Archivo de la etiqueta: lógica

Álgebra Superior I: Problemas de condicionales y cuantificadores

Introducción

En esta entrada resolveremos problemas de temas vistos en entradas anteriores. Haremos algunos ejemplos relacionados con los conectores condicionales que vimos en una entrada anterior: la implicación y la doble implicación. También veremos algunos de cuantificadores lógicos.

Problemas resueltos

Problema. Si $P$ y $R$ son verdaderas y $Q$ es falsa, di si la siguiente proposición es verdadera o falsa: $$(P \lor R) \Rightarrow \neg(Q \land R).$$

Solución. Haremos una tabla de verdad pero únicamente con los valores que nos dan, es decir, no vamos a hacer la tabla para todos los casos, sino únicamente los que nos interesan en este momento:

$P$$Q$$R$$P \lor R$ $Q \land R$$\neg (Q \land R)$$(P \lor R) \Rightarrow \neg(Q \land R)$
$1$$0$$1$  $1$ $0$  $1$   $1$

Por lo tanto la proposición es verdadera para los valores de verdad dados.

$\square$

Problema. Di si las siguientes proposiciones sobre los números enteros son verdaderas o no:

  1. $(3+1=4) \Rightarrow (0<10)$
  2. $(4=5) \Leftrightarrow (9+1=10)$
  3. $((6<7) \lor (3^2=10)) \Rightarrow (12<12^2)$
  4. $((-1<1) \land (1<-1)) \Leftrightarrow ((13-1=12-1+1)\Rightarrow (1+1<2))$

Solución.

Vamos a hacer algunas verificaciones sobre cada una de las proposiciones para encontrar su valor de verdad:

  • $(3+1=4) \Rightarrow (0<10)$

Como $3+1=4$ es verdadera y $0<10$ es verdadera también, entonces la proposición es verdadera.

  • $(4=5) \Leftrightarrow (9+1=10)$

Recordemos que la doble condicional es verdadera si ambas proposiciones tienen el mismo valor de verdad. Por un lado no es cierto que $4=5$ mientras que sí es verdad que $9+1=10$. Por lo tanto la proposición es falsa.

  • $((6<7) \lor (3^2=10)) \Rightarrow (12<12^2)$

Vamos a ver la proposición por partes. Primero veamos que $((6<7) \lor (3^2=10))$ es una disyunción verdadera pues una de las proposiciones que la componen, $6<7$, lo es. Como $12<12^2$ es verdad, entonces la implicación tiene antecedente y subsecuente verdaderos y por lo tanto es verdadera.

  • $((-1<1) \land (1<-1)) \Leftrightarrow ((13-1=12-1+1)\Rightarrow (1+1<2))$

De nuevo vamos a dividir la proposición en sus partes, $(-1<1) \land (1<-1)$ y $(13-1=12-1+1)\Rightarrow (1+1<2)$. Primero notemos que $(-1<1) \land (1<-1)$ es falsa, pues no es cierto que $1<-1$.

Ahora, veamos cómo es $(13-1=12-1+1)\Rightarrow (1+1<2)$. Nota que $12=13-1$ y $12=12-1+1$, entonces $13-1=12-1+1$. Entonces esta primera parte es verdad, mientras que $1+1=2$ pero no es cierto que $2<2$. Así que es falso que $1+1<2$. Entonces $(13-1=12-1+1)\Rightarrow (1+1<2)$ es falso.

Como $(-1<1) \land (1<-1)$, $(13-1=12-1+1)\Rightarrow (1+1<2)$ son ambas falsas, entonces $((-1<1) \land (1<-1)) \Leftrightarrow ((13-1=12-1+1)\Rightarrow (1+1<2))$ es verdadero.

Nota: En este tipo de ejercicios, ¿viste cómo se dieron las argumentaciones de las proposiciones en cada caso? El secreto aquí fue «desarmar» las proposiciones en partes más pequeñas. Esto lo hacemos pues recuerda que los conectores son binarios, esto significa que su valor de verdad depende del valor de verdad de las dos proposiciones que conectan.

Así, para ver cuál es el valor de verdad de $((6<7) \lor (3^2=10)) \Rightarrow (12<12^2)$, lo que hicimos fue deshacerlo en sus partes. Una parte $A$ fue $(6<7) \lor (3^2=10)$ y la otra parte $B$ fue $12<12^2$. Entonces bastaba con verificar cuáles eran los valores de verdad de $A$ y $B$. Para ello, volvimos a «desarmar» a $A$ en sus partes «atómicas». Es decir, desarmamos $(6<7) \lor (3^2=10)$ en $6<7$ y $3^2=10$ y estudiamos el valor de verdad de cada uno de ellos. Usualmente este tipo de pensamiento de «desarmar un problema en sus partes» te ayudará a verificar o demostrar cosas más adelante.

Problema. Sean $P(x)$, $Q(x)$ y $R(x)$ los siguientes predicados:

  • $P(x): x \leq 4$
  • $Q(x): x +1$ es par.
  • $R(x): x> 0$

Si nuestro universo de discurso son los números enteros, ¿cuáles son los valores de verdad de las siguientes proposiciones?

  1. $P(1)$
  2. $P(1) \Rightarrow Q(1)$
  3. $P(0) \Rightarrow (R(5) \Rightarrow Q(0))$
  4. $R(-1) \lor P(2)$
  5. $\neg R(-2) \lor P(-2)$

Solución.

1.$P(1)$

Es verdadera, pues $1 \leq 4$.

2. $P(1) \Rightarrow Q(1)$

Como $P(1)$ es verdadera y además $1+1=2$ es par, entonces la proposición es verdadera.

3. $P(0) \Rightarrow (R(5) \Rightarrow Q(0))$

Vamos a dividir la proposición en partes. Primero notemos que $P(0)$ es verdad. Mientras que $R(5) \Rightarrow Q(0)$ es falsa, ya que es cierto que $5>0$ pero es falso que $0+1$ sea par. Entonces la proposición es falsa.

4. $R(-1) \lor P(2)$

Como $R(-1)$ es falsa pero $P(2)$ es verdad, entonces la proposición es verdadera.

5. $\neg R(-2) \lor P(-2)$

Como $-2<0$ es verdad, entonces $\neg R(-2)$ es falso, mientras que $-2<4$ es verdad. De esta manera la proposición es verdadera.

Problema. Considera los siguientes predicados:

  • $P(x): 2x>0$
  • $Q(x):x>0$
  • $R(x): x=20$
  • $T(x):x<0$

Determina la verdad o falsedad de las siguientes proposiciones, considerando que nuestro universo de discurso son los números enteros. Si la proposición no es verdadera, da un contraejemplo o explicación de ello.

  1. $\forall x(P(x) \Rightarrow Q(x))$
  2. $\exists x (Q(x) \land T(x))$
  3. $\forall x(R(x) \Rightarrow(Q(x))$
  4. $\exists ! x(R(x))$
  5. $ \nexists x (Q(x) \land P(x))$

Solución.

  • $\forall x(P(x) \Rightarrow Q(x))$

Nota que siempre que se cumple $2x>0$ entonces $x>0$ (más adelante demostrarás esto con toda formalidad, pero de momento lo daremos por cierto). Por lo tanto la proposición es verdadera.

  • $\exists x (Q(x) \land T(x))$

Para que esto sucediera, necesitaríamos la existencia de al menos un elemento $x$ que cumpla $0<x$ y $x>0$, es decir necesitaríamos un elemento que sea positivo y negativo a la vez, pero esto no es posible. Por lo tanto la proposición es falsa.

  • $\forall x(R(x) \Rightarrow(Q(x))$

Lo que nos dice esta proposición es «Para todo número entero $x$ que cumpla $x=20$ entonces $x>0$» o dicho de otra manera: «Si un número entero es igual a 20, entonces será positivo.» Lo cuál es correcto, pues si el número es distinto a 20, la implicación será correcta (recuerda la tabla de verdad de la implicación), mientras que el único caso en donde la hipótesis se cumple es cuando $x=20$ y claramente es un número que cumple $x>0$. Entonces la proposición es verdadera.

