Archivo de la etiqueta: álgebra

Álgebra Superior II: Irreducibilidad y factorización en polinomios reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Los números enteros tiene un teorema de factorización en primos: el teorema fundamental de la aritmética. Los polinomios en $\mathbb{R}[x]$ también. En esta entrada hablaremos de la irreducibilidad y factorización en polinomios reales. Lo primero lo haremos para decir «quiénes son los primos» en $\mathbb{R}[x]$. Para lo segundo usaremos el teorema del factor, que demostramos con anterioridad.

Resulta que el teorema de factorización en polinomios reales depende de un resultado importante de polinomios en $\mathbb{C}[x]$, es decir, los de coeficientes complejos. Esto es algo que sucede con frecuencia: a veces para resolver un problema en los números reales, hay que dar un paso hacia los complejos y luego regresar. Por esa razón, para esta entrada es importante que tengas en mente varias propiedades en los complejos, sobre todo cómo se realizan las operaciones y cuales son las propiedades de la conjugación compleja. Esto nos dará la oportunidad de enunciar (sin demostración) el teorema fundamental del álgebra.

Como recordatorio, un polinomio es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante y no se puede escribir como producto de dos polinomios no constantes en $\mathbb{R}[x]$. Además, el teorema del factor nos dice que si $a$ es raíz de un polinomio $p(x)$, entonces $x-a$ divide a $p(x)$. Diremos que un polinomio es lineal si es de grado $1$ y cuadrático si es de grado $2$.

El teorema fundamental del álgebra

Así como construimos a $\mathbb{R}[x]$, se puede hacer algo análogo para construir a $\mathbb{C}[x]$, los polinomios de coeficientes complejos. Puedes practicar todo lo que hemos visto haciendo la construcción formal. Por el momento, para fines prácticos, puedes pensarlos como expresiones de la forma $$a_0+a_1 x + \ldots + a_n x^n$$ con $a_i$ complejos, digamos, $$(1+i)+2i x -3x^3+(5+2i)x^4.$$

Los polinomios en $\mathbb{C}[x]$ cumplen todo lo que hemos dicho de $\mathbb{R}[x]$: se vale el lema de Bézout, el algoritmo de Euclides, el teorema del factor, el teorema del residuo, etc. Una copia de $\mathbb{R}[x]$, con su estructura algebraica, «vive» dentro de $\mathbb{C}[x]$, es decir, todo polinomio con coeficientes reales se puede pensar como uno con coeficientes complejos.

Sin embargo, los polinomios en $\mathbb{R}[x]$ y en $\mathbb{C}[x]$ son muy diferentes en términos de raíces. Esto se nota, pir ejemplo, en el hecho de que el polinomio $x^2+1$ no tiene raíces en $\mathbb{R}$, pero sí en $\mathbb{C}$, donde la raíz es $i$. Resulta que esta $i$ hace toda la diferencia. Al agregarla no solamente hacemos que $x^2+1$ tenga una raíz, sino que ya todo polinomio tiene raíz. Esto está enunciado formalmente por el teorema fundamental del álgebra.

Teorema (teorema fundamental del álgebra). Todo polinomio no constante en $\mathbb{C}[x]$ tiene al menos una raíz en $\mathbb{C}$.

No vamos a demostrar este teorema durante el curso. Hay desde demostraciones elementales (como la que aparece en el bello libro Proofs from the book), hasta algunas muy cortas, pero que usan teoría un poco más avanzada (como las que se hacen en cursos de análisis complejo). Sin embargo, lo usaremos aquí para obtener algunas de sus consecuencias y, al final de esta entrada, demostrar los teoremas de irreducibilidad y factorización en polinomios reales.

Teorema de factorización en $\mathbb{C}[x]$

En la entrada anterior ya demostramos que los polinomios lineales son irreducibles. Veremos ahora que en $\mathbb{C}[x]$ no hay ningún otro polinomio irreducible.

Proposición. Los únicos polinomios irreducibles en $\mathbb{C}[x]$ son los de grado $1$.

