Archivo de la etiqueta: proposiciones

Álgebra Superior I: Problemas de condicionales y cuantificadores

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada resolveremos problemas de temas vistos en entradas anteriores. Haremos algunos ejemplos relacionados con los conectores condicionales que vimos en una entrada anterior: la implicación y la doble implicación. También veremos algunos de cuantificadores lógicos.

Problemas resueltos

Problema. Si $P$ y $R$ son verdaderas y $Q$ es falsa, di si la siguiente proposición es verdadera o falsa: $$(P \lor R) \Rightarrow \neg(Q \land R).$$

Solución. Haremos una tabla de verdad pero únicamente con los valores que nos dan, es decir, no vamos a hacer la tabla para todos los casos, sino únicamente los que nos interesan en este momento:

$P$$Q$$R$$P \lor R$ $Q \land R$$\neg (Q \land R)$$(P \lor R) \Rightarrow \neg(Q \land R)$
$1$$0$$1$  $1$ $0$  $1$   $1$

Por lo tanto la proposición es verdadera para los valores de verdad dados.

$\square$

Problema. Di si las siguientes proposiciones sobre los números enteros son verdaderas o no:

  1. $(3+1=4) \Rightarrow (0<10)$
  2. $(4=5) \Leftrightarrow (9+1=10)$
  3. $((6<7) \lor (3^2=10)) \Rightarrow (12<12^2)$
  4. $((-1<1) \land (1<-1)) \Leftrightarrow ((13-1=12-1+1)\Rightarrow (1+1<2))$

Solución.

Vamos a hacer algunas verificaciones sobre cada una de las proposiciones para encontrar su valor de verdad:

  • $(3+1=4) \Rightarrow (0<10)$

Como $3+1=4$ es verdadera y $0<10$ es verdadera también, entonces la proposición es verdadera.

  • $(4=5) \Leftrightarrow (9+1=10)$

Recordemos que la doble condicional es verdadera si ambas proposiciones tienen el mismo valor de verdad. Por un lado no es cierto que $4=5$ mientras que sí es verdad que $9+1=10$. Por lo tanto la proposición es falsa.

  • $((6<7) \lor (3^2=10)) \Rightarrow (12<12^2)$

Vamos a ver la proposición por partes. Primero veamos que $((6<7) \lor (3^2=10))$ es una disyunción verdadera pues una de las proposiciones que la componen, $6<7$, lo es. Como $12<12^2$ es verdad, entonces la implicación tiene antecedente y subsecuente verdaderos y por lo tanto es verdadera.

  • $((-1<1) \land (1<-1)) \Leftrightarrow ((13-1=12-1+1)\Rightarrow (1+1<2))$

De nuevo vamos a dividir la proposición en sus partes, $(-1<1) \land (1<-1)$ y $(13-1=12-1+1)\Rightarrow (1+1<2)$. Primero notemos que $(-1<1) \land (1<-1)$ es falsa, pues no es cierto que $1<-1$.

Ahora, veamos cómo es $(13-1=12-1+1)\Rightarrow (1+1<2)$. Nota que $12=13-1$ y $12=12-1+1$, entonces $13-1=12-1+1$. Entonces esta primera parte es verdad, mientras que $1+1=2$ pero no es cierto que $2<2$. Así que es falso que $1+1<2$. Entonces $(13-1=12-1+1)\Rightarrow (1+1<2)$ es falso.

Como $(-1<1) \land (1<-1)$, $(13-1=12-1+1)\Rightarrow (1+1<2)$ son ambas falsas, entonces $((-1<1) \land (1<-1)) \Leftrightarrow ((13-1=12-1+1)\Rightarrow (1+1<2))$ es verdadero.

Nota: En este tipo de ejercicios, ¿viste cómo se dieron las argumentaciones de las proposiciones en cada caso? El secreto aquí fue «desarmar» las proposiciones en partes más pequeñas. Esto lo hacemos pues recuerda que los conectores son binarios, esto significa que su valor de verdad depende del valor de verdad de las dos proposiciones que conectan.

Así, para ver cuál es el valor de verdad de $((6<7) \lor (3^2=10)) \Rightarrow (12<12^2)$, lo que hicimos fue deshacerlo en sus partes. Una parte $A$ fue $(6<7) \lor (3^2=10)$ y la otra parte $B$ fue $12<12^2$. Entonces bastaba con verificar cuáles eran los valores de verdad de $A$ y $B$. Para ello, volvimos a «desarmar» a $A$ en sus partes «atómicas». Es decir, desarmamos $(6<7) \lor (3^2=10)$ en $6<7$ y $3^2=10$ y estudiamos el valor de verdad de cada uno de ellos. Usualmente este tipo de pensamiento de «desarmar un problema en sus partes» te ayudará a verificar o demostrar cosas más adelante.

Problema. Sean $P(x)$, $Q(x)$ y $R(x)$ los siguientes predicados:

  • $P(x): x \leq 4$
  • $Q(x): x +1$ es par.
  • $R(x): x> 0$

Si nuestro universo de discurso son los números enteros, ¿cuáles son los valores de verdad de las siguientes proposiciones?

  1. $P(1)$
  2. $P(1) \Rightarrow Q(1)$
  3. $P(0) \Rightarrow (R(5) \Rightarrow Q(0))$
  4. $R(-1) \lor P(2)$
  5. $\neg R(-2) \lor P(-2)$

Solución.

1.$P(1)$

Es verdadera, pues $1 \leq 4$.

2. $P(1) \Rightarrow Q(1)$

Como $P(1)$ es verdadera y además $1+1=2$ es par, entonces la proposición es verdadera.

3. $P(0) \Rightarrow (R(5) \Rightarrow Q(0))$

Vamos a dividir la proposición en partes. Primero notemos que $P(0)$ es verdad. Mientras que $R(5) \Rightarrow Q(0)$ es falsa, ya que es cierto que $5>0$ pero es falso que $0+1$ sea par. Entonces la proposición es falsa.

4. $R(-1) \lor P(2)$

Como $R(-1)$ es falsa pero $P(2)$ es verdad, entonces la proposición es verdadera.

5. $\neg R(-2) \lor P(-2)$

Como $-2<0$ es verdad, entonces $\neg R(-2)$ es falso, mientras que $-2<4$ es verdad. De esta manera la proposición es verdadera.

Problema. Considera los siguientes predicados:

  • $P(x): 2x>0$
  • $Q(x):x>0$
  • $R(x): x=20$
  • $T(x):x<0$

Determina la verdad o falsedad de las siguientes proposiciones, considerando que nuestro universo de discurso son los números enteros. Si la proposición no es verdadera, da un contraejemplo o explicación de ello.

  1. $\forall x(P(x) \Rightarrow Q(x))$
  2. $\exists x (Q(x) \land T(x))$
  3. $\forall x(R(x) \Rightarrow(Q(x))$
  4. $\exists ! x(R(x))$
  5. $ \nexists x (Q(x) \land P(x))$

Solución.