  • $\exists ! x(R(x))$

Esto nos quiere decir que existe un único número entero que sea igual a 20, e inmediatamente podemos saber que es verdadera, pero ¿A qué nos referiremos que un número sea igual a 20? Primero tendríamos que ponernos de acuerdo de qué significa la igualdad. Aunque ahora no lo haremos, piensa el cómo nos aseguraríamos de que es el único número entero que cumple esa propiedad ¿Qué pasaría si no fuera cierto?

  • $ \nexists x (Q(x) \land P(x))$

Lo que dice la proposición es que ningún número $x$ va a cumplir a la vez $x>0$ y $2x>0$, pero esto no es cierto, pues pensemos en $x=1$. Cumple $Q(x)$ ya que $1>0$ y cumple $P(x)$ porque $2*1=2>0$. Entonces podemos decir que es falso pues dimos un contraejemplo que contradijo la proposición.

Entradas relacionadas

Álgebra Superior I: Cuantificadores existenciales y universales

Introducción

Hasta ahora hemos visto proposiciones y sus conectores. Por ello, ya podemos decir cómo se manejan las proposiciones al combinarlas, al tener un valor de verdad dado o qué significa que dos proposiciones sean equivalentes.

Sin embargo, hasta ahora hemos trabajado con cierto rigor los objetos a los que nos referimos dentro de una proposición. Por ejemplo cuando decimos la proposición «Este número es impar» puede que sea o no verdadera, pero esto depende de una cosa: el contexto. ¿A qué número nos estamos refiriendo? Podríamos estar en la siguiente conversación: «Hay números distintos a los múltiplos de 2, por ejemplo el 3. Este número es impar. » A esto último, estando en contexto, ya le podríamos asociar un valor de verdad.

En general esto no es así. Podemos ir variando a qué número nos referimos. En ocasiones las proposiciones tienen una variable y, dependiendo el valor de esa variable, cambian su significado o su valor de verdad. En esta entrada formalizamos estas ideas y hablamos de cuantificadores, que nos permitirán «recorrer» todos los valores posibles de una variable.

Términos variables

Volvamos a nuestro ejemplo. Al tomar la proposición $P$ «el número es impar», podríamos referirnos al $1$, $2$, $3$, $80$ o $20,000$. Así, es más conveniente pensar en que la proposición depende de una variable como sigue:

$P(\text{el número})$ = «$\text{el número}$ es impar».

Visto de esta manera, $P(2)$ es la proposición «$2$ es impar». En general $P(x)$ es la proposición «$x$ es impar» y esta hace referencia a que el número es una variable que puede tomar distintos valores «permitidos». Observa que en este caso no tendría sentido decir si $P(\text{azul})$ es verdadero o falso. A este tipo de proposiciones que tienen una variable (o más), se les llama predicados o esquemas proposicionales. La palabra «esquema» viene del hecho de que podríamos estar refiriéndonos a distintas «cosas» dependiendo del valor que tome nuestra variable.

¿Notas que tenemos que ponernos de acuerdo sobre cuál es el contexto sobre el que estamos hablando al momento de asignarle un valor a nuestra variable? Esto debido a que no podríamos decir que «azul es impar» o «la luna es impar». A este «conjunto» dentro del cual pueden tomar valores nuestras variables le llamamos universo de discurso. Aunque suena algo sofisticado, puedes pensarlo como el contexto al que nos estamos acoplando en el sentido del esquema proposicional.

Es muy importante siempre tener claro el universo de discurso de proposiciones con variables. No será lo mismo estar hablando de número pares, que de números enteros. Sabemos que todos los números pares no son impares. Mientras que algunos números enteros son impares. Estas palabras enfatizadas son las que nos van a permitir hablar más sobre cómo es nuestro universo de discurso. No es lo mismo que solo un objeto del universo cumpla un predicado (tenga valor de verdad verdadero) a que todos los objetos de nuestro universo las cumplan.

Cuantificador «para todo»

Introducimos ahora la idea de cuantificadores. Estas son palabras o ideas que nos ayudarán a identificar cuándo se cumplen los predicados o esquemas proposicionales. Por ejemplo, supongamos que dentro de nuestro universo de discurso, todo posible valor de la variable $x$ cumple el predicado $P(x)$. En este caso diremos «para todo $x$ en nuestro universo de discurso, se cumple $P(x)$». Podemos decir simplemente «para todo $x$, $P(x)$, pero es muy importante que el universo de discurso sea claro.

Veamos un ejemplo. Sabemos que todo número par es múltiplo de $2$. En el caso en que nuestro universo de discurso sean los números pares y tengamos al predicado

$P(x)$=$x$ es múltiplo de $2$

podremos decir «para todo $x$, $P(x)$», pues en cualquier asignación de la variable que consideremos en nuestro universo de discurso, se cumplirá el predicado.

Este cuantificador se expresa mediante el símbolo $\forall$ y se lee: para todo. De esta manera:

«para todo $x$, $P(x)$»=$\forall xP(x)$

Algunos ejemplos de cómo podemos usar este cuantificador son los siguientes. Observa cómo se deja claro el universo de discurso.

  • $\forall x$ número par, $x$ es múltiplo de 2.
  • $\forall x$ grupo cíclico, $x$ es generado por un único elemento.
  • $\forall x$ año bisiesto, $x$ tiene 366 días.
  • $\forall (x,y)$ vector en $\mathbb{R}^2$, $\norm{x+y}\leq\norm{x}+\norm{y}.$ *

Recuerda que ahora no es necesario que conozcamos a la perfección el universo de discurso del que estamos hablando en estos ejemplos. En estas entradas no nos interesa estudiar a los pares, a los grupos cíclicos, o a los años bisiestos. Los ponemos como ejemplos únicamente para ver que las ideas de lógica aplican a todos ellos. Por ejemplo para el segundo ejemplo el objetivo es que entiendas que siempre que consideremos un grupo cíclico (sea lo que signifique un grupo o un grupo cíclico), ese grupo es generado por un único elemento (sea lo que signifique que un grupo se genere por un único elemento). En este caso nuestro universo de discurso serán los grupos cíclicos, mientras que $P(x)$=«$x$ es generado por un único elemento». En estos renglones solo nos interesa entender cuándo estamos hablando de un universo de discurso, un cuantificador y un esquema proposicional.

Cuantificadores «existe» y «existe un único»

El cuantificador «para todo» establece que una proposición es verdadera para todos los objetos de un universo de discurso. Pero esto no siempre pasa. Por ejemplo, pensemos en que nuestro universo de discurso es $$A=\{\text{pescados, reptiles, aves, piedras, felinos}\}$$ y nuestro predicado $P(x)$ es «Los gatos son $x$». En este caso no todas las formas de asignar un objeto del universo a la variable $x$ darán proposiciones verdaderas. Los gatos no son pescados, reptiles ni mucho menos piedras o aves. Pero los gatos sí son felinos. En este caso la asignación $x=\text{felinos}$ será la única en la que se cumpla el esquema proposicional.

Cuando tenemos la situación en la que uno de los objetos de nuestro universo de discurso (o más) hagan que se cumpla la proposición, diremos que «para algún $x$ en el universo de discurso se cumple $P(x)$». Es un poco más usual ver esto escrito como «existe $x$ en el universo de discurso que cumple $P(x)$», o simplemente como «existe $x$, $P(x)$», cuando el universo de discurso se sobreentiende.