Demostración. Tomemos cualquier polinomio $p(x)$ en $\mathbb{C}[x]$ de grado al menos $2$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz $z$ en $\mathbb{C}$. Por el teorema del factor, $$x-z \mid p(x),$$ así que podemos escribir $p(x)=(x-z)q(x)$ con $q(x)$ en $\mathbb{C}[x]$ de grado $\deg(p(x))-1\geq 1$.

De esta forma, pudimos factorizar al polinomio $p(x)$ en dos factores no constantes, y por lo tanto no es irreducible.

$\square$

Con esto podemos mostrar que en $\mathbb{C}[x]$ todo polinomio es factorizable como producto de términos lineales.

Teorema (de factorización única en $\mathbb{C}[x]$). Todo polinomio $p(x)$ en $\mathbb{C}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$p(x)=a(x-z_1)(x-z_2)\cdots(x-z_n)$$ en donde $a$ es un complejo no cero, $n$ es el grado de $p(x)$ y $z_1,\ldots,z_n$ son complejos que son raíces de $p(x)$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Procedemos por inducción en el grado de $p(x)$. Si $p(x)$ es de grado cero, entonces es de la forma $p(x)=a$ con $a$ un complejo, y ya está en la forma que queremos.

Tomemos ahora un entero $n\geq 1$. Supongamos que el resultado es cierto para los polinomios de grado $n-1$ y consideremos un polinomio $p(x)$ de grado $n$. Por el teorema fundamental del álgebra, $p(x)$ tiene al menos una raíz, digamos $z_n$. Usando el teorema del factor, existe un polinomio $q(x)$, que debe de ser de grado $n-1$, tal que $$p(x)=q(x)(x-z_n).$$ Aplicando la hipótesis inductiva a $q(x)$, podemos factorizarlo de la forma $$q(x)=a(x-z_1)(x-z_2)\cdots(x-z_{n-1}),$$ con $z_1,\ldots,z_{n-1}$ raíces de $q(x)$ (y por lo tanto también raíces de $p(x)$). De esta forma, $$p(x)=(x-z_1)(x-z_2)\cdots(x-z_{n-1})(x-z_n)$$ es una factorización que cumple lo que queremos. Esto termina la hipótesis inductiva, y por lo tanto la parte de existencia de la demostración.

$\square$

Ejemplo. Consideremos al polinomio $$p(x)=x^4+5x^2+4$$ en $\mathbb{R}[x]$. Este polinomio no tiene raíces reales, pues sus evaluaciones siempre son positivas. Sin embargo, lo podemos pensar como un polinomio en $\mathbb{C}[x]$. Por el teorema fundamental del álgebra, este polinomio debe tener una raíz en $\mathbb{C}$.

Afortunadamente, podemos encontrarla por inspección. Una de estas raíces es $i$, pues $$i^4+5i^2+4=1-5+4=0.$$ Por el teorema del factor, $x-i$ divide a $p(x)$. Al realizar la división, obtenemos $$p(x)=(x-i)(x^3+ix^2+4x+4i).$$ De aquí, por inspección, obtenemos que $-i$ es una raíz de $x^3+ix^2+4x+4i$, y realizando la división entre $x+i$, tenemos que $$p(x)=(x-i)(x+i)(x^2+4).$$

El polinomio $x^2+4$ claramente tiene como raíces a $2i$ y $-2i$. A partir de todo esto concluimos que $$p(x)=(x-i)(x+i)(x-2i)(x+2i)$$ es la factorización de $p(x)$ en polinomios lineales en $\mathbb{C}[x]$.

$\square$

En el ejemplo anterior podemos agrupar los factores $(x-i)$ y $(x+i)$ para obtener el polinomio $x^2+1$. De aquí obtenemos la factorización alternativa $$p(x)=(x^2+1)(x^2+2).$$ Esta factorización tiene puros coeficientes reales. Aquí hay que hacer una observación importante: esta no es una factorización en irreducibles en $\mathbb{C}[x]$, pero sí es una factorización en irreducibles en $\mathbb{R}[x]$. Retomaremos varias de estas ideas más en general en las siguientes secciones.

Raíces complejas de polinomios en $\mathbb{R}[x]$

En el ejemplo de la sección anterior sucedió que $i$ era una raíz de $p(x)$, y que $-i$ también. Cuando tenemos un polinomio de coeficientes reales y $z$ es un complejo que es raíz, entonces su conjugado también.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y $z$ un número en $\mathbb{C}$. Si $p(z)=0$, entonces $p(\overline{z})=0$.