  • $\forall x(P(x) \Rightarrow Q(x))$

Nota que siempre que se cumple $2x>0$ entonces $x>0$ (más adelante demostrarás esto con toda formalidad, pero de momento lo daremos por cierto). Por lo tanto la proposición es verdadera.

  • $\exists x (Q(x) \land T(x))$

Para que esto sucediera, necesitaríamos la existencia de al menos un elemento $x$ que cumpla $0<x$ y $x>0$, es decir necesitaríamos un elemento que sea positivo y negativo a la vez, pero esto no es posible. Por lo tanto la proposición es falsa.

  • $\forall x(R(x) \Rightarrow(Q(x))$

Lo que nos dice esta proposición es «Para todo número entero $x$ que cumpla $x=20$ entonces $x>0$» o dicho de otra manera: «Si un número entero es igual a 20, entonces será positivo.» Lo cuál es correcto, pues si el número es distinto a 20, la implicación será correcta (recuerda la tabla de verdad de la implicación), mientras que el único caso en donde la hipótesis se cumple es cuando $x=20$ y claramente es un número que cumple $x>0$. Entonces la proposición es verdadera.

  • $\exists ! x(R(x))$

Esto nos quiere decir que existe un único número entero que sea igual a 20, e inmediatamente podemos saber que es verdadera, pero ¿A qué nos referiremos que un número sea igual a 20? Primero tendríamos que ponernos de acuerdo de qué significa la igualdad. Aunque ahora no lo haremos, piensa el cómo nos aseguraríamos de que es el único número entero que cumple esa propiedad ¿Qué pasaría si no fuera cierto?

  • $ \nexists x (Q(x) \land P(x))$

Lo que dice la proposición es que ningún número $x$ va a cumplir a la vez $x>0$ y $2x>0$, pero esto no es cierto, pues pensemos en $x=1$. Cumple $Q(x)$ ya que $1>0$ y cumple $P(x)$ porque $2*1=2>0$. Entonces podemos decir que es falso pues dimos un contraejemplo que contradijo la proposición.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Cuantificadores existenciales y universales

Por Guillermo Oswaldo Cota Martínez

Introducción

Hasta ahora hemos visto proposiciones y sus conectores. Por ello, ya podemos decir cómo se manejan las proposiciones al combinarlas, al tener un valor de verdad dado o qué significa que dos proposiciones sean equivalentes.

Sin embargo, hasta ahora hemos trabajado con cierto rigor los objetos a los que nos referimos dentro de una proposición. Por ejemplo cuando decimos la proposición «Este número es impar» puede que sea o no verdadera, pero esto depende de una cosa: el contexto. ¿A qué número nos estamos refiriendo? Podríamos estar en la siguiente conversación: «Hay números distintos a los múltiplos de 2, por ejemplo el 3. Este número es impar. » A esto último, estando en contexto, ya le podríamos asociar un valor de verdad.

En general esto no es así. Podemos ir variando a qué número nos referimos. En ocasiones las proposiciones tienen una variable y, dependiendo el valor de esa variable, cambian su significado o su valor de verdad. En esta entrada formalizamos estas ideas y hablamos de cuantificadores, que nos permitirán «recorrer» todos los valores posibles de una variable.

Términos variables

Volvamos a nuestro ejemplo. Al tomar la proposición $P$ «el número es impar», podríamos referirnos al $1$, $2$, $3$, $80$ o $20,000$. Así, es más conveniente pensar en que la proposición depende de una variable como sigue:

$P(\text{el número})$ = «$\text{el número}$ es impar».

Visto de esta manera, $P(2)$ es la proposición «$2$ es impar». En general $P(x)$ es la proposición «$x$ es impar» y esta hace referencia a que el número es una variable que puede tomar distintos valores «permitidos». Observa que en este caso no tendría sentido decir si $P(\text{azul})$ es verdadero o falso. A este tipo de proposiciones que tienen una variable (o más), se les llama predicados o esquemas proposicionales. La palabra «esquema» viene del hecho de que podríamos estar refiriéndonos a distintas «cosas» dependiendo del valor que tome nuestra variable.

¿Notas que tenemos que ponernos de acuerdo sobre cuál es el contexto sobre el que estamos hablando al momento de asignarle un valor a nuestra variable? Esto debido a que no podríamos decir que «azul es impar» o «la luna es impar». A este «conjunto» dentro del cual pueden tomar valores nuestras variables le llamamos universo de discurso. Aunque suena algo sofisticado, puedes pensarlo como el contexto al que nos estamos acoplando en el sentido del esquema proposicional.

Es muy importante siempre tener claro el universo de discurso de proposiciones con variables. No será lo mismo estar hablando de número pares, que de números enteros. Sabemos que todos los números pares no son impares. Mientras que algunos números enteros son impares. Estas palabras enfatizadas son las que nos van a permitir hablar más sobre cómo es nuestro universo de discurso. No es lo mismo que solo un objeto del universo cumpla un predicado (tenga valor de verdad verdadero) a que todos los objetos de nuestro universo las cumplan.

Cuantificador «para todo»

Introducimos ahora la idea de cuantificadores. Estas son palabras o ideas que nos ayudarán a identificar cuándo se cumplen los predicados o esquemas proposicionales. Por ejemplo, supongamos que dentro de nuestro universo de discurso, todo posible valor de la variable $x$ cumple el predicado $P(x)$. En este caso diremos «para todo $x$ en nuestro universo de discurso, se cumple $P(x)$». Podemos decir simplemente «para todo $x$, $P(x)$, pero es muy importante que el universo de discurso sea claro.

Veamos un ejemplo. Sabemos que todo número par es múltiplo de $2$. En el caso en que nuestro universo de discurso sean los números pares y tengamos al predicado

$P(x)$=$x$ es múltiplo de $2$

podremos decir «para todo $x$, $P(x)$», pues en cualquier asignación de la variable que consideremos en nuestro universo de discurso, se cumplirá el predicado.

Este cuantificador se expresa mediante el símbolo $\forall$ y se lee: para todo. De esta manera:

«para todo $x$, $P(x)$»=$\forall xP(x)$

Algunos ejemplos de cómo podemos usar este cuantificador son los siguientes. Observa cómo se deja claro el universo de discurso.

  • $\forall x$ número par, $x$ es múltiplo de 2.
  • $\forall x$ grupo cíclico, $x$ es generado por un único elemento.
  • $\forall x$ año bisiesto, $x$ tiene 366 días.
  • $\forall (x,y)$ vector en $\mathbb{R}^2$, $\norm{x+y}\leq\norm{x}+\norm{y}.$ *

Recuerda que ahora no es necesario que conozcamos a la perfección el universo de discurso del que estamos hablando en estos ejemplos. En estas entradas no nos interesa estudiar a los pares, a los grupos cíclicos, o a los años bisiestos. Los ponemos como ejemplos únicamente para ver que las ideas de lógica aplican a todos ellos. Por ejemplo para el segundo ejemplo el objetivo es que entiendas que siempre que consideremos un grupo cíclico (sea lo que signifique un grupo o un grupo cíclico), ese grupo es generado por un único elemento (sea lo que signifique que un grupo se genere por un único elemento). En este caso nuestro universo de discurso serán los grupos cíclicos, mientras que $P(x)$=«$x$ es generado por un único elemento». En estos renglones solo nos interesa entender cuándo estamos hablando de un universo de discurso, un cuantificador y un esquema proposicional.

Cuantificadores «existe» y «existe un único»

El cuantificador «para todo» establece que una proposición es verdadera para todos los objetos de un universo de discurso. Pero esto no siempre pasa. Por ejemplo, pensemos en que nuestro universo de discurso es $$A=\{\text{pescados, reptiles, aves, piedras, felinos}\}$$ y nuestro predicado $P(x)$ es «Los gatos son $x$». En este caso no todas las formas de asignar un objeto del universo a la variable $x$ darán proposiciones verdaderas. Los gatos no son pescados, reptiles ni mucho menos piedras o aves. Pero los gatos sí son felinos. En este caso la asignación $x=\text{felinos}$ será la única en la que se cumpla el esquema proposicional.

Cuando tenemos la situación en la que uno de los objetos de nuestro universo de discurso (o más) hagan que se cumpla la proposición, diremos que «para algún $x$ en el universo de discurso se cumple $P(x)$». Es un poco más usual ver esto escrito como «existe $x$ en el universo de discurso que cumple $P(x)$», o simplemente como «existe $x$, $P(x)$», cuando el universo de discurso se sobreentiende.

En matemáticas, escribiremos este «existe» de la siguiente manera: «$\exists$». Algunos ejemplos del uso de este cuantificador son los siguientes:

  • $\exists n$ número entero que es solución a $n^2=4$.
  • $\exists n$ número entero que cumple $e^{i\pi}+n=0.$ **

El cuantificador «existe» tiene una variante más restrictiva. Cuando decimos que existe al menos un elemento en nuestro universo de discurso que cumple una propiedad, también tenemos que puede haber $2$, $3$ o $20$ elementos que lo cumplen. Por ejemplo: «$\exists n$ número entero que es solución a $n^2=4$» tiene dos posibilidades, pues al tomar $n=-2$ o $n=2$ se cumple el predicado.

Pero es muy frecuente en matemáticas que se busque que uno y sólo un elemento cumpla un predicado. Para referirnos a estas ocasiones, usamos el cuantificador «$\exists!$», que se lee como «existe un único«. Por ejemplo, sabemos que el único número primo par es 2. Así que podríamos decir: «$\exists! x$ número entero que es primo y par». Otros ejemplos de su uso son:

  • $\exists!x$ día de la semana tal que $x$ empieza con la letra L
  • $\exists!x$ número real tal que $x$ es neutro aditivo. ***
  • $\exists!n$ número entero que cumple $e^{i\pi}+n=0.$

¿Observas que la última oración se parece mucho al último ejemplo del cuantificador anterior? Y con esto no estamos contradiciendo nada, en el ejemplo anterior solo estamos diciendo «Existe un número entero $n$ que es solución a $e^{i\pi}+n=0$» con lo que queremos decir que existe al menos uno, mientras que en el último ejemplo, decimos «Existe un único número entero $n$ que es solución a $e^{i\pi}+n=0$». Aquí, el objetivo solo es ser más específicos, lo que quiere decir que solo estamos dando información extra acerca de la proposición.

¿Qué sucede si ningún objeto del universo hace que el predicado sea cierto? En ese caso, podremos decir que «no existe $x$, $P(x)$». En símbolos, «$\nexists$». La siguiente tabla resume los cuantificadores de los que hemos hablado.

Para todos los casos$\forall$
Para al menos un caso$\exists$
Para un único caso$\exists!$
Para ningún caso$\nexists$

Combinando conectores y cuantificadores

Habiendo conocido los distintos cuantificadores, podríamos hacer afirmaciones un poco más extensas considerando cómo funcionan. Por ejemplo, pensemos en que nuestro universo de discurso son los números enteros. Consideremos los predicados $P(x)=x<0$ y $Q(x)=x<1$. Entonces podríamos decir:

$\forall x$ número entero $(P(x) \Rightarrow Q(x))$

En palabras: «Para todo número entero $x$, si $x$ es menor a 0, entonces $x$ es menor a 1».

También podemos tener predicados con más de una variable. Por ejemplo, consideremos a los números enteros como nuestro universo de discurso y $P(x,y)$ al predicado $x+y=0$. No hay problema con que dos variables estén en el mismo predicado, y con la notación $(x,y)$ solo estamos diciendo que la proposición depende de dos variables, por ejemplo $P(1,2)$ es la proposición $1+2=0$. Ahora, con este predicado en mente, podríamos enunciar $$\forall x, (\exists! y, P(x,y)).$$

Sólo estaríamos diciendo «para cada número entero $x$, existe un único número entero $y$ tal que $x+y=0$». Dicho de otra forma, cada vez que consideramos un número entero $x$, digamos $3$, existirá un único número entero $y$ que cumplirá la ecuación $x+y=0$. En este caso ese número $y$ es $-3$, pues dijimos que $x=3$ y solo hay un número que al sumarlo a $3$ nos da $0$.

Notas

Estas son algunas anotaciones del artículo y no es necesario que las sepas, únicamente son curiosidades o temas por aparte que forman parte de la cultura matemática.

* Esta se conoce como la desigualdad del triángulo y nos dice básicamente: que la suma de la longitud de dos lados de un triángulo siempre será mayor a la longitud del otro lado.

** Esta identidad se conoce como la identidad de Euler y algunos piensan que es una de las ecuaciones más hermosas de las matemáticas. En otros cursos como Álgebra Superior 2 o Variable Compleja puede que vuelvas a ver esta identidad con su demostración.

*** El único neutro aditivo es el $0$, y esto quiere decir que al sumarle este a cualquier otro número, dará el mismo número.

Más adelante…

Cuando estamos hablando de cuantificadores, también nos van a interesar las negaciones de aquellos cuantificadores, por ejemplo, ¿a qué nos referiremos cuando digamos $\neg (\forall x P(x))$? ¿o cuando digamos $\neg (\exists x (P(x) \Rightarrow Q(x)))$? Para esta tarea primero deberemos hacer un análisis de qué nos dice cada uno de estos cuantificadores en su negación y es justamente lo que estudiaremos en la siguiente entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Imagina que definitivamente quieres comprar un helado. Cuando vas a la heladería, sólo venden un sabor. Esto tiene desventajas, por supuesto. Pero, ¿qué ventajas tiene que sólo haya un sabor de helado? Enlista todas las que puedas.
  2. En los ejemplos siguientes encuentra el universo de discurso y su predicado.
    1. $\forall x$ número par,$x$ es múltiplo de 2.
    2. $\forall x$ año bisiesto, $x$ tiene 366 días.
    3. $\forall (x,y)$ vector en $\mathbb{R}^2$, $\norm{x+y}\leq\norm{x}+\norm{y}$.
  3. Considera el predicado $P(x)=«x$ es múltiplo de 11». Da cuatro universos de discurso tales que los siguientes enunciados sean ciertos:
    • $\forall x P(x)$
    • $\exists x P(x)$
    • $\exists! x P(x)$
    • $\nexists x P(x)$
  4. Considera la proposición: $P(x,y,z)$ = «$x^3+y^3=z^3$». ¿Cuál de los siguientes enunciados representa la oración «No existen números enteros $x,y,z$ que cumplen $P(x,y,z)$»?:
    • $\forall x (\exists y (\exists z P(x,y,z)))$
    • $\nexists (x,y,z)P(x,y,z)$
    • $\forall x (\nexists(y,z)P(x,y,z))$
    • $\nexists x (\forall (x,y) P(x,y,z))$
  5. ¿El ejercicio anterior sólo tiene una solución? Si hay más de una opción correcta, ¿cómo argumentarías que dos enunciados representan el mismo enunciado?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Condicionales y dobles condicionales

Por Guillermo Oswaldo Cota Martínez

Introducción

Hemos hablado en las últimas entradas de tres conectores muy importantes: la negación, la conjunción y la disyunción. Sin embargo, como recordarás en la introducción al tema, mencionamos más de tres conectores. Ha llegado el momento en que veamos a los dos conectores restantes: la implicación y la doble implicación.

Pensar en consecuencias

Para introducir mejor la implicación, pensemos en qué significa la palabra sin algún contexto matemático. ¿Qué se te viene a la mente cuando oyes la palabra «implicación»? Quizá se te venga a la mente «consecuencia», que a su vez significa cosas o acciones que derivan otras más.

Un ejemplo es el siguiente: ¿qué implicación tiene que se acabe la pila de un celular? Pues en principio se apaga el teléfono. Entonces podríamos decir «Si se acaba la pila del celular entonces se apagará». Otro ejemplo: ¿qué consecuencias tiene llegar tarde a una cita médica? Pues muy probablemente se cancelará. Esto mismo lo podemos decir así: «Si llego tarde a una cita médica entonces la cancelarán». Un último ejemplo sería el siguiente: «Si sube el nivel de dióxido de carbono en la atmósfera entonces los polos se derretirán».

Todas estas oraciones son ejemplos de condicionales, y para entender su estructura, volvamos al primer ejemplo. Pensemos en las proposiciones
\begin{align*}
P &= \text{El celular se queda sin pila.}\\
Q &= \text{El celular se apaga.}
\end{align*}

Podemos reescribir la oración «Si se acaba la pila del celular entonces se apagará» como «Si pasa $P$ entonces pasa $Q$». Observa que siempre que pase $P$, entonces pasará $Q$. Esto lo escribiremos como $P \Rightarrow Q$ y se lee «$P$ implica $Q$». Lo que estamos diciendo con esta oración es que si el valor de verdad de $P$ es verdadero entonces el valor de verdad de $Q$ es verdadero.

Observa que si al celular no se le acaba la pila, entonces no tendría porqué apagarse, entonces si $P$ es falso, $Q$ puede ser falso y no hay problema. También puede pasar que apagues el celular, pero no necesariamente sea porque se le acabó la pila, entonces si $P$ es falso, $Q$ también puede ser verdadero y no hay algún problema con ello. El único problema sería decir que se le acabó la pila al celular y sigue prendido, eso sería algo que no puede suceder, porque sabemos que «Si se acaba la pila del celular entonces se apagará».

Todo esto lo resumimos en la tabla de verdad de la siguiente sección.

Tabla de verdad de la implicación

$P$$Q$$P \Rightarrow Q$
$0$$0$$1$ 
$0$$1$$1$ 
$1$$0$ $0$
$1$$1$ $1$

Quizá sigas teniendo dificultades para entender porqué si $P$ es falso, $Q$ puede tener cualquier valor y seguir haciendo la expresión verdadera. Para ello, piensa en lo siguiente: lo que dice la implicación es que siempre que pase la primera condición $P$, también llamada hipótesis, ocurrirá $Q$, también conocida como tesis. Puede ser que se cumpla $Q$ y no se cumpla $P$, pero eso no contradice lo que dice la implicación, o puede que igual no se cumpla ni $Q$ ni $P$. Lo único que nos dice la implicación es que siempre que se cumpla $P$ va a tener como consecuencia que se cumpla $Q$. Entonces el único caso en donde desobedecemos a la implicación (donde es falsa), es cuando pasa $P$ y no pasa $Q$, que corresponde al penúltimo renglón de la tabla de verdad.

Condiciones suficientes y necesarias

El siguiente y último conector que vamos a ver es la doble implicación. A diferencia de la implicación, asumimos que para que una proposición sea verdadera, es necesaria que la otra también y viceversa. Para esto, refiramos a la doble implicación como una equivalencia lógica $P \Leftrightarrow Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$. En otras palabras decimos que hay una doble implicación entre $P$ y $Q$ si $P$ implica $Q$ y además $Q$ implica $P$.

Además de este nombre, algunas formas de referirse a la doble implicación que encontrarás serán:

  • «$P$ es equivalente a $Q$»
  • «Una condición necesaria y suficiente para $Q$ es $P$»
  • «$P$ si y sólo si $Q$»

Esta última se utiliza mucho en enunciados matemáticos como proposiciones y teoremas.

Tabla de verdad de la doble implicación

$P$$Q$$P \Rightarrow Q$$Q \Rightarrow P$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$P\Leftrightarrow Q$
$0$$0$ $1$$1$$1$  $1$ 
$0$$1$$1$ $0$ $0$ $0$ 
$1$$0$  $0$$1$ $0$ $0$
$1$$1$  $1$$1$ $1$   $1$

Nota que la doble implicación es verdad cuando los valores de $P$ y $Q$ son ambos verdaderos o ambos falsos. Esto quiere decir que en este caso si alguno es verdadero, entonces los dos son verdaderos, mientras que si uno es falso, los dos lo serán.

La implicación en términos de otros conectores

El hecho de que hayamos aprendido los primeros tres conectores (negación, conjunción y disyunción) antes que estos no es coincidencia. Resulta que la implicación y la doble implicación se «pueden construir» a partir de los primeros tres. Con esto nos referimos a que la implicación es equivalente a una expresión hecha únicamente por los anteriores.

Para ello, primero recuerda cómo construimos la implicación. La única forma en que la implicación $P \Rightarrow Q$ sea falsa es que $P$ sea verdadero y $Q$ falso. Entonces si $P$ es falso, no importa qué valor tome $Q$. De esta forma, cada vez que $\neg P$ sea verdad, la implicación también será verdadera. Pero si $P$ es verdadero, entonces $Q$ debe serlo también. Eso lo podemos expresar como $\neg P \lor Q$ que quiere decir «$P$ no pasa o $Q$ es verdadero» y coincide con lo que acabamos de decir. Para convencerte de eso, revisa con cuidado la siguiente tabla.

$P$$Q$$\neg P$ $\neg P \lor Q$$P \Rightarrow Q$
$0$$0$ $1$$1$  $1$ 
$0$$1$$1$  $1$ $1$ 
$1$$0$  $0$ $0$ $0$
$1$$1$  $0$ $1$   $1$

Entonces $\neg P \lor Q = P \Rightarrow Q$. Entonces cada vez que digamos que «Una cosa implica la otra», podemos pensarlo como «La negación de la primera cosa o la otra». Siempre es útil regresar a ejemplos concretos. Piensa cuidadosamente por qué es lo mismo decir «si llueve el piso se moja» y decir «no llueve o el piso está seco».

La contrapositiva de una implicación

Una propiedad que más adelante nos servirá sobre la implicación es el hecho de que en ocasiones es más sencillo trabajar con las negaciones de las proposiciones que con las proposiciones normales. No te preocupes si no entiendes a qué nos referimos con esto, más adelante lo veremos con más calma.

Un ejemplo de esto es verificar la siguiente proposición: «Si un número al cuadrado es par, entonces el número es par». A primera vista no es tan fácil verificar directamente esta proposición que es de la forma $P \Rightarrow Q$. Resulta que la forma en que se comprueba esto es con una equivalencia de la implicación. Para llegar a esta equivalencia, como primer paso, notaremos que podemos poner a la implicación en términos de la negación. Para esto, vamos a usar el resultado anterior para encontrar lo que buscamos.

Recordemos que $\neg P \lor Q = P \Rightarrow Q$, y la conjunción es conmutativa, es decir $\neg P \lor Q = Q \lor \neg P$.

¿Podemos ver esto de otra forma?

Pues resulta que sí. Veamos a $Q$ como la negación de la negación de $Q$, dicho de otra forma, $Q = \neg \neg Q$. Esto último nos ayuda a ver la equivalencia de otra forma: $Q \lor \neg P =\neg \neg Q \lor \neg P$. El siguiente paso es pensar a $\neg Q$ como un término por sí mismo y a $\neg P$ como otro término. Dicho de otra forma agrupemos términos para ver la equivalencia de manera distinta: $$Q \lor \neg P =\neg (\neg Q) \lor (\neg P).$$ Ahora, pensemos a $\neg Q$ como una proposición y a $\neg P$ como otra. La expresión está diciendo «La negación de $\neg Q$ una cosa o $\neg P$» ¿Suena familiar? Esto justamente es la equivalencia de la implicación. Dicho de otra manera, fíjate que tenemos una equivalencia:

$$Q \lor \neg P =\neg (\neg Q) \lor (\neg P) = \neg Q \Rightarrow \neg P.$$

Es decir,

$$P \Rightarrow Q = \neg Q \Rightarrow \neg P.$$

Cuando tenemos una implicación de la forma $P\Rightarrow Q$, a la proposición equivalente $\neg Q \Rightarrow \neq P$ le llamamos la contrapositiva.

Regresando al ejemplo inicial de esta sección, la proposición «Si un número al cuadrado es par, entonces el número es par» podemos pensarla como «Si un número es impar entonces su cuadrado es impar», lo cual es mucho más fácil de verificar. En entradas posteriores retomaremos esta forma de pensar. Por lo mientras es suficiente que entiendas que la implicación es equivalente a su contrapositiva.

El caso en donde todo es verdadero

Antes de terminar esta entrada, introduciremos un concepto que resultará útil cuando llegue el momento de estudiar inferencias. Para ello, observa la tabla de verdad de la proposición $((Q \Rightarrow P) \land Q) \Rightarrow P$:

$P$$Q$$Q \Rightarrow P$$Q \Rightarrow P \land Q$$(Q \Rightarrow P \land Q) \Rightarrow P$
$0$$0$ 1 0
$0$$1$ 0 0 1
$1$$0$ 1 0 1
$1$$1$ 1 1

¿Notas algo peculiar? Toda la columna de nuestra regla de inferencia es verdadera. Esto quiere decir que no importa qué valores tomen nuestras premisas, siempre es verdadera la expresión. A esto en matemáticas le llamamos una tautología.

Sucede algo que une aún más los conceptos de tautología y doble condicional. ¿Recuerdas que las proposiciones $\neg(P \land Q) = \neg P \lor \neg Q$ son equivalentes? Pues veamos ahora sus tablas de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$$\neg (P \land Q)\Leftrightarrow (\neg P \lor \neg Q)$
$0$$0$ 01 111
$0$$1$ 01 101 1
$1$$0$ 01 011 1
$1$$1$ 10000 1

Hemos agregado una última columna, la correspondiente a $\neg (P \land Q))\Leftrightarrow (\neg P \lor \neg Q)$. ¡Es una tautología! Esto sucede siempre: dos proposiciones o expresiones $P, Q$ son equivalentes siempre que $P \Leftrightarrow Q$ sea una tautología.

Más adelante…

Recuerda el ejemplo que mencionamos anteriormente «Un número al cuadrado es par si el número es par», no especificamos de qué número se trataba, sin embargo hay una infinidad de números los cuales podemos tomar como ejemplo para verificar la propiedad. Entonces podemos decir «$1^2$ es par si $1$ es par» o «$38^2$ es par si $38$ es par», o en general podemos decir «$x^2$ es par si $x$ es par». ¿Pero quién es $x$? ¿Qué valores puede tomar? En la siguiente entrada veremos algo conocido como cuantificadores. Estos ampliarán el poder de las proposiciones introduciendo variables dentro de las proposiciones. Con ello, se puede cambiar el objeto al que se refiere una proposición y, dependiendo de esto, su valor de verdad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe las siguientes frases en lógica proposicional:
    • Si hoy es lunes, entonces mañana será viernes.
    • El caos implica el orden.
    • Para que crezcan las plantas, tienes que regarlas.
    • Hoy es lunes si mañana es martes y mañana es martes si hoy es lunes.
    • Hoy es lunes si y sólo si mañana es martes.
  2. Verifica que siempre «Una cosa siempre se implica a sí misma», es decir, verifica que si $P$ es una proposición, entonces $P \Rightarrow P$ siempre es verdadera.
  3. Haz la tabla de verdad de la implicación $P\Rightarrow Q$ y de su contrapositiva $\neg Q \Rightarrow \neg P$ para convencerte de que en verdad son equivalentes.
  4. ¿Cómo verificarías que  $P \Leftrightarrow Q = (\neg Q \lor P)\land(\neg P \lor Q)$? Recuerda que la doble implicación $P \Leftrightarrow Q$ es equivalente a $(P \Rightarrow Q) \land (Q \Rightarrow P)$.
  5. Verifica que la doble condicional es conmutativa, es decir $P \Leftrightarrow Q = Q \Leftrightarrow P $. ¿La condicional es conmutativa?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Problemas de proposiciones y conectores

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada, presentaremos únicamente problemas resueltos de proposiciones y conectores. Con ayuda de ellos podrás poner en práctica lo visto con anterioridad y entender mejor las propiedades de los conceptos vistos.

Problemas resueltos

Problema 1. ¿Cuáles de los siguientes enunciados son proposiciones?

  • ¿Qué día es hoy?
  • Toda función derivable es continua.
  • ¿El día de hoy lloverá?
  • ¿Cuántos números primos existen?
  • ¡Que gusto verte!
  • Todo espacio vectorial tiene dimensión finita.
  • El libro habla sobre historia universal.

Solución. Veamos cada oración con cuidado.

¿Qué día es hoy?

No es proposición. Esta oración es una pregunta, por lo cuál no puede tener asignado algún valor de verdad, pues no denota información que puede ser cierta o falsa (ojo: al responder la pregunta con por ejemplo «Hoy es lunes» esta respuesta tiene valor de verdad, pues podríamos decir que es lunes o no, pero en sí, la pregunta no tiene un valor de verdad por lo que no es proposición).

Toda función derivable es continua.

es proposición. Independientemente de que sepas qué es una función derivable o qué es una función continua, sabes que esta solo tiene dos opciones: o es cierta o no lo es. Esto es lo que le da el atributo de ser proposición (además es proposición matemática), pues se le puede asignar un valor de verdad.

¿El día de hoy lloverá?

No es proposición. Nuevamente como el primer ejemplo, la pregunta no carga consigo algún valor de verdad, puesto que la pregunta no está afirmando o negando algo, sino está preguntando algo sin decir que será de una u otra manera. Otro caso sería si la oración fuera «El día de hoy lloverá» (¿Notas que ya no tiene signos de interrogación?) que sí es una proposición.

¿Cuántos números primos existen?

No es una proposición. Esto debido a que es una pregunta que no afirma o niega algún hecho.

¡Que gusto verte!

No es una proposición. Esta es una expresión, y no se le puede asignar un valor de verdad. Este tipo de oraciones que denotan expresiones no son proposiciones.

Todo espacio vectorial tiene dimensión finita.

es una proposición. Esta es una proposición matemática la cual puede ser verdadera o falsa, pues afirma que todo espacio vectorial (no es necesario que sepas que es un espacio vectorial) cumple la propiedad de tener dimensión finita (tampoco es necesario que sepas que significa esto). Entonces podemos decir «Es cierto que todo espacio vectorial tiene dimensión finita» o «Es falso que todo espacio vectorial tiene dimensión finita».

El libro habla sobre historia universal.

es una proposición. Observa que para decidir si es verdad o no deberíamos saber de qué libro estamos hablando, pero independientemente de eso, se puede decir que la oración es verdadera o falsa, es decir, se le puede asignar un valor de verdad.

$\triangle$

Problema 2. ¿Son equivalentes $\neg Q$ y $(\neg P \land Q) \lor \neg Q)$?

Solución. No lo son, para ello, nota que no coinciden en su tabla de verdad. Estamos indicando en verde las columnas de las expresiones que nos interesan.

$P$$Q$$\neg P$ $\neg Q$$\neg P \land Q$$(\neg P \land Q) \lor \neg Q)$
$0$$0$ $1$$1$ $0$  $1$ 
$0$$1$$1$  $0$  $1$ $1$ 
$1$$0$  $0$ $1$  $0$ $1$
$1$$1$  $0$ $0$  $0$   $0$

Esto quiere decir que si $P$ es falso y $Q$ es verdadero,  $\neg Q$ es falso mientras que $(\neg P \land Q) \lor \neg Q)$ es verdadero, por lo que las expresiones no son equivalentes.

$\triangle$

Problema 3. ¿Cuál de las siguientes expresiones es equivalente a $\neg (P \lor (Q \land R))$?

  • $ P \lor (\neg Q \lor \neg R)$
  • $\neg P \land (\neg Q \lor \neg R)$
  • $\neg P \land (\neg Q \land \neg R)$

Para la que es equivalente, justifica por qué lo es. Para las que no son equivalentes, encuentra valores de verdad de $P$, $Q$ y $R$ que haga que las expresiones sean diferentes.

Solución. Una técnica que podríamos usar son las tablas de verdad, sin embargo sería una tabla grande, pues en principio hay 8 combinaciones para los valores de verdad de $P,Q$ y $R$. Por esta razón, mejor haremos uso de las propiedades de los conectores que ya hemos demostrado.

Primero veamos de qué forma podríamos cambiar la forma en que pensamos a $\neg (P \lor (Q \land R))$. ¿Notas que hay una negación al principio de la proposición? Algo natural sería tratar de «distribuirla», pero recuerda que cuando «distribuimos» la negación, aplicamos las leyes de De Morgan. Entonces,

$$\neg (P \lor (Q \land R)) = \neg P \land \neg(Q \land R) $$

Ahora vamos a fijarnos en $\neg P \land \neg(Q \land R)$. Y vamos a notar que podemos aplicar nuevamente las leyes de De Morgan, ahora para distribuir la negación del segundo paréntesis. Dicho de otra manera,

$$\neg P \land \neg (Q \land R) = \neg P \land (\neg Q \lor \neg R)$$

Nota que para esto, la negación se distribuyó entre $Q$ y $R$. Así, hemos mostrado que

\begin{align*}
\neg (P \lor (Q \land R)) &= \neg P \land \neg(Q \land R), \text{ y que}\\
\neg P \land \neg (Q \land R) &= \neg P \land (\neg Q \lor \neg R).
\end{align*}

Ahora, recordando la propiedad transitiva de la equivalencia, tenemos que

$$\neg (P \lor (Q \land R)) = \neg P \land (\neg Q \lor \neg R)$$

Así, encontramos que la la expresión del inicio es equivalente a la segunda opción. Si quisieras, podrías hacer la tabla de verdad para verificar esto.

Veamos ahora que las otras dos proposiciones no son equivalentes. Para ello, basta encontrar valores de verdad de $P$ y $Q$ para los cuales las expresiones no tengan el mismo valor de verdad.

Primero verificaremos que $ P \lor (\neg Q \lor \neg R)$ no es equivalente a $\neg (P \lor (Q \land R))$. Para ello, nota que $ P \lor (\neg Q \lor \neg R) = P \lor \neg (Q \land R)$ Y esta última es equivalente a $\neg (\neg P \land (Q \land R))$. Ahora nota que si $P$ es verdadero, entonces $\neg (\neg P \land (Q \land R))$ es verdadero, mientras que $\neg (P \lor (Q \land R))$ es falso. Si aún no te queda claro, observa el siguiente renglón de la tabla de verdad:

$P$$Q$$R$$Q \land R$$P \lor (Q \land R)$$\neg (P \lor (Q \land R))$$\neg P$$\neg P \land (Q \land R)$$\neg(\neg P \land (Q \land R))$
$1$$0$$0$$0$$1$$0$$0$$0$$1$

En el párrafo anterior estamos mostrando un caso en donde $P$ es verdadero (observa que en nuestra justificación del párrafo anterior no importa qué valores tienen $Q$ y $R$, pero en este caso observamos la combinación en donde ambos son falsos, eso no afecta el resultado) y las celdas coloreadas (que son aquellas que deseamos comparar) no coinciden. Es decir no pueden ser equivalentes porque existe al menos un caso en donde no coinciden en su tabla de verdad.

De manera similar, para probar que $\neg P \land (\neg Q \land \neg R)$ no es equivalente a $\neg (P \lor (Q \land R))$ daremos un caso en donde no se da la igualdad en las tablas de verdad. Nota que $\neg P \land (\neg Q \land \neg R) = \neg P \land \neg ( Q \lor R)$ y a su vez, $\neg P \land \neg ( Q \lor R) = \neg (P \lor (Q \lor R))$. Ahora veamos el caso particular en la siguienta tabla de verdad:

$P$$Q$$R$$Q \land R$$P \lor (Q \land R)$$\neg (P \lor (Q \land R))$$Q \lor R$$ P \lor (Q \lor R)$$ \neg (P \lor (Q \lor R))$
$0$$1$$0$$0$$0$$1$$1$$1$$0$

Esto termina el problema.

$\triangle$

¿Cómo le hicimos en la segunda parte para «sacar de la manga» los valores de verdad de $P$, $Q$ y $R$ que nos ayudarían a verificar que las proposiciones no eran equivalentes? La intuición fue la siguiente:

Quisiéramos un caso en que no coincidieran los valores, uno que fuera verdadero y otro falso. Veamos cómo se comporta $\neg (P \lor (Q \land R))$. Para que esta no sea equivalente a la segunda proposición, deberíamos pensar que una es verdadera y la otra falsa. Le asignaremos un valor de verdad a la primera proposición, digamos que es verdadera (entonces la segunda proposición sería falsa), y como hay una negación delante entonces $P \lor (Q \land R)$ debería ser falsa. Pon atención que tenemos un $\lor$ adentro de la expresión, el cuál es falso si las dos proposiciones que conectan son falsas, así que piensa en qué necesitan para ser falsas, y date cuenta que requieren las siguientes dos condiciones:

  • $P$ falsa
  • $Q$ o $R$ falsa

A fuerza, $P$ debe ser falsa, así que no le movemos más.

Por otro lado, vamos a ver cómo se comporta $ \neg (P \lor (Q \lor R))$. Recuerda que pensamos en un caso en que no coincidan las proposiciones, y si quedamos en que la primera proposición era verdadera, entonces esta es falsa, lo cual haría a $P \lor (Q \lor R)$ verdadera. Además también dijimos que $P$ es falsa, entonces para que toda la proposición sea verdadera, tendremos que hacer que $Q \lor R$ sea verdadera. Alguna de estas dos es falsa (también era una condición que establecimos para la veracidad de la primera proposición), digamos que $R$ es la falsa, entonces $Q$ es verdadera. De esta manera obtuvimos el ejemplo que hacía las proposiciones diferir en alguna combinación de valores de verdad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa la tabla de verdad para verificar que $\neg (\neg P \land (Q \land R))$ no es equivalente a $\neg (P \lor (Q \land R))$. Observa cómo en todas los renglones en donde $P$ es verdadero, $\neg (\neg P \land (Q \land R))$ es distinto a $\neg (P \lor (Q \land R))$.
  2. Completa la tabla de verdad de$ \neg (P \lor (Q \lor R))$ junto a $\neg (P \lor (Q \land R))$. ¿Existen otros casos en donde sus valores de verdad sean distintos?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Tipos de enunciados matemáticos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada platicamos de varios tipos de enunciados con los que te vas a encontrar frecuentemente en trayectoria matemática a nivel universitario. Para entender correctamente las definiciones siguientes, es muy importante que ya estés familiarizado con el concepto de proposición matemática que tratamos con anterioridad.

Axiomas

En las matemáticas, los axiomas son enunciados que tomamos como verdaderos. No son proposiciones, en el sentido de que su veracidad está definida por convención. Son el punto de partida que establece las reglas del juego de cierta área de las matemáticas.

Cuando estés en cálculo, se verán los axiomas que deben satisfacer los números reales. Cuando estés en álgebra lineal, ser verán los axiomas de espacio vectorial. En geometría moderna se verán los axiomas de Euclides. En este curso hablaremos un poco de axiomas para la teoría de conjuntos y para los números naturales.

Algunos ejemplos son los siguientes (no es necesario que entiendas exactamente qué dicen):

  • Para cada dos puntos, hay una línea que pasa por ellos.
  • Cada número natural tiene un único sucesor.
  • Para cualquier elemento $a$ en $G$, existe un elemento $b$ en $G$ tal que $ab=G$.
  • Para cualquier colección $A_1,\ldots,A_n$ de abiertos, se tiene que $$A_1 \cap A_2 \cap \ldots A_n$$ también es abierto.

Los axiomas no requieren ser justificados o demostrados. Simplemente acordamos su validez.

Definiciones

Las definiciones no son proposiciones matemáticas y no tiene sentido decir que son verdaderas o falsas. Simplemente son enunciados que le ponen un nombre a un objeto matemático con ciertas propiedades para poder referirnos a él de manera sencilla más adelante. En ocasiones, estas definiciones hacen referencia a cómo se expresa el concepto matemático en símbolos y frecuentemente para ello se usa la palabra «denotar».

Hay varias formas en las que se pueden escribir definiciones matemáticas. Las siguientes son algunas (no es necesario que las entiendas completamente).

  • Un número entero es perfecto si la suma de sus divisores propios es igual a sí mismo.
  • Un cuadrilátero es un cuadrado si las longitudes de sus cuatro lados son iguales y los cuatro ángulos en sus vértices son rectos.
  • Para dos conjuntos $A$ y $B$ definimos a su unión como el conjunto que consiste de los elementos que están en cualquiera de los dos conjuntos. Lo denotamos por $A\cup B$.
  • Un grupo es un conjunto con una operación binaria asociativa, con neutro y con inversos.
  • Una operación binaria es asociativa si $(a\cdot b)\cdot c=a\cdot (b\cdot c)$

Las definiciones son muy útiles pues ayudan a acortar el lenguaje e ir construyendo ideas más complejas e interesantes. Toma en cuenta lo siguiente con respecto a las definiciones.

  • Cuando se tienen enunciados del estilo «tomemos $C$ un cuadrado», o «sea $G$ un grupo», o incluso «consideremos $A\cup B$», de manera instantánea ya se pueden tomar como verdaderas todas las propiedades dadas por la definición. Así, de manera inmediata es verdadero que los lados de $C$ miden lo mismo y que $A\cup B$ tiene tanto a los elementos de $A$ como a los de $B$. También es verdadero que $G$ tiene una operación asociativa. Y por la definición de «asociativa», de manera inmediata es verdadero que $(a\cdot b)\cdot c=a\cdot (b\cdot c)$. Observa cómo se van haciendo deducciones sucesivas de hechos verdaderos.
  • Cuando se requiera verificar si un objeto satisface una definición, entonces hay que verificar que sean ciertas todas las propiedades enunciadas en la definición. Así, no basta ver que $C$ tiene lados iguales para ver que es un cuadrado. También hay que ver que sus ángulos son todos ellos rectos.

Proposiciones

Las proposiciones son simplemente proposiciones matemáticas en el sentido de la entrada anterior. Son enunciados matemáticos que se puede determinar si son verdaderos o falsos. Usualmente, cuando se encuentran en un curso o en un texto, es porque ya se verificó su veracidad. En estos contextos, tras enunciar una proposición se suele dar una demostración, que es un concepto del que hablaremos a profundidad más adelante.

Una vez que tenemos axiomas y definiciones, es posible empezar a relacionar distintos conceptos mediante proposiciones. A continuación se tienen algunos ejemplos:

  • Si un cuadrilátero tiene todos sus ángulos rectos y tiene dos lados consecutivos iguales, entonces es un cuadrado.
  • La suma de dos números pares siempre da un número par.
  • Existe una función continua que no es diferenciable.
  • Siempre se cumple que $(A\cup B)^c = A^c \cap B^c$.
  • La suma de dos números que sean múltiplos de $3$ nunca es un múltiplo de $3$.
  • Todas las funciones diferenciables son continuas.

Todas las proposiciones arriba enunciadas son verdaderas, excepto una de ellas. Observa que usan palabras como «y», «si… entonces…», «todas», etc. Varias de estas palabras tienen un significado matemático muy preciso que discutiremos más adelante. Después veremos cómo determinar la veracidad de algunas de estas proposiciones y qué tipo de argumentos hay que dar para demostrarlas.

Lemas

Un lema es prácticamente una proposición. Los lemas tienen este nombre más bien con un fin práctico. Lo que se está avisando es que hay que poner atención a esa proposición, pues probablemente sea utilizada como resultado auxiliar una o varias veces más adelante.

Como los lemas son proposiciones matemáticas, entonces pueden ser verdaderos o falsos. Por esta razón, para poder afirmar que un lema es verdadero, es necesario dar una demostración en donde se justifique o se deduzca desde elementos más básicos (como definiciones, axiomas o proposiciones) la validez del mismo.

Teoremas

Los teoremas también son básicamente proposiciones. Su nombre también cumple un fin práctico. Cuando se le pone el nombre de «teorema» a una proposición, es para dar a entender que es una proposición muy importante dentro de la teoría. Usualmente para llegar a un teorema se necesitan probar varios resultados auxiliares.

Hay algunos teoremas que se vuelven tan relevantes que adquieren nombre propio. Algunos ejemplos de teoremas son los siguientes (son ejemplos nada más, tampoco es fundamental que entiendas exactamente qué están diciendo):

  • Un espacio vectorial de dimensión finita es isomorfo a su espacio dual.
  • Teorema de Pitágoras: En un triángulo rectángulo de catetos con longitudes $a$ y $b$ e hipotenusa $c$ se cumple que $a^2+b^2=c^2$.
  • Teorema de Hall: Si una familia de al menos $n+1$ convexos en $\mathbb{R}^n$ se intersecta de $n+1$ en $n+1$ elementos, entonces toda la familia se intersecta.
  • Teorema fundamental del álgebra: Todo polinomio no constante con coeficientes en $\mathbb{C}$ tiene por lo menos una raíz en $\mathbb{C}$.

Los investigadores en matemáticas y áreas afines se dedican a encontrar este tipo de resultados relevantes. Una frase conocida de Alfréd Rényi es: «Un matemático es una máquina que transforma café en teoremas».

Corolarios

Un corolario, de nuevo, es prácticamente una proposición. Sin embargo, en el desarrollo de la teoría matemática los corolarios usualmente son resultados que se siguen fácilmente de resultados previos, sobre todo de teoremas. A continuación, algunos ejemplos.

  • Un corolario del teorema de Pitágoras es «La hipotenusa es más larga que cualquiera de los catetos».
  • Un corolario de teorema fundamental del álgebra es «Un polinomio no constante de grado $n$ tiene exactamente $n$ raíces complejas contando multiplicidades».
  • Un corolario del teorema de Hall es que si en una mesa hay manchas circulares del mismo radio, y cualesquiera tres de ellas se pueden cubrir con un plato, entonces todas las manchas se pueden cubrir usando sólo un plato.

Puedes pensar en los corolarios como la «cereza del pastel».

Conjeturas

Las conjeturas también son proposiciones matemáticas: son enunciados que se puede determinar si son verdaderos o falsos. Sin embargo, a diferencia de los lemas, proposiciones, teoremas y corolarios (que se sabe que son verdaderos), lo que ocurre con las conjeturas es que todavía no hay nadie que haya determinado si son verdaderas o falsas.

Las conjeturas juegan un papel importante en la teoría de muchas áreas de las matemáticas, pues son resultados que se espera que sean verdaderos, pero para los cuales aún es necesario el desarrollo de nuevas técnicas en la investigación matemática.

Recapitulación

En resumen, los lemas, proposiciones, teoremas y corolarios son todos ellos proposiciones matemáticas. Pueden ser verdaderas o falsas. Los que encuentres en textos y cursos prácticamente serán verdaderos. Para asegurar que son verdaderos, requieren de una demostración, es decir, de una serie de argumentos y deducciones. Usualmente te los encontrarás en el siguiente «esquema»:

Lema -> Proposición -> Teorema -> Corolario

Los axiomas y definiciones no son proposiciones. Los axiomas son enunciados matemáticos que damos por hecho. Las definiciones nos ayudan a referirnos a objetos matemáticos con ciertas propiedades de manera más sencilla.

Las conjeturas son proposiciones matemáticas que todavía nadie sabe si son verdaderas o no. Los investigadores en matemáticas desarrollan nuevas técnicas para resolver estos problemas.

Más adelante…

Ya platicamos del tipo de enunciados que existen en las matemáticas y dimos algunos ejemplos. En el transcurso del curso veremos muchos ejemplos más. Después de este paréntesis, es importante que retomemos la teoría de lógica para poder hablar de algo fundamental al momento de determinar la veracidad de proposiciones matemáticas: las demostraciones. Antes de llegar ahí, es importante hablar de conectores lógicos, de cuantificadores y de condicionales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Busca en internet por lo menos otros tres teoremas.
  2. Investiga por lo menos otras tres conjeturas que todavía no hayan sido resueltas.
  3. Encuentra en internet una noticia de alguna conjetura matemática que haya sido resuelta recientemente.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»