En matemáticas, escribiremos este «existe» de la siguiente manera: «$\exists$». Algunos ejemplos del uso de este cuantificador son los siguientes:

  • $\exists n$ número entero que es solución a $n^2=4$.
  • $\exists n$ número entero que cumple $e^{i\pi}+n=0.$ **

El cuantificador «existe» tiene una variante más restrictiva. Cuando decimos que existe al menos un elemento en nuestro universo de discurso que cumple una propiedad, también tenemos que puede haber $2$, $3$ o $20$ elementos que lo cumplen. Por ejemplo: «$\exists n$ número entero que es solución a $n^2=4$» tiene dos posibilidades, pues al tomar $n=-2$ o $n=2$ se cumple el predicado.

Pero es muy frecuente en matemáticas que se busque que uno y sólo un elemento cumpla un predicado. Para referirnos a estas ocasiones, usamos el cuantificador «$\exists!$», que se lee como «existe un único«. Por ejemplo, sabemos que el único número primo par es 2. Así que podríamos decir: «$\exists! x$ número entero que es primo y par». Otros ejemplos de su uso son:

  • $\exists!x$ día de la semana tal que $x$ empieza con la letra L
  • $\exists!x$ número real tal que $x$ es neutro aditivo. ***
  • $\exists!n$ número entero que cumple $e^{i\pi}+n=0.$

¿Observas que la última oración se parece mucho al último ejemplo del cuantificador anterior? Y con esto no estamos contradiciendo nada, en el ejemplo anterior solo estamos diciendo «Existe un número entero $n$ que es solución a $e^{i\pi}+n=0$» con lo que queremos decir que existe al menos uno, mientras que en el último ejemplo, decimos «Existe un único número entero $n$ que es solución a $e^{i\pi}+n=0$». Aquí, el objetivo solo es ser más específicos, lo que quiere decir que solo estamos dando información extra acerca de la proposición.

¿Qué sucede si ningún objeto del universo hace que el predicado sea cierto? En ese caso, podremos decir que «no existe $x$, $P(x)$». En símbolos, «$\nexists$». La siguiente tabla resume los cuantificadores de los que hemos hablado.

Para todos los casos$\forall$
Para al menos un caso$\exists$
Para un único caso$\exists!$
Para ningún caso$\nexists$

Combinando conectores y cuantificadores

Habiendo conocido los distintos cuantificadores, podríamos hacer afirmaciones un poco más extensas considerando cómo funcionan. Por ejemplo, pensemos en que nuestro universo de discurso son los números enteros. Consideremos los predicados $P(x)=x<0$ y $Q(x)=x<1$. Entonces podríamos decir:

$\forall x$ número entero $(P(x) \Rightarrow Q(x))$

En palabras: «Para todo número entero $x$, si $x$ es menor a 0, entonces $x$ es menor a 1».

También podemos tener predicados con más de una variable. Por ejemplo, consideremos a los números enteros como nuestro universo de discurso y $P(x,y)$ al predicado $x+y=0$. No hay problema con que dos variables estén en el mismo predicado, y con la notación $(x,y)$ solo estamos diciendo que la proposición depende de dos variables, por ejemplo $P(1,2)$ es la proposición $1+2=0$. Ahora, con este predicado en mente, podríamos enunciar $$\forall x, (\exists! y, P(x,y)).$$

Sólo estaríamos diciendo «para cada número entero $x$, existe un único número entero $y$ tal que $x+y=0$». Dicho de otra forma, cada vez que consideramos un número entero $x$, digamos $3$, existirá un único número entero $y$ que cumplirá la ecuación $x+y=0$. En este caso ese número $y$ es $-3$, pues dijimos que $x=3$ y solo hay un número que al sumarlo a $3$ nos da $0$.

Notas

Estas son algunas anotaciones del artículo y no es necesario que las sepas, únicamente son curiosidades o temas por aparte que forman parte de la cultura matemática.

* Esta se conoce como la desigualdad del triángulo y nos dice básicamente: que la suma de la longitud de dos lados de un triángulo siempre será mayor a la longitud del otro lado.

** Esta identidad se conoce como la identidad de Euler y algunos piensan que es una de las ecuaciones más hermosas de las matemáticas. En otros cursos como Álgebra Superior 2 o Variable Compleja puede que vuelvas a ver esta identidad con su demostación.

*** El único neutro aditivo es el $0$, y esto quiere decir que al sumarle este a cualquier otro número, dará el mismo número.

Tarea moral

  1. Imagina que definitivamente quieres comprar un helado. Cuando vas a la heladería, sólo venden un sabor. Esto tiene desventajas, por supuesto. Pero, ¿qué ventajas tiene que sólo haya un sabor de helado? Enlista todas las que puedas.
  2. En los ejemplos siguientes encuentra el universo de discurso y su predicado.
    1. $\forall x$ número par,$x$ es múltiplo de 2.
    2. $\forall x$ año bisiesto, $x$ tiene 366 días.
    3. $\forall (x,y)$ vector en $\mathbb{R}^2$, $\norm{x+y}\leq\norm{x}+\norm{y}$.
  3. Considera el predicado $P(x)=«x$ es múltiplo de 11». Da cuatro universos de discurso tales que los siguientes enunciados sean ciertos:
    • $\forall x P(x)$
    • $\exists x P(x)$
    • $\exists! x P(x)$
    • $\nexists x P(x)$
  4. Considera la proposición: $P(x,y,z)$ = «$x^3+y^3=z^3$». ¿Cuál de los siguientes enunciados representa la oración «No existen números enteros $x,y,z$ que cumplen $P(x,y,z)$»?:
    • $\forall x (\exists y (\exists z P(x,y,z)))$
    • $\nexists (x,y,z)P(x,y,z)$
    • $\forall x (\nexists(y,z)P(x,y,z))$
    • $\nexists x (\forall (x,y) P(x,y,z))$
  5. ¿El ejercicio anterior sólo tiene una solución? Si hay más de una opción correcta, ¿cómo argumentarías que dos enunciados representan el mismo enunciado?

Más adelante…

Cuando estamos hablando de cuantificadores, también nos van a interesar las negaciones de aquellos cuantificadores, por ejemplo, ¿a qué nos referiremos cuando digamos $\neg (\forall x P(x))$? ¿o cuando digamos $\neg (\exists x (P(x) \Rightarrow Q(x)))$? Para esta tarea primero deberemos hacer un análisis de qué nos dice cada uno de estos cuantificadores en su negación y es justamente lo que estudiaremos en la siguiente entrada.

Entradas relacionadas

Álgebra Superior I: Condicionales y dobles condicionales

Introducción

Hemos hablado en las últimas entradas de tres conectores muy importantes: la negación, la conjunción y la disyunción. Sin embargo, como recordarás en la introducción al tema, mencionamos más de tres conectores. Ha llegado el momento en que veamos a los dos conectores restantes: la implicación y la doble implicación.

Pensar en consecuencias

Para introducir mejor la implicación, pensemos en qué significa la palabra sin algún contexto matemático. ¿Qué se te viene a la mente cuando oyes la palabra «implicación»? Quizá se te venga a la mente «consecuencia», que a su vez significa cosas o acciones que derivan otras más.

Un ejemplo es el siguiente: ¿qué implicación tiene que se acabe la pila de un celular? Pues en principio se apaga el teléfono. Entonces podríamos decir «Si se acaba la pila del celular entonces se apagará». Otro ejemplo: ¿qué consecuencias tiene llegar tarde a una cita médica? Pues muy probablemente se cancelará. Esto mismo lo podemos decir así: «Si llego tarde a una cita médica entonces la cancelarán». Un último ejemplo sería el siguiente: «Si sube el nivel de dióxido de carbono en la atmósfera entonces los polos se derretirán».

Todas estas oraciones son ejemplos de condicionales, y para entender su estructura, volvamos al primer ejemplo. Pensemos en las proposiciones
\begin{align*}
P &= \text{El celular se queda sin pila.}\\
Q &= \text{El celular se apaga.}
\end{align*}

Podemos reescribir la oración «Si se acaba la pila del celular entonces se apagará» como «Si pasa $P$ entonces pasa $Q$». Observa que siempre que pase $P$, entonces pasará $Q$. Esto lo escribiremos como $P \Rightarrow Q$ y se lee «$P$ implica $Q$». Lo que estamos diciendo con esta oración es que si el valor de verdad de $P$ es verdadero entonces el valor de verdad de $Q$ es verdadero.

Observa que si al celular no se le acaba la pila, entonces no tendría porqué apagarse, entonces si $P$ es falso, $Q$ puede ser falso y no hay problema. También puede pasar que apagues el celular, pero no necesariamente sea porque se le acabó la pila, entonces si $P$ es falso, $Q$ también puede ser verdadero y no hay algún problema con ello. El único problema sería decir que se le acabó la pila al celular y sigue prendido, eso sería algo que no puede suceder, porque sabemos que «Si se acaba la pila del celular entonces se apagará».

Todo esto lo resumimos en la tabla de verdad de la siguiente sección.

Tabla de verdad de la implicación

$P$$Q$$P \Rightarrow Q$
$0$$0$$1$ 
$0$$1$$1$ 
$1$$0$ $0$
$1$$1$ $1$

Quizá sigas teniendo dificultades para entender porqué si $P$ es falso, $Q$ puede tener cualquier valor y seguir haciendo la expresión verdadera. Para ello, piensa en lo siguiente: lo que dice la implicación es que siempre que pase la primera condición $P$, también llamada hipótesis, ocurrirá $Q$, también conocida como tesis. Puede ser que se cumpla $Q$ y no se cumpla $P$, pero eso no contradice lo que dice la implicación, o puede que igual no se cumpla ni $Q$ ni $P$. Lo único que nos dice la implicación es que siempre que se cumpla $P$ va a tener como consecuencia que se cumpla $Q$. Entonces el único caso en donde desobedecemos a la implicación (donde es falsa), es cuando pasa $P$ y no pasa $Q$, que corresponde al penúltimo renglón de la tabla de verdad.

Condiciones suficientes y necesarias

El siguiente y último conector que vamos a ver es la doble implicación. A diferencia de la implicación, asumimos que para que una proposición sea verdadera, es necesaria que la otra también y viceversa. Para esto, refiramos a la doble implicación como una equivalencia lógica $P \Leftrightarrow Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$. En otras palabras decimos que hay una doble implicación entre $P$ y $Q$ si $P$ implica $Q$ y además $Q$ implica $P$.

Además de este nombre, algunas formas de referirse a la doble implicación que encontrarás serán:

  • «$P$ es equivalente a $Q$»
  • «Una condición necesaria y suficiente para $Q$ es $P$»
  • «$P$ si y sólo si $Q$»

Esta última se utiliza mucho en enunciados matemáticos como proposiciones y teoremas.

Tabla de verdad de la doble implicación

$P$$Q$$P \Rightarrow Q$$Q \Rightarrow P$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$P\Leftrightarrow Q$
$0$$0$ $1$$1$$1$  $1$ 
$0$$1$$1$ $0$ $0$ $0$ 
$1$$0$  $0$$1$ $0$ $0$
$1$$1$  $1$$1$ $1$   $1$

Nota que la doble implicación es verdad cuando los valores de $P$ y $Q$ son ambos verdaderos o ambos falsos. Esto quiere decir que en este caso si alguno es verdadero, entonces los dos son verdaderos, mientras que si uno es falso, los dos lo serán.

La implicación en términos de otros conectores

El hecho de que hayamos aprendido los primeros tres conectores (negación, conjunción y disyunción) antes que estos no es coincidencia. Resulta que la implicación y la doble implicación se «pueden construir» a partir de los primeros tres. Con esto nos referimos a que la implicación es equivalente a una expresión hecha únicamente por los anteriores.

Para ello, primero recuerda cómo construimos la implicación. La única forma en que la implicación $P \Rightarrow Q$ sea falsa es que $P$ sea verdadero y $Q$ falso. Entonces si $P$ es falso, no importa qué valor tome $Q$. De esta forma, cada vez que $\neg P$ sea verdad, la implicación también será verdadera. Pero si $P$ es verdadero, entonces $Q$ debe serlo también. Eso lo podemos expresar como $\neg P \lor Q$ que quiere decir «$P$ no pasa o $Q$ es verdadero» y coincide con lo que acabamos de decir. Para convencerte de eso, revisa con cuidado la siguiente tabla.

$P$$Q$$\neg P$ $\neg P \lor Q$$P \Rightarrow Q$
$0$$0$ $1$$1$  $1$ 
$0$$1$$1$  $1$ $1$ 
$1$$0$  $0$ $0$ $0$
$1$$1$  $0$ $1$   $1$

Entonces $\neg P \lor Q = P \Rightarrow Q$. Entonces cada vez que digamos que «Una cosa implica la otra», podemos pensarlo como «La negación de la primera cosa o la otra». Siempre es útil regresar a ejemplos concretos. Piensa cuidadosamente por qué es lo mismo decir «si llueve el piso se moja» y decir «no llueve o el piso está seco».

La contrapositiva de una implicación

Una propiedad que más adelante nos servirá sobre la implicación es el hecho de que en ocasiones es más sencillo trabajar con las negaciones de las proposiciones que con las proposiciones normales. No te preocupes si no entiendes a qué nos referimos con esto, más adelante lo veremos con más calma.

Un ejemplo de esto es verificar la siguiente proposición: «Si un número al cuadrado es par, entonces el número es par». A primera vista no es tan fácil verificar directamente esta proposición que es de la forma $P \Rightarrow Q$. Resulta que la forma en que se comprueba esto es con una equivalencia de la implicación. Para llegar a esta equivalencia, como primer paso, notaremos que podemos poner a la implicación en términos de la negación. Para esto, vamos a usar el resultado anterior para encontrar lo que buscamos.

Recordemos que $\neg P \lor Q = P \Rightarrow Q$, y la conjunción es conmutativa, es decir $\neg P \lor Q = Q \lor \neg P$.

¿Podemos ver esto de otra forma?

Pues resulta que sí. Veamos a $Q$ como la negación de la negación de $Q$, dicho de otra forma, $Q = \neg \neg Q$. Esto último nos ayuda a ver la equivalencia de otra forma: $Q \lor \neg P =\neg \neg Q \lor \neg P$. El siguiente paso es pensar a $\neg Q$ como un término por sí mismo y a $\neg P$ como otro término. Dicho de otra forma agrupemos términos para ver la equivalencia de manera distinta: $$Q \lor \neg P =\neg (\neg Q) \lor (\neg P).$$ Ahora, pensemos a $\neg Q$ como una proposición y a $\neg P$ como otra. La expresión está diciendo «La negación de $\neg Q$ una cosa o $\neg P$» ¿Suena familiar? Esto justamente es la equivalencia de la implicación. Dicho de otra manera, fíjate que tenemos una equivalencia:

$$Q \lor \neg P =\neg (\neg Q) \lor (\neg P) = \neg Q \Rightarrow \neg P.$$

Es decir,

$$P \Rightarrow Q = \neg Q \Rightarrow \neg P.$$

Cuando tenemos una implicación de la forma $P\Rightarrow Q$, a la proposición equivalente $\neg Q \Rightarrow \neq P$ le llamamos la contrapositiva.

Regresando al ejemplo inicial de esta sección, la proposición «Si un número al cuadrado es par, entonces el número es par» podemos pensarla como «Si un número es impar entonces su cuadrado es impar», lo cual es mucho más fácil de verificar. En entradas posteriores retomaremos esta forma de pensar. Por lo mientras es suficiente que entiendas que la implicación es equivalente a su contrapositiva.

El caso en donde todo es verdadero

Antes de terminar esta entrada, introduciremos un concepto que resultará útil cuando llegue el momento de estudiar inferencias. Para ello, observa la tabla de verdad de la proposición $((Q \Rightarrow P) \land Q) \Rightarrow P$:

$P$$Q$$Q \Rightarrow P$$Q \Rightarrow P \land Q$$(Q \Rightarrow P \land Q) \Rightarrow P$
$0$$0$ 1 0
$0$$1$ 0 0 1
$1$$0$ 1 0 1
$1$$1$ 1 1

¿Notas algo peculiar? Toda la columna de nuestra regla de inferencia es verdadera. Esto quiere decir que no importa qué valores tomen nuestras premisas, siempre es verdadera la expresión. A esto en matemáticas le llamamos una tautología.

Sucede algo que une aún más los conceptos de tautología y doble condicional. ¿Recuerdas que las proposiciones $\neg(P \land Q) = \neg P \lor \neg Q$ son equivalentes? Pues veamos ahora sus tablas de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$$\neg (P \land Q)\Leftrightarrow (\neg P \lor \neg Q)$
$0$$0$ 01 111
$0$$1$ 01 101 1
$1$$0$ 01 011 1
$1$$1$ 10000 1

Hemos agregado una última columna, la correspondiente a $\neg (P \land Q))\Leftrightarrow (\neg P \lor \neg Q)$. ¡Es una tautología! Esto sucede siempre: dos proposiciones o expresiones $P, Q$ son equivalentes siempre que $P \Leftrightarrow Q$ sea una tautología.

Tarea moral

  1. Escribe las siguientes frases en lógica proposicional:
    • Si hoy es lunes, entonces mañana será viernes.
    • El caos implica el orden.
    • Para que crezcan las plantas, tienes que regarlas.
    • Hoy es lunes si mañana es martes y mañana es martes si hoy es lunes.
    • Hoy es lunes si y sólo si mañana es martes.
  2. Verifica que siempre «Una cosa siempre se implica a sí misma», es decir, verifica que si $P$ es una proposición, entonces $P \Rightarrow P$ siempre es verdadera.
  3. Haz la tabla de verdad de la implicación $P\Rightarrow Q$ y de su contrapositiva $\neg Q \Rightarrow \neg P$ para convencerte de que en verdad son equivalentes.
  4. ¿Cómo verificarías que  $P \Leftrightarrow Q = (\neg Q \lor P)\land(\neg P \lor Q)$? Recuerda que la doble implicación $P \Leftrightarrow Q$ es equivalente a $(P \Rightarrow Q) \land (Q \Rightarrow P)$.
  5. Verifica que la doble condicional es conmutativa, es decir $P \Leftrightarrow Q = Q \Leftrightarrow P $. ¿La condicional es conmutativa?

Más adelante…

Recuerda el ejemplo que mencionamos anteriormente «Un número al cuadrado es par si el número es par», no especificamos de qué número se trataba, sin embargo hay una infinidad de números los cuales podemos tomar como ejemplo para verificar la propiedad. Entonces podemos decir «$1^2$ es par si $1$ es par» o «$38^2$ es par si $38$ es par», o en general podemos decir «$x^2$ es par si $x$ es par». ¿Pero quién es $x$? ¿Qué valores puede tomar? En la siguiente entrada veremos algo conocido como cuantificadores. Estos ampliarán el poder de las proposiciones introduciendo variables dentro de las proposiciones. Con ello, se puede cambiar el objeto al que se refiere una proposición y, dependiendo de esto, su valor de verdad.

Entradas relacionadas

Álgebra Superior I: Propiedades de la negación, conjunción y disyunción

Introducción

En la entrada pasada vimos que con conectores podemos construir nuevas proposiciones a partir de otras. Y nombramos a tres de ellas: la negación, la conjunción y la disyunción.

Ahora, discutiremos sobre algunas consecuencias que tiene juntar unas con otras y diremos en términos formales qué significa que una proposición sea «igual» a otra.

Equivalencia de proposiciones

Volvamos a retomar un ejemplo que ya habíamos revisado anteriormente.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Habíamos dicho que al coincidir las columnas de $\neg ( \neg P)$ con $P$ entonces $\neg(\neg P) = P$, pues bien, en matemáticas esto se leerá como $\neg(\neg P)$ es equivalente a $P$. Esto nos quiere decir que en cualquier caso en que $\neg(\neg P)$ sea verdad, sucede que $P$ es verdad. De igual forma, cada vez que suceda que $\neg(\neg P)$ es falso, $P$ también lo será.

Podemos pensar eso con el siguiente ejemplo. Pensemos en que nuestra proposición $P$ es: «El 2 es un número impar». En este caso $\neg(\neg P)$ corresponde a: «No es cierto que 2 no es un número impar». Si la proposición $P$ es verdadera, entonces la equivalencia nos diría que $\neg(\neg P)$ también lo es. Es decir, si es verdadero que 2 es un número impar, entonces también es verdadero que «No es cierto que 2 no es un número impar». Aunque nosotros sepamos que 2 es un número par (y por ende la proposición $P$ es falsa), una persona que no tuviera el conocimiento de este hecho pero que sepa lógica, podría saber que si $P$ es verdadero $\neg(\neg P)$ también es verdadero. O si $\neg(\neg P)$ es verdadero, $P$ también es verdadero.

Ahora, nota que acabamos de hacer una definición, pues nombramos a dos proposiciones que tienen la misma tabla de verdad como equivalentes, así como lo mencionamos en la entrada de los tipos de enunciados, nombramos a un concepto matemático a algo que cumple ciertas propiedades.

Definición. Dos proposiciones $P$ y $Q$ son equivalentes si sus tablas de verdad coinciden y lo escribiremos como $P=Q$.

Esta «igualdad» en las proposiciones nos será muy útil, pues en la matemática nos ayudará a ver algunos resultados de otra manera, por ejemplo, como $\neg(\neg P) = P$ Entonces como sabemos que es falso que 2 es impar, en consecuencia también sabemos que es falso que «No sea cierto que 2 no es impar» y esto lo sabemos sin tener que verificar algo más, pues el hecho de que sean equivalentes, basta saber que una sea verdad para que la otra sea verdad, o que una sea falsa para que la otra también lo sea. Y además, en matemáticas también esta definición nos ayudará a demostrar algunos resultados en el futuro.

Nota además que si $P$ y $Q$ son equivalentes, y $Q$ y $R$ son equivalentes (es decir $P=Q$, $Q=R$) entonces $P$ y $R$ también son equivalentes. Esto en símbolos es: si $P=Q$ y $Q=R$ entonces $P=R$. Esto es debido a que decir que $P$ y $Q$ son equivalentes significa que tienen la misma tabla de verdad, entonces si $Q$ y $R$ son equivalentes, entonces $Q$ tiene la misma tabla de verdad que $R$, pero además $Q$ tiene la misma tabla de verdad que $P$, entonces $P$ tiene que tener la misma tabla de verdad que $R$. A esto se le conoce como la propiedad transitiva. No es importante que recuerdes este nombre, sin embargo después volveremos a estudiar esta propiedad con más calma. Y para recordar mejor esto, piensa en que funciona similar a la igualdad entre números, por ejemplo $2+2=4$ y $4=2^2$, entonces $2+2=2^2$.

Algunas propiedades de la conjunción y la disyunción

Hemos hablado un poco sobre la negación, pero ahora cambiemos el foco a la disyunción y la conjunción. Para empezar, recordemos que la disyunción $P\land Q$ solo es verdadera cuando tanto $P$ como $Q$ son verdaderas, y en la entrada anterior verificamos que $Q \land P$ es equivalente a $P \land Q$. Sin embargo, también nos va a interesar el caso en donde tenemos más de dos proposiciones, pero para ello, recuerda que mencionamos a la disyunción como un conector entre dos proposiciones, así que para unir a más de dos proposiciones mediante las disyunción, tendremos que agruparlos.

Piensa el agrupamiento como piensas la suma: si quieres sumar $2+3+4$, lo más habitual es sumar primero $2+3$ que resulta en cinco, y después sumárselo a $4$, de manera que podemos escribir la suma como $2+3+4=(2+3)+4$. Algo similar va a pasar con las proposiciones, pues podemos pensar a $P \land Q \land R$ como $(P \land Q) \land R$. Ahora piensa en la suma $2+3+4$, el resultado de esta suma es $9$ y nosotros decidimos agrupar $2+3$ y después sumar el resultado con $4$. Pero esto es lo mismo que haber agrupado primero $3+4$ y después sumarlo a $2$, esto no es coincidencia, pues la suma tiene una propiedad que se llama asociatividad que nos dice que $(2+3)+4=2+(3+4)$. ¿Pasará lo mismo con la disyución? Veamos que sí.

Para esto, fíjate que queremos ver si $P \land (Q \land R)=(P \land Q) \land R$ es decir, queremos ver si $P \land (Q \land R)$ es equivalente a $(P \land Q) \land R$. Y recuerda que nuestra definición nos dice que dos proposiciones son equivalentes si tienen la misma tabla de verdad. Y ahora fíjate en la tabla:

$P$$Q$$R$$Q \land R$$P \land ( Q\land R)$$P \land Q$$(P \land Q) \land R$
$0$$0$$0$$0$$0$$0$$0$
$0$$0$$1$$0$$0$$0$$0$
$0$$1$$0$$0$$0$$0$$0$
$0$$1$$1$$1$$0$$0$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$0$$0$$0$
$1$$1$$0$$0$$0$$1$$0$
$1$$1$$1$$1$$1$$1$$1$

Como puedes notar, las columnas $P \land (Q \land R)$ y $(P \land Q) \land R$ coinciden, es decir, coinciden en sus tablas de verdad, por lo tanto son equivalentes.

Con este ejemplo, vimos cómo la disyunción tiene la propiedad asociativa, es decir, cuando combinamos tres o más proposiciones mediante la disyunción, no importa el orden en que apliquemos el conector (no importa dónde pongamos los paréntesis). Lo mismo pasará con la conjunción que de igual manera es asociativa.

También podemos juntar estos dos conectores, por ejemplo, piensa que tenemos tres proposiciones $P, Q, R$ donde,

$P = \text{Toda persona es mortal}$

$Q = \text{2 es un número impar}$

$R = \text{2 es un número par}$

¿Qué significaría la proposición $P \lor (Q \land R)$? Si lo escribieramos en palabras, sería «Toda persona es mortal o 2 es un número par e impar a la vez». Sabemos que toda persona es mortal, y también sabemos que 2 no puede ser impar y par a la vez (por ahora parece que sabemos que 2 es un número par, en otros cursos profundizarás más en lo que significa ser par), entonces nuestra proposición está formada por dos componentes, la proposición $P$ y la proposición $Q \land R$. Como un número no puede ser par e impar a la vez, entonces la segunda proposición es falsa. Pero la primera proposición $P$ es verdadera, entonces la proposición $P \lor (Q \land R)$ es verdadera, porque para la conjunción solo basta que alguna de las dos sea verdadera. Vamos a ir un poco más allá. ¿Será que esta es la única forma de escribir la proposición? Pues resulta que no, y que esta proposición tiene una propiedad que se llama la propiedad distributiva para los conectores, y esta nos dice que $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$, si te resulta un poco confuso esto, puedes pensarlo por ahora como la distribución de una multiplicación con la suma, es decir la operación $2 \times (1+3) = (2 \times 1) + (2 \times 3)$, en donde nuestra conjunción $\lor$ junta a $P$ con $Q$ y a $P$ con $R$ y la disyunción $\land$ los distribuye.

Para convencerte de esto, veamos sus tablas de verdad.

$P$$Q$$R$$Q \land R$$P \lor ( Q\land R)$$P \lor Q$$P \lor R$$(P \lor Q) \land (P \lor R)$
$0$$0$$0$$0$$0$$0$$0$$0$
$0$$0$$1$$0$$0$$0$$1$$0$
$0$$1$$0$$0$$0$$1$$0$$0$
$0$$1$$1$$1$$1$$1$$1$$1$
$1$$0$$0$$0$$1$$1$$1$$1$
$1$$0$$1$$0$$1$$1$$1$$1$
$1$$1$$0$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$$1$

Y nota que las columnas coloreadas corresponden a las proposiciones y son iguales, entonces $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$. Lo mismo sucede si cambiamos el orden de los conectores, es decir $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$, así podemos distribuir los conectores disyuntivos y conjuntivos como más nos convenga.

Agregando la negación a la mezcla

Por último, vamos a incluir a la negación en nuestra mezcla de conjunciones y disyunciones. ¿Qué pasará cuando tenemos proposiciones del estilo $\neg (P \land Q)$ y $\neg (P \lor Q)$? Sería lógico pensar en un inicio que igual la negación se va a distribuir, pero eso no es cierto. Para esto, piensa en el siguiente ejemplo:

$$P = \text{32 es un número perfecto} $$

$$ Q = 2^7-1 \text{ es un número primo} $$

Aquí hablamos de dos cosas que quizá aún no sepas: números perfectos y números primos, no te preocupes por lo que signifiquen, en otros cursos los verás con más detalle, aunque te puedo decir que solo una de estas dos afirmaciones es correcta (¿Puedes adivinar cuál es?), entonces la disyunción es falsa, por lo que la negación de la disyunción es verdadera. Lo que acabamos de decir es que $P \land Q$ es falsa y por consecuente $\neg (P \land Q)$ es verdadera. Si sucediera que la negación fuera distributiva, entonces $\neg (P \land Q)$ sería equivalente a $\neg P \land \neg Q$ pero esto no es cierto, porque $\neg P$ es falso, y $\neg Q$ es verdadero, nota que entonces $\neg P \land \neg Q$ es falso. Acabamos de llegar a una contradicción, es decir, primero dijimos que $\neg (P \land Q)$ es verdadera y después observamos que si la negación se distribuyera, sería falso, pero recuerda que una proposición es verdadera o falsa, no puede ser verdadera y falsa al mismo tiempo, entonces alguna de las dos suposiciones que hicimos es incorrecta.

Nuestro error fue haber distribuido la negación sin cuidado. Resulta que la negación no cumple esa propiedad, pero «casi» es distibutiva, esas comillas en el casi, se deben a que al negar una conjunción o disyunción, estas se «invierten». Veamos sus reglas:

$$ \neg (P \land Q) = \neg P \lor \neg Q $$

$$ \neg (P \lor Q) = \neg P \land \neg Q $$

En nuestro ejemplo, esto quiere decir que es lo mismo decir «No es cierto que 32 sea un número perfecto y $2^7-1$ sea un número primo» a decir «No es cierto que 32 es un número perfecto, o no es cierto que $2^7-1$ es un número primo». Para que lo entiendas más claro, revisa la tabla de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$
$0$$0$$0$$1$$1$$1$$1$
$0$$1$$0$$1$$1$$0$$1$
$1$$0$$0$$1$$0$$1$$1$
$1$$1$$1$$0$$0$$0$$0$

Observa que las tablas de verdad coinciden, lo que quiere decir que son equivalentes. Lo mismo puedes verificar para comprobar que $ \neg (P \lor Q) = \neg P \land \neg Q $. A estas propiedades se les conoce como leyes de DeMorgan (más adelante volverás a oír ese nombre).

Ahora, para recapitular lo que vimos en esta entrada:

  • Hablamos de la equivalencia de proposiciones que ocurre cuando dos proposiciones coinciden en su tabla de verdad.
  • Observamos tres propiedades de los conectores: la asociatividad, la distributividad y las leyes de DeMorgan.

Todo esto nos da herramienta suficiente para ya empezar a hablar de lógica proposicional, pero esto apenas empieza…

Tarea Moral

  1. Demuestra que $\neg ( \neg (\neg P))$ es equivalente a $\neg P$.
  2. Recuerda que dijimos que podemos asociar la disyunción como queramos, ahora verifica que lo mismo pasa con la conjunción, es decir $P \lor (Q \lor R) = (P \lor Q) \lor R$.
  3. Verifica con la tabla de verdad que $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$
  4. Verifica con la tabla de verdad que $ \neg (P \lor Q) = \neg P \land \neg Q $.

Más adelante…

En esta entrada hablamos sobre las propiedades que tienen tres conectores, pero recuerda que no son los únicos, aún nos faltan revisar dos conectores muy importantes: la implicación y la doble implicación. Estas dos las vamos a ver con más calma en la siguiente entrada.

Entradas relacionadas

Álgebra Superior I: Conectores: negaciones, conjunciones y disyunciones

Introducción

En la entrada de introducción a este curso ya acordamos que una proposición matemática (o simplemente proposición) es un enunciado que puede ser verdadero o falso (pero no ambos), y que habla de objetos matemáticos.

Ahora hablaremos de algunas reglas que nos permiten comenzar con una o más proposiciones y combinarlas para obtener otras proposiciones. Hablaremos de la negación, de la conjunción y de la disyunción. De manera informal, la primera antepone un «no es cierto que» a cualquier proposición, y le cambia su veracidad. La segunda y tercera combinan dos proposiciones en una sola. De manera informal, ponen «y» y «o» entre las oraciones, respectivamente.

A estas reglas se les conoce como conectores o conectivos. Discutiremos cada uno de ellos de manera intuitiva y después definiremos qué quieren decir de manera formal.

Conectores lógicos

De tu experiencia previa, ya sabes que hay formas en las que podemos combinar, por ejemplo, a números enteros para obtener nuevos números. Si tomamos el número $2$ y el número $3$ y les aplicamos la operación «suma», entonces debemos entreponer un signo $+$ entre ellos para obtener la expresión $2+3$. Esta expresión es de nuevo un número entero: el $5$. Así como hacemos operaciones entre números, también podemos hacer operaciones entre proposiciones.

Un conector lógico (o simplemente conector) es una regla que permite tomar una o más proposiciones, «operarlas» y de ahí construir una nueva proposición «resultado». Como lo que más nos importa de las proposiciones es si son verdaderas o falsas, entonces lo más importante de cada conector que demos es decir cómo se determina la veracidad de la proposición que obtuvimos como resultado. En estas entradas hablaremos a detalle de los siguientes conectores:

  • Negaciones: Usan el símbolo $\neg$. Toman una proposición $P$ y la convierten en la proposición $\neg P$ cuyo valor de verdad es opuesto al de $P$.
  • Conjunciones: Usan el símbolo $\land$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\land Q$, que para ser verdadera necesita que tanto $P$ como $Q$ sean verdaderas.
  • Disyunciones: Usan el símbolo $\lor$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\lor Q$, que para ser verdadera necesita que alguna de $P$ o $Q$ lo sean (o ambas).
  • Implicaciones: Usan el símbolo $\Rightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P\Rightarrow Q$, que para ser verdadera se necesita o bien que $P$ sea falsa (y $Q$ puede ser lo que sea), o bien que tanto $P$ como $Q$ sean verdaderas.
  • Dobles implicaciones: Usan el símbolo $\Leftrightarrow$. Toman dos proposiciones $P$ y $Q$ y las convierten en la proposición $P \Leftrightarrow Q$, que para ser verdadera necesita que $P\Rightarrow Q$ sea verdadera y que $Q\Rightarrow P$ sea verdadera.

Ahora profundizaremos en las primeras tres y las últimas dos las dejaremos para más adelante.

Negaciones

Lo que hacen las negaciones a nivel de texto es anteponer un «no es cierto que» a una proposición. Por ejemplo si comenzamos con la proposición $$A=\text{«El cielo es azul.»}$$ entonces su negación es $$\neg A=\text{«No es cierto que el cielo es azul.»}$$ Observa que si pensamos a $A$ como una proposición verdadera, entonces la proposición $\neg A$ es falsa.

Hay que tener cuidado. El efecto que hacen las negaciones simplemente es anteponer «no es cierto que» a una proposición. Puede ser tentador intentar poner un «no» en alguna parte de la oración de manera arbitraria, pero esto puede llevar a problemas. Por ejemplo, la negación de la oración $$B=\text{«El número $2$ es par y múltiplo de $3$.»}$$ es simplemente $$\text{«No es cierto que el número $2$ es par y múltiplo de $3$.»}$$ Si hacemos la negación con poco cuidado, podríamos llegar a $$\text{«El número $2$ no es par ni múltiplo de $3$.»}$$ que no funciona, pues no tiene el valor opuesto de verdad: la oración original es falsa, y esta también.

Más adelante hablaremos con cuidado del conector «y» que usamos en el ejemplo anterior. Veremos cómo se pueden negar de manera correcta a las proposiciones que lo usan.

Tabla de verdad de negaciones

De manera formal, dada una proposición $P$ definimos a la negación de $P$, que denotamos por $\neg P$ como la proposición que tiene valor opuesto de verdad al de $P$. De esta forma, por definición, se tiene que $\neg P$ es la proposición con la siguiente tabla de verdad:

$P$$\neg P$
$0$ $1$
$1$$0$ 

Ya que al aplicar una negación obtenemos una nueva proposición, entonces ahora podemos volverle a aplicar negación a la nueva proposición obtenida. Así, si comenzamos con $$P=\text{«El cielo es azul.»}$$ y lo negamos, obtenemos $$\neg P = \text{«No es cierto que el cielo es azul.»}$$ y luego podemos negar de nuevo para obtener $$\neg(\neg P) = \text{«No es cierto que no es cierto que el cielo es azul.»}$$

Como la negación cambia el valor de verdadero a falso y viceversa, entonces $P$ y $\neg(\neg P)$ tienen el mismo valor de verdad. Esto lo podemos verificar en la siguiente tabla de verdad, llenando primero la segunda columna y luego la tercera a partir de la segunda.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Observa que las columnas de $P$ y de $\neg(\neg P)$ tienen exactamente los mismos valores. Diremos entonces que $P=\neg(\neg P)$. Observa cómo se parece mucho a la igualdad $-(-x)=x$ en los números reales. En la siguiente entrada hablaremos con más formalidad de cuándo podemos decir que dos proposiciones $P$ y $Q$ son iguales.

Conjunciones

Lo que hacen las conjunciones a nivel de texto es anteponer un «y» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $20$ es impar.»}$$ y $$Q=\text{«El número $9$ es un número cuadrado.»}$$ entonces la conjunción de ambas es $$P\land Q=\text{«El número $20$ es impar y el número $9$ es cuadrado.»}$$ Para que esta nueva proposición sea verdadera, debe suceder que cada una de las proposiciones que la conforman deben serlo. En este caso en específico, esto no ocurre. La proposición $Q$ es verdadera, pero la proposición $P$ es falsa. De este modo, la conjunción es falsa.

Veamos algunos ejemplos más. Tomemos las siguientes proposiciones:

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todas las blorg son rojas.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Para determinar la veracidad de cada una de estas, tendríamos que ponernos de acuerdo en la definición de varios términos como «felinos», «blorg», «es mayor que», «cuadrado», «luna», etc. Pero por practicidad, daremos por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La conjunción de $A$ con $B$ es $$A\land B = \text{«Los gatos son felinos y todas las blorg son rojas.»}$$ Como cada una de las proposiciones que conforman la conjunción es verdadera, entonces la conjunción lo es.

La conjunción de $B$ con $E$ es $$B\land E = \text{«Todas las blorg son rojas y la luna es azul».}$$ Por muy cierto que sea que todas las blorg sean rojas, la conjunción no es verdadera pues $E$ es falsa.

Una vez que formamos una conjunción, esta es ahora una nueva proposición. Por lo tanto, se vuelve candidata a aplicarle negaciones y conjunciones. De esta forma, tiene sentido pensar en la proposición $\neg(A\land B)$, en donde los paréntesis implican que primero se hace esa operación. A nivel textual también usaremos los paréntesis para no confundirnos, de modo que escribiremos: \begin{align*}\neg(A\land B) &= \text{«No es cierto que (los gatos son felinos y todas}\\ &\text{las blorg son rojas).»}\end{align*}

También tiene sentido pensar en la proposición $(\neg C) \land E$. O bien en la proposición $A\land( (\neg C) \land E)$. Puedes practicar pasar estas oraciones a texto con paréntesis.

Tabla de verdad de conjunciones

Para formalizar la discusión anterior, definimos a la conjunción de dos proposiciones $P$ y $Q$ como la proposición $P\land Q$ que es verdadera únicamente cuando tanto $P$ como $Q$ son verdaderas. Así, por definición, su tabla de verdad es la siguiente:

$P$$Q$$P\land Q$
$0$$0$$0$ 
$0$$1$$0$ 
$1$$0$$0$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural. Para responderla, podemos hacer la tabla de verdad considerando tanto a las columnas $P\land Q$ como $Q\land P$ y llenándolas por separado.

$P$$Q$$P\land Q$$Q \land P$
$0$$0$ $0$$0$ 
$0$$1$$0$ $0$ 
$1$$0$$0$  $0$
$1$$1$$1$ $1$ 

Observa que las columnas correspondientes a $P\land Q$ y $Q\land P$ son iguales, de modo que podemos concluir que $P\land Q=Q\land P$. Hay otras preguntas muy naturales: ¿qué pasa si hacemos la conjunción de más de dos proposiciones? ¿son iguales $(P\land Q) \land R$ y $P\land(Q \land R)$? ¿qué pasa si combinamos a la negación con la conjunción? Esto lo veremos más adelante.

Disyunciones

Lo que hacen las disyunciones a nivel de texto es anteponer un «o» entre dos proposiciones. Por ejemplo si comenzamos con las proposiciones $$P=\text{«El número $10$ es impar.»}$$ y $$Q=\text{«El número $7$ es un número primo.»}$$ entonces la conjunción de ambas es $$P\lor Q=\text{«El número $10$ es impar o el número $7$ es primo.»}$$ Para que esta nueva proposición sea verdadera, es suficiente con que una de las proposiciones que la conforman lo sea. En este caso en específico, esto sí ocurre. La proposición $Q$ es verdadera, de modo que aunque la proposición $P$ sea falsa, la disyunción resulta ser verdadera.

Retomemos las proposiciones de la sección anterior para ver más ejemplos.

$$A=\text{«Los gatos son felinos.»}$$

$$B=\text{«Todas las blorg son rojas.»}$$

$$C=\text{«El número $3$ es mayor que el número $1$.»}$$

$$D=\text{«Un cuadrado tiene ángulos de $60^\circ$.»}$$

$$E=\text{«La luna es azul.»}$$

Recuerda que estamos dando por hecho que $A$, $B$ y $C$ son proposiciones verdaderas y que $D$ y $E$ son falsas.

La disyunción de $A$ con $B$ es $$A\lor B = \text{«Los gatos son felinos o todas las blorg son rojas.»}$$ Como $A$ es verdadera, esto basta para decir que $A\lor B$ es verdadera. Como $B$ también es verdadera, también esto bastaba para decir que $A\lor B$ es verdadera. No hay ningún problema con que tanto $A$ como $B$ sean verdaderas.

La conjunción de $D$ con $E$ es $$C\lor E = \text{«Un cuadrado tiene ángulos de $60^\circ$ o la luna es azul».}$$ Aquí tanto $D$ como $E$ son falsas, de modo que la disyunción también lo es.

Las disyunciones también crean proposiciones nuevas, a las que se les pueden aplicar negaciones, conjunciones y disyunciones. El uso del paréntesis se vuelve crucial. Observa que usando las proposiciones ejemplo de arriba, tenemos que

  • $(D\land C) \lor A $ es verdadera
  • $D\land (C \lor A)$ es falsa

Tabla de verdad de disyunciones

Para formalizar la discusión anterior, definimos a la disyunción de dos proposiciones $P$ y $Q$ como la proposición $P\lor Q$ que es verdadera cuando por lo menos una de las proosiciones $P$ y $Q$ lo es. Así, por definición, su tabla de verdad es la siguiente:

$P$$Q$$P\lor Q$
$0$$0$$0$ 
$0$$1$$1$ 
$1$$0$$1$ 
$1$$1$$1$ 

¿Importará el orden en el que hacemos la conjunción? Esta es una pregunta muy natural, y ya puedes responderla por tu cuenta. Intenta hacer esto haciendo una tabla de vedad que incluya tanto a las columnas $P\lor Q$ como $Q\lor P$.

En la sección anterior vimos la importancia de poner paréntesis en las expresiones. Esta importancia también podemos verificarla mediante la siguiente tabla de verdad, en donde consideramos tres proposiciones $P$, $Q$ y $R$ y estudiamos qué sucede con $(P\land Q) \lor R$ y con $P \land (Q \lor R)$. Como hay $2$ posibilidades para cada uno de $P$, $Q$, $R$, debemos tener $2\cdot 2 \cdot 2 = 8$ filas.

Llenamos primero las primeras dos columnas usando lo que sabemos de $P\land Q$ y $Q\lor R$.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ 
$0$$0$$1$$0$ $1$ 
$0$$1$$0$$0$ $1$
$0$$1$$1$$0$ $1$ 
$1$$0$$0$$0$$0$
$1$$0$$1$$0$$1$
$1$$1$$0$$1$$1$
$1$$1$$1$$1$$1$

Y ahora sí podemos llenar las últimas dos porque ya sabemos cómo es el valor de verdad de cada una de las proposiciones que las conforman.

$P$$Q$$R$$P\land Q$$Q \lor R$$(P\land Q) \lor R$$P \land (Q \lor R)$
$0$$0$$0$ $0$$0$ $0$$0$
$0$$0$$1$$0$ $1$ $1$$0$
$0$$1$$0$$0$ $1$$1$$0$
$0$$1$$1$$0$ $1$ $1$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$1$$1$$1$
$1$$1$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$

Observa que las columnas correspondientes a $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, pues difieren en algunos renglones, por ejemplo, en el segundo renglón. De este modo, podemos concluir que hay ocasiones en las que $(P\land Q) \lor R$ y $P \land (Q \lor R)$ no son iguales, así que el orden de las operaciones suele ser importante.

Tarea moral

  1. Escribe en texto y usando paréntesis la proposición $(A\land B) \lor (\neg D)$, usando $A$, $B$ y $D$ como las proposiciones ejemplo que dimos.
  2. Mediante una tabla de verdad, justifica la igualdad $P\lor Q = Q \lor P$.
  3. Mediante una tabla de verdad, justifica la igualdad $(P\lor Q) \lor R = P \lor (Q \lor R)$.
  4. Haz una tabla de verdad para verificar que las proposiciones $\neg(P \land Q)$ y $(\neg P) \land (\neg Q)$ no son iguales. Es decir, debes de hacer todos los casos y ver que las columnas difieren en uno o más renglones.
  5. Haz una tabla de verdad para verificar que las proposiciones $(P\land Q) \land (R \land S)$ y $(((P\land Q) \land R) \land S)$ son iguales. Va a ser una tabla grande, de $16$ renglones.

Más adelante…

En esta entrada hablamos de la negación, la conjunción y la disyunción. Vimos cómo justificar algunas de sus propiedades mediante tablas de verdad, como $A\land B=B\land A$. En la siguiente entrada usaremos esta técnica y otras más para probar otras propiedades interesantes de estos conectores.

Entradas relacionadas