Demostración. Si $p(x)$ es el polinomio cero, la afirmación es cierta. En otro caso, sea $n$ el grado de $p(x)$ y escribamos a $p(x)$ como $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ donde $a_i$ son números en $\mathbb{R}$ para $i=0,\ldots,n$. Por lo que sabemos de la conjugación compleja, $\overline{a_i}=a_i$, y además abre sumas y productos. Así,
\begin{align*}
\overline{p(z)}&=\overline{a_0+a_1z+\ldots+a_nz^n}\\
&=\overline{a_0}+\overline{a_1z}+\ldots +\overline{a_nz^n}\\
&=\overline{a_0} + \overline{a_1}\, \overline{z} + \ldots +\overline{a_n}\, \overline{z}^n\\
&=a_0 + a_1 \overline{z} + \ldots + a_n \overline{z}^n\\
&=p(\overline{z}).
\end{align*}

Como $p(z)=0$, concluimos que $$p(\overline{z})=\overline{p(z)}=\overline{0}=0.$$

$\square$

El resultado anterior no es cierto en general para polinomios con coeficientes en $\mathbb{C}[x]$. Esto debe ser muy claro pues, por ejemplo, $i$ es raíz de $x-i$, pero $-i$ no.

Proposición. Tomemos $p(x)$ un polinomio en $\mathbb{R}[x]$ y una raíz $z$ de $p(x)$ en $\mathbb{C}\setminus \mathbb{R}$. Entonces el polinomio $$q(x)=x^2-(z+\overline{z})x+z\overline{z}$$ es un polinomio en $\mathbb{R}[x]$ que divide a $p(x)$ en $\mathbb{R}[x]$.

Demostración. Observa que $q(x)=(x-z)(x-\overline{z})$. Recordemos que
\begin{align*}
z+\overline{z}&=2\Rea{(z)} \\
z\overline{z}&=\norm{z}^2 .
\end{align*}

Esto muestra que los coeficientes de $q(x)$ son reales. Usemos el algoritmo de la división en $\mathbb{R}[x]$ para escribir $$p(x)=q(x)h(x)+r(x),$$ con $r(x)$ el polinomio cero, o de grado a lo más $1$.

Evaluando en $z$ y en $\overline{z}$, se obtiene que $r(z)=r(\overline{z})=0$. Como $z$ no es real, entonces $z$ y $\overline{z}$ son distintos. De este modo, $r(x)$ es el polinomio cero. Así, $p(x)=q(x)h(x)$ es una factorización de $p(x)$ en $\mathbb{R}[x]$ que usa a $q(x)$.

$\square$

Nuevamente, hay que tener cuidado con las hipótesis del resultado anterior. Es muy importante que usemos que $z$ es una raíz compleja y no real de un polinomio con coeficientes reales. En la tarea moral puedes encontrar un contraejemplo si no se satisfacen las hipótesis.

Ejemplo. Consideremos el polinomio $$p(x)=2x^3-16x^2+44x-40.$$ Una de sus raíces complejas es $3+i$, como puedes verificar. Como es un polinomio con coeficientes reales, el conjugado $3-i$ también es una raíz. Tal como lo menciona la proposición anterior, el polinomio
\begin{align*}
q(x):&=(x-(3+i))(x-(3-i))\\
&=x^2-(3+i+3-i)x+(3+i)(3-i)\\
&=x^2-6x+10
\end{align*}

es un polinomio de coeficientes reales. Además, divide a $p(x)$ en $\mathbb{R}[x]$ pues haciendo la división polinomial, tenemos que $$2x^3-16x^2+44x-40=(2x-4)(x^2-6x+10).$$

$\square$

Irreducibilidad y factorización en polinomios reales

Con todo lo que hemos hecho hasta ahora, estamos listos para probar los resultados que queremos en $\mathbb{R}[x]$. Observa que los enunciados de las secciones anteriores involucran a $\mathbb{C}$, pero los de esta sección ya no. Sin embargo, para hacer las demostraciones tenemos que dar un «brinco momentáneo a los complejos».

Recuerda que para un polinomio cuadrático $q(x)=ax^2+bx+c$ su discriminante es $b^2-4ac$.

Teorema (irreducibilidad en polinomios reales). Los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

Demostración. Ya mostramos antes que los polinomios lineales son irreducibles. Si $q(x)=ax^2+bx+c$ es un polinomio cuadrático y $r$ es una raíz real, tenemos que
\begin{align*}
ar^2+br+c&=0\\
r^2+\frac{b}{a}r+\frac{c}{a}&=0\\
r^2+\frac{b}{a}r+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}&=0\\
\left(r+\frac{b}{2a}\right)^2&=\frac{b^2-4ac}{4a^2}.
\end{align*}

De esta igualdad, obtenemos que $\frac{b^2-4ac}{4a^2}\geq 0$ y por lo tanto que $b^2-4ac \geq 0$. Dicho de otra forma, si $b^2-4ac<0$, entonces $q(x)$ no tiene raíces reales. De esta misma equivalencia de igualdades se puede ver que si $b^2-4ac\geq 0$, entonces $q(x)$ sí tiene por lo menos una raíz real.

Supongamos que $q(x)$ es un polinomio cuadrático con discriminante negativo. Si existiera una factorización en $\mathbb{R}[x]$ de la forma $q(x)=a(x)b(x)$, con ninguno de ellos constante, entonces ambos deben tener grado $1$. Podemos suponer que $a$ es mónico. Pero entonces $a(x)=x-r$ para $r$ un real, y por el teorema del factor tendríamos que $r$ sería raíz de $q(x)$, una contradicción a la discusión anterior. Esto muestra que $q(x)$ es irreducible.

Falta ver que no hay ningún otro polinomio irreducible en $\mathbb{R}[x]$. Cuando $p(x)$ es cuadrático de discriminante no negativo, entonces por la fórmula cuadrática tiene al menos una raíz real $r$ y por lo tanto $x-r$ divide a $p(x)$, mostrando que no es irreducible.

Si $p(x)$ es de grado mayor o igual a $3$ y tiene una raíz real $r$, sucede lo mismo. En otro caso, es de grado mayor o igual a $3$ y no tiene raíces reales. Pero de cualquier forma tiene al menos una raíz compleja $z$. Usando la proposición de la sección anterior, tenemos que $x^2-(z+\overline{z})x+z\overline{z}$ es un polinomio de coeficientes reales que divide a $p(x)$ en $\mathbb{R}[x]$, lo cual muestra que no es irreducible.

Concluimos entonces que los únicos polinomios irreducibles en $\mathbb{R}[x]$ son los lineales y los cuadráticos de discriminante negativo.

$\square$

Ahora sí podemos enunciar el resultado estelar de esta entrada.

Teorema (factorización en polinomios reales). Todo polinomio $p(x)$ en $\mathbb{R}[x]$ distinto del polinomio cero se puede factorizar de manera única como $$a(x-r_1)\cdots(x-r_m)(x^2-b_1x+c_1)\cdots (x^2-b_{n}x+c_{n}),$$ en donde:

  • $a$ es un real distinto de cero,
  • $m$ y $n$ son enteros tales que $m+2n$ es igual al grado de $p(x)$,
  • para cada $i$ en $\{1,\ldots,m\}$ se tiene que $r_i$ es raíz real de $p(x)$ y
  • para cada $j$ en $ \{1,\ldots,n\}$ se tiene que $b_j,c_j$ son reales tales que $b_j^2-4c_j<0$.

Demostración. Mostraremos la existencia de la factorización. La parte de la unicidad es sencilla, y su demostración queda como tarea moral. Si $p(x)$ es irreducible, entonces al factorizar su coeficiente principal $a$ obtenemos la factorización deseada. Si $p(x)$ no es irreducible, procedemos por inducción fuerte sobre el grado $d$ de $p(x)$. El menor grado que debe tener es $2$ para no ser irreducible.

Si $d=2$ y es no irreducible, el resultado es cierto pues se puede factorizar como dos factores lineales y luego factorizar al término $a$ los coeficientes principales de cada factor para que queden mónicos.

Sea $d\geq 3$ y supongamos el resultado cