelve crucial. Observa que usando las proposiciones ejemplo de arriba, tenemos que

  • $(D\land C) \lor A $ es verdadera
  • $D\land (C \lor A)$ es falsa

Tabla de verdad de disyunciones

Para formalizar la discusión anterior, definimos a la disyunción de dos proposiciones $P$ y $Q$ como la proposición $P\lor Q$ que es verdadera cuando por lo menos una de las proosiciones $P$ y $Q$ lo es. Así, por definición, su tabla de verdad es la siguiente:

$P$$Q$$P\lor Q$
$0$$0$$0$ 
$0$$1$$1$ 
$1$$0$$1$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural, y ya puedes responderla por tu cuenta. Intenta hacer esto haciendo una tabla de vedad que incluya tanto a las columnas $P\lor Q$ como $Q\lor P$.

En la sección anterior vimos la importancia de poner paréntesis en las expresiones. Esta importancia también podemos verificarla mediante la siguiente tabla de verdad, en donde consideramos tres proposiciones $P$, $Q$ y $R$ y estudiamos qué sucede con $(P\land Q) \lor R$ y con $P \land (Q \lor R)$. Como hay $2$ posibilidades para cada uno de $P$, $Q$, $R$, debemos tener $2\cdot 2 \cdot 2 = 8$ filas.

Llenamos primero las primeras dos columnas usando lo que sabemos de $P\land Q$ y $Q\lor R$.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ 
$0$$0$$1$$0$ $1$ 
$0$$1$$0$$0$ $1$
$0$$1$$1$$0$ $1$ 
$1$$0$$0$$0$$0$
$1$$0$$1$$0$$1$
$1$$1$$0$$1$$1$
$1$$1$$1$$1$$1$

Y ahora sí podemos llenar las últimas dos porque ya sabemos cómo es el valor de verdad de cada una de las proposiciones que las conforman.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ $0$$0$
$0$$0$$1$$0$ $1$ $1$$0$
$0$$1$$0$$0$ $1$$1$$0$
$0$$1$$1$$0$ $1$ $1$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$1$$1$$1$
$1$$1$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$

Observa que las columnas correspondientes a $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, pues difieren en algunos renglones, por ejemplo, en el segundo renglón. De este modo, podemos concluir que hay ocasiones en las que $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, así que el orden de las operaciones suele ser importante.

Más adelante…

En esta entrada hablamos de la negación, la conjunción y la disyunción. Vimos cómo justificar algunas de sus propiedades mediante tablas de verdad, como $A\land B=B\land A$. En la siguiente entrada usaremos esta técnica y otras más para probar otras propiedades interesantes de estos conectores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe en texto y usando paréntesis la proposición $(A\land B) \lor (\neg D)$, usando $A$, $B$ y $D$ como las proposiciones ejemplo que dimos.
  2. Mediante una tabla de verdad, justifica la igualdad $P\lor Q = Q \lor P$.
  3. Mediante una tabla de verdad, justifica la igualdad $(P\lor Q) \lor R = P \lor (Q \lor R)$.
  4. Haz una tabla de verdad para verificar que las proposiciones $\neg(P \land Q)$ y $(\neg P) \land (\neg Q)$ no son iguales. Es decir, debes de hacer todos los casos y ver que las columnas difieren en uno o más renglones.
  5. Haz una tabla de verdad para verificar que las proposiciones $(P\land Q) \land (R \land S)$ y $(((P\land Q) \land R) \land S)$ son iguales. Va a ser una tabla grande, de $16$ renglones.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Introducción al curso y proposiciones matemáticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este curso se desarrollarán varias de las habilidades matemáticas fundamentales a nivel superior. Trabajaremos en lo siguiente:

  • Conocer a detalle las reglas lógicas que usamos en matemáticas y cómo nos permiten demostrar resultados a partir de pequeños bloques.
  • Definir de manera formal que son los conjuntos, las relaciones y las funciones y aprender a justificar mediante argumentos formales las propiedades que tienen.
  • Construir el conjunto de los números naturales y aprovecharlo para poner en práctica todo lo aprendido anteriormente.
  • Desarrollar habilidades fuertes para responder preguntas del estilo «¿De cuántas formas puede ocurrir…?» «¿Cuántos objetos matemáticos hay tales que…?»
  • Introducir los conceptos de espacio vectorial, vectores y matrices y ver cómo nos ayuda para entender a los sistemas de ecuaciones lineales.

La primer parte del curso es fundamental, pues en todas las demás asignaturas de matemáticas a nivel superior se usan argumentos formales una y otra vez. En esta primera parte comenzarás a entender qué es el «pensamiento matemático» y conocerás la estructura lema-proposición-teorema-corolario que es muy usada a través de diferentes áreas.

Falso y verdadero

Nuestra experiencia con la vida cotidiana nos da una intuición de qué significa que algo sea verdadero o falso. Entendemos por verdadero algo que es verificable o que coincide con la realidad, por ejemplo: «Marte es un planeta».

Algo falso es lo contrario: una cosa que es posible verificar que no es cierta, o que no coincide con lo que experimentamos. Un ejemplo sería «El sol es de color azul».

En el mundo real, a veces estos conceptos de veracidad pueden tener muchos matices. En el caso del pensamiento matemático esto no es así. Lo que se hace en matemáticas es acordar (o dar por hecho) que ciertos enunciados son verdaderos y, a partir de ellos ver cuáles muchos otros enunciados verdaderos y enunciados falsos se pueden obtener como conclusión.

De esta forma, entenderemos a verdadero y falso como propiedades que puede tener un enunciado. Daremos reglas que nos permiten combinar enunciados de diferentes formas para obtener un «enunciado compuesto» y deducir su veracidad. A la larga, lo que nos interesa es poder deducir que una afirmación es verdadera a partir de la veracidad de afirmaciones más chicas y simples. Es como armar un castillo con pequeños bloques.

Proposiciones

Entenderemos por una proposición a un enunciado que se puede decir si es verdadero o falso, pero no ambas a la vez. Algunos ejemplos de proposiciones de la vida real serían las siguientes:

  • «La tierra gira alrededor del sol»
  • «Los tacos más ricos son los del señor de los tacos de canasta»
  • «Un kilómetro es igual a 100 metros»
  • «La receta sale mejor si se le pone el doble de leche»

Observa que para que algo sea una proposición no es necesario que sea verdadero. Sólo basta con que se pueda decir si es verdadero o no. Así, «Un kilómetro es igual a 100 metros» es una proposición porque se puede decidir si es falsa o verdadera. Y es falsa. También observa que algunas proposiciones necesitan más contexto para poder decir si son verdaderas o falsas. Considera la oración «La receta sale mejor si se le pone el doble de leche». Por supuesto, tendríamos que saber de qué receta hablamos o qué quiere decir que «salga mejor», para poder decidir si es verdadera o falsa.

Sin embargo, los siguientes enunciados no son proposiciones.

  • ¡Feliz cumpleaños!
  • Este enunciado es falso
  • ¿Es cierto que $7$ es un número primo?

El primero no está afirmando la veracidad de nada, sólo expresa un sentimiento. El problema con el segundo enunciado es que si es verdadero, entonces es falso y viceversa. El tercero parecería sí ser algo que podemos decir si es verdadero o falso. Pero ten mucho cuidado. Compara los siguientes dos:

  • ¿Es cierto que $7$ es un número primo?
  • El número $7$ es primo.

El primer enunciado es una pregunta y no está afirmando nada, sólo está preguntando. El segundo sí está afirmando algo y podemos decir si es verdadero o falso. ¿Cómo le hacemos para saber si es verdadero o falso? En la vida cotidiana puede ser muy fácil de responder a partir de la experiencia. Pero en el contexto matemático será fundamental primero definir qué quiere decir «primo» e incluso definir qué quiere decir «7» para que podamos responder la pregunta.

El enunciado «El número $7$ es primo» es un ejemplo de una proposición matemática, es decir, una proposición en la que se habla de objetos matemáticos y sus relaciones entre sí. Es posible que simplemente les llamemos «proposiciones», pues será claro que estaremos en el contexto matemáticos. Otros ejemplos de proposiciones matemáticas son las siguientes:

  • El valor de la integral $\int_0 ^1 x^2\, dx$ es $\frac{1}{5}$.
  • Existen $10$ formas de elegir dos vocales distintas sin que se repitan y sin que nos importe el orden de elección.
  • Si $x>0$, entonces $x+1\geq 2\sqrt{x}$.

¿Puedes decir cuáles de estas proposiciones matemáticas son falsas y cuáles son verdaderas?

Proposiciones matemáticas en símbolos

En cursos de álgebra en la educación media superior nos enseñan la utilidad de introducir variables para referirnos a las cosas. Cuando ponemos $x^2+x+1$ estamos pensando en que $x$ es un número que podría tomar cualquier valor del sistema que estemos usando (por ejemplo, los números reales). Los símbolos matemáticos son muy útiles pues nos ayudan a cubrir muchos casos de manera simultánea y a escribir de manera abreviada nuestros resultados.

Aplicaremos todas estas ideas para estudiar a las proposiciones matemáticas. A una proposición arbitraria le pondremos un nombre de letra, por ejemplo $P$, $Q$, $R$, $p$, $q$, $r$, etc. Así, podemos hacer cosas como decir lo siguiente:

  • $P=$ «Todos los múltiplos de cuatro son números pares».
  • Para cualquier proposición $P$, tenemos que con $P$ se puede deducir $P$.

Observa que en el primer caso se está tomando un valor de $P$ específico, pero en el segundo estamos aprovechando la letra para hablar de algo así como «todas» las proposiciones de una manera práctica.

Proposiciones matemáticas en tablas de verdad

Una proposición tiene únicamente dos opciones: ser verdadera o ser falsa. Ahora estamos trabajando únicamente con una proposición, pero en general nos conviene tener una tabla en donde reflejemos todas las posibilidades que tenemos para las proposiciones que nos dan. Esto lo haremos mediante una tabla de verdad.

En una tabla de verdad tenemos dos tipos de columnas. Las que están a la izquierda, en donde consideramos todas las posibilidades para nuestras proposiciones y las que están a la derecha, en donde escribimos proposiciones compuestas que queremos saber si son falsas o verdaderas de acuerdo a cómo fueron las proposiciones iniciales. Para simplificar la presentación, en las tablas de verdad se usa $0$ como falso y $1$ como verdadero.

El siguiente es un ejemplo muy sencillo. Para una proposición $P$ arbitraria tenemos dos opciones que sea falsa ($0$) o que sea verdadera ($1$). Esto lo ponemos en la primer columna, que está en gris. A la derecha ponemos $P$ hasta arriba.

$P$$P$
$0$
$1$

Para llenar la tabla nos preguntamos, ¿qué podemos decir de $P$ conociendo la información que tenemos de $P$? Por supuesto, la pregunta es muy simple: cuando $P$ es falso, $P$ es falso. Cuando $P$ es verdadero, $P$ es verdadero. Así, la forma de llenar la tabla de verdad sería la siguiente:

$P$$P$
$0$$0$
$1$$1$

Este fue un ejemplo muy sencillo. Lo que nos gustaría hacer en esta primera parte del curso es aprender a combinar más de una proposición para obtener proposiciones matemáticas más interesantes. Dentro de algunas entradas habrás conocido símbolos suficientes y adquirido habilidades para llenar tablas de verdad como la siguiente:

$P$$Q$$\neg P$$\neg Q$$\neq P \land Q$$(\neg P \land Q \Rightarrow \neg Q)$
$0$$0$
$0$$1$
$1$$0$
$1$$1$

Más adelante…

En la siguiente entrada platicaremos de los tipos de enunciados matemáticos que existen, y con los cuales te encontrarás muy frecuentemente en el transcurso de tu formación matemática. Hablaremos de axiomas, definiciones, lemas, proposiciones, teoremas, corolarios y otros. Platicaremos acerca de ellos de manera un poco informal y veremos en dónde entran en los conceptos que estamos platicando.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Piensa en $5$ enunciados que sean proposiciones. Intenta ser variado con tus ejemplos.
  2. Piensa en $5$ enunciados que no sean proposiciones.
  3. Escribe $5$ proposiciones matemáticas.
  4. Piensa en $5$ enunciados que son proposiciones, pero que es muy muy difícil decir si son ciertos o no. Por ejemplo «En el mundo hay una persona con 12548 cabellos».
  5. Escribe $5$ proposiciones matemáticas que te parezcan «obvias» o muy directas. Por ejemplo, «La suma $2+2$ es igual a $4$». Identifica en ellas los términos que aparecen y pregúntate si realmente sabes cómo está definido ese término. Por ejemplo, ¿qué es $2$? ¿qué es $4$? ¿qué es el símbolo $+$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: Problemas de exponencial, logaritmo y trigonometría en los complejos

Por Claudia Silva

Introducción

En entradas anteriores, vimos la construcción de los números complejos, sus operaciones y varias de sus características algebraicas. Conociendo ya las funciones exponencial y logaritmo, así como las funciones trigonométricas seno y coseno, vamos a iniciar con un breve análisis geométrico de la función exponencial. Posteriormente pasaremos a hacer unos ejercicios simples de operar dichas funciones en números complejos concretos.

Geometría de la exponencial compleja

Para empezar, estudiamos qué le hace la función exponencial al plano complejo de manera geométrica. Para hacer esto, tomamos varias rectas en el plano complejo para entender en qué se transforman tras aplicarles la función exponencial.

A grandes rasgos, cuando tomamos una recta vertical, la imagen de esta le da la vuelta al origen repetidamente. Cuando tomamos una recta horizontal, su imagen es un rayo que emana del origen (sin tocarlo).

En este video se explican estas ideas de manera visual.

Calcular una exponencial compleja

Lo siguiente que haremos es resolver un ejercicio de calcular la exponencial de un número complejo. Recuerda que, por definición, se tiene que $$e^{x+iy}=e^x\text{cis}(y).$$

Ejercicio. Expresa $e^{4+\frac{\pi}{6}i}$ en la forma $x+iy$.

Problema de logaritmo complejo

Recuerda que el logaritmo complejo funciona como inverso de la función exponencial. Para que esto sea cierto, tenemos que restringir la exponencial a una franja del plano complejo.

Por definición, tenemos que $$L(z)=\ln \norm{z} + \text{arg}(z)i.$$ Para que la definición funcione bien, es necesario que tomemos el argumento en el intervalo $(-\pi,\pi]$.

Resolveremos el siguiente ejercicio.

Ejercicio. Calcula $L\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$.

Problema de trigonometría compleja

Por último, haremos un ejercicio de calcular una función trigonométrica compleja. Sólo necesitaremos la definición de la función coseno, pero por conveniencia, a continuación recordamos tanto la definición de seno, como la de coseno.

\begin{align*}
\cos(z)=\frac{e^{zi}+e^{-zi}}{2},
\sin(z)=\frac{e^{zi}-e^{-zi}}{2}.
\end{align*}

Con esto en mente, resolveremos el siguiente ejercicio.

Ejercicio. Calcula $\cos\left(\frac{\pi}{2}+\frac{\pi}{2} i\right)$.

Más tarde les subo fotos por si alguien tiene dificultades para ver los videos.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Problemas de fórmula de De Moivre y raíces n-ésimas

Por Claudia Silva

Introducción

En una entrada anterior, vimos cómo se comporta la multiplicación en forma polar y cómo podemos aprovechar esto para hacer potencias. Concretamente, el teorema de De Moivre es muy útil para elevar complejos a potencias sin tener que hacer gran cantidad de productos.

Los primeros dos videos son ejercicios que ejemplifican lo anterior. Después, usamos lo que aprendimos en la entrada de raíces $n$-ésimas para resolver dos problemas más.

Al final, compartimos un enlace en el que puedes practicar más con operaciones de números complejos.

Problemas de fórmula de De Moivre

Para empezar, vemos dos problemas de exponenciación completa. El primero es una aplicación directa de la fórmula de De Moivre.

Problema. Usa el teorema de De Moivre para elevar a la potencia indicada $$\left(\sqrt{3}(\cos 25^\circ + i \sin 25^\circ\right)^6.$$

En algunos problemas es posible que sea necesario primero obtener la forma polar de un complejo antes de poder usar la fórmula de De Moivre. El segundo problema es un ejemplo de esto.

Problema. Encuentra el valor de $(\sqrt{3}-i)^{12}$.

Problemas de raíces $n$-ésimas

Si ahora, en vez de querer elevar a cierta potencia, queremos obtener raíces $n$-ésimas, con el uso de un poderoso teorema que dedujimos a partir de la fórmula de De Moivre, sabemos que son exactamente $n$ raíces, y podemos calcularlas explícitamente. A continuación, vemos dos ejercicios que ejemplifican lo anterior.

Problema. Obtén las raíces cúbicas del complejo $3+4i$.

Problema. Obtén las raíces quintas del complejo $16\sqrt{2}(-1+i)$.

Ojo. En algún momento del siguiente video se encuentra que el ángulo es $360^\circ – 45^\circ$. Sin embargo, debe decir $180^\circ – 45^\circ$, pues se debe estar en el cuadrante 2, ya que la parte real es negativa y la compleja es positiva.

Fotos de los ejercicios de hoy

Finalmente, les dejo fotos de lo resuelto en los vídeos, para quienes tengan dificultades para ver los vídeos. En la tercera foto no están tan desarrolladas las cuentas como en el vídeo.

Problemas de fórmula de De Moivre, 1
Problemas de fórmula de De Moivre y de raíces
Problemas de raíces n-ésimas.

Más material de De Moivre y raíces

Puedes practicar más acerca de exponenciación y raíces complejas con los videos y ejercicios del tema en Khan Academy.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Exponencial, logaritmo y trigonometría en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Gracias a las entradas anteriores ya hemos desarrollado un buen manejo de los números complejos. Sabemos cómo se construyen y cómo hacer operaciones básicas, incluyendo obtener conjugados, la forma polar, sacar normas y elevar a potencias. También hemos aprendido a resolver varias ecuaciones en los complejos: cuadráticas, sistemas lineales y raíces $n$-ésimas. Todo esto forma parte de los fundamentos algebraicos de $\mathbb{C}$. Ahora hablaremos un poco de la exponencial, el logaritmo y trigonometría en los complejos.

Aunque mencionaremos un poco de las motivaciones detrás de las definiciones, no profundizaremos tanto como con otros temas. Varias de las razones para elegir las siguientes definiciones tienen que ver con temas de ecuaciones diferenciales y de análisis complejo, que no se estudian sino hasta semestres posteriores.

Función exponencial compleja

Recordemos que, para un real $y$, definimos $\text{cis}(y)=\cos y + i \sin y$. La función $\text{cis}$ y la exponenciación en los reales nos ayudarán a definir la exponencial compleja.

Definición. Definimos la función $\exp:\mathbb{C}\to \mathbb{C}$ como $$\exp(x+yi)=e^x\text{cis}(y).$$

Ejemplo 1. Se tiene que $$\exp\left(1+\frac{\pi}{2} i\right) = e^1 \text{cis}\left(\frac{\pi}{2}\right) = ei.$$

$\triangle$

Ejemplo 2. Se tiene que $$\exp(\pi i) = e^0\text{cis}(\pi) = (1)(-1)=-1.$$ Como veremos más abajo, esto lo podemos reescribir como la famosa identidad de Euler $$e^{\pi i}+1=0.$$

$\triangle$

Ejemplo 3. Se tiene que $$\exp(2+3i)=e^2\text{cis}(3).$$ Como $\cos(3)$ y $\sin(3)$ no tienen ningún valor especial, esta es la forma final de la expresión.

$\triangle$

Propiedades de la función exponencial compleja

Una buena razón para definir la exponencial así es que si $y=0$, entonces la definición coincide con la definición en los reales: $$\exp(x)=e^x\text{cis}(0)=e^x.$$ Si $x=0$, tenemos que $\exp(iy)=\text{cis}(y)$, de modo que si $w$ tiene norma $r$ y argumento $\theta$, podemos reescribir su forma polar como $$w=r\exp(\theta i),$$ y una forma alternativa de escribir el teorema de De Moivre es $$w^n=r^n\exp(n\theta i).$$

Otra buena razón para definir la exponencial compleja como lo hicimos es que se sigue satisfaciendo que las sumas en la exponencial se abren en productos.

Proposición. Para $w$ y $z$ complejos se tiene que $$E(w+z)=E(w)E(z).$$

Demostración. Escribamos $w=a+bi$ y $z=c+di$ con $a,b,c$ y $d$ reales. Tenemos que
\begin{align*}
\exp(w+z)&=\exp((a+c)+(b+d)i)\\
&=e^{a+c}\text{cis}(b+d).
\end{align*}

Por propiedades de la exponencial en $\mathbb{R}$ tenemos que $e^{a+c}=e^ae^c$. Además, por cómo funciona la multiplicación compleja en términos polares, tenemos que $\text{cis}(b+d)=\text{cis}(b)\text{cis}(d)$. Usando estas observaciones podemos continuar con la cadena de igualdades,

\begin{align*}
&=e^ae^c\text{cis}(b)\text{cis}(d)\\
&=(e^a\text{cis}(b)) (e^c\text{cis}(d))\\
&=\exp(a+bi)\exp(c+di)\\
&=\exp(w)\exp(z).
\end{align*}

$\square$

Como $\exp$ extiende a la exponencial real y se vale abrir las sumas de exponentes en productos, puede ser tentador usar la notación $e^{x+yi}$ en vez de $\exp(x+yi)$. Hay que tener cuidado con esta interpretación, pues hasta ahora no hemos dicho qué quiere decir «elevar a una potencia». Cuando lo hagamos, veremos que usar la notación $e^{x+yi}$ sí tiene sentido, pero por el momento hay que apegarnos a la definición.

Hay otras buenas razones para definir la exponencial compleja como lo hicimos. Una muy importante es que es la solución a una ecuación diferencial muy natural. Más adelante, en tu formación matemática, verás esto.

Función logaritmo complejo

Con el logaritmo natural $\ln$ en $\mathbb{R}$ y la multifunción argumento podemos extender el logaritmo a $\mathbb{C}$.

Definición. Definimos la función $L:\mathbb{C}\setminus \{0\} \to \mathbb{C}$ como $$L(z)=\ln \Vert z \Vert + \arg(z) i.$$

Hay que ser un poco más precisos, pues $\arg(z)$ es una multifunción y toma varios valores. Cuando estamos trabajando con logaritmo, lo más conveniente por razones de simetría es que tomemos el argumento en el intervalo $(-\pi,\pi]$. En cursos posteriores hablarás de «otras» funciones logaritmo, y de por qué ésta es usualmente una buena elección.

Ejemplo. Los logaritmos de $i$ y de $-1$ son, respectivamente,
\begin{align*}
L(i)&=\ln \Vert i \Vert + \arg(i) i = \ln(1) + \frac{\pi}{2} i =\frac{\pi}{2} i\\
L(-1)&=\ln \Vert -1 \Vert + \arg(-1) i = \ln(1)+\pi i = \pi i.
\end{align*}

$\triangle$

Propiedades del logaritmo complejo

La función $\exp$ restringida a los números con parte imaginaria en $(-\pi,\pi]$ es invertible y su inversa es $L$. Esto justifica en parte la definición de logaritmo. Demostrar esto es sencillo y queda como tarea moral.

La función $L$ restringida a los reales positivos coincide con la función logaritmo natural, pues para $z=x+0i=x$, con $x>0$ se tiene que $\arg(x)=0$ y entonces $$L(z)=L(x)=\Vert x\Vert+\arg(x)i=x.$$

Como en el caso real, la función logaritmo abre productos en sumas, pero con un detalle que hay que cuidar.

Proposición. Para $w$ y $z$ complejos no $0$, se tiene que $L(wz)$ y $L(w)+L(z)$ difieren en un múltiplo entero de $2\pi i$.

Con la función logaritmo podemos definir potencias de números complejos.

Definición. Para $w,z$ en $\mathbb{C}$ con $w\neq 0$, definimos $$w^z=\exp(zL(w)).$$

Ejemplo. En particular, podemos tomar $w=e$, de donde \begin{align*}e^z&=\exp(zL(e))\\&=\exp(z\ln(e))\\&=\exp(z),\end{align*} de donde ahora sí podemos justificar usar la notación $e^{x+yi}$ en vez de $\exp(x+yi)$.

$\square$

Esta definición de exponenciación en $\mathbb{C}$ es buena, en parte, porque se puede probar que se satisfacen las leyes de los exponentes.

Proposición. Para $w, z_1, z_2$ en $\mathbb{C}$, con $w\neq 0$, se cumple que $$z^{w_1+w_2}=z^{w_1}z^{w_2}$$ y que $$(z^{w_1})^{w_2}=z^{w_1w_2}.$$

La demostración es sencilla y se deja como tarea moral.

Funciones trigonométricas complejas

Finalmente, definiremos las funciones trigonométricas en $\mathbb{C}$. Para ello, nos basaremos en la función exponencial que ya definimos.

Definición. Para $z$ cualquier complejo, definimos $$\cos(z)=\frac{e^{iz}+e^{-iz}}{2}$$ y $$\sin(z)=\frac{e^{iz}-e^{-iz}}{2}.$$

Una de las razones por las cuales esta definición es buena es que extiende a las funciones trigonométricas reales. En efecto, si $z=x+0i=x$ es real, entonces $\cos(z)$ es \begin{align*}
\frac{e^{iz}+e^{-iz}}{2}&=\frac{\text{cis}(x)+\text{cis}(-x)}{2}\\
&=\frac{2\cos(x)}{2}\\
&=\cos(x),
\end{align*} y de manera similar para $\sin(z)$.

Las funciones trigonométricas en $\mathbb{C}$ siguen cumpliendo varias propiedades que cumplían en $\mathbb{R}$.

Proposición. Para $w$ y $z$ complejos, se tiene que
\begin{align*}
\cos(w+z)=\cos(w)\cos(z)-\sin(w)\sin(z)\\
\sin(w+z)=\sin(w)\cos(z)+\sin(z)\cos(w).
\end{align*}

Demostración. Procedemos por definición. Tenemos que
\begin{align*}
4&\cos(w)\cos(z)\\
&=(e^{iw}+e^{-iw})(e^{iz}+e^{-iz})\\
&=(e^{i(w+z)}+e^{i(w-z)}+e^{i(z-w)}+e^{i(-z-w)})
\end{align*}

y que
\begin{align*}
4&\sin(w)\sin(z)\\
&=(e^{iw}-e^{-iw})(e^{iz}-e^{-iz})\\
&=(e^{i(w+z)}-e^{i(w-z)}-e^{i(z-w)}+e^{i(-z-w)}),
\end{align*}

de modo que
\begin{align*}
4(\cos(w)&\cos(z)-\sin(w)\sin(z))\\
&=2(e^{i(w+z)}+e^{-i(w+z)})\\
&=4\cos(w+z).
\end{align*}

Dividiendo entre $4$ ambos lados de la igualdad, obtenemos la primer identidad. La segunda se demuestra de manera análoga, y queda como tarea moral.

$\square$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina los valores de $\exp(3+\frac{3\pi}{4}i)$ y de $L(-i)$.
  2. Muestra que para $z$ con parte imaginaria en $(-\pi,\pi]$ se tiene que $L(\exp(z))=z$.
  3. Determina el valor de $(1+i)^{1+i}$.
  4. Muestra las leyes de los exponentes para la exponenciación en $\mathbb{C}$.
  5. Determina el valor de $\sin(i)$ y de $\cos(1+i)$.
  6. Muestra la identidad de seno de la suma de ángulos en $\mathbb{C}$.
  7. Investiga qué otras propiedades de las funciones trigonométricas reales se extienden al caso complejo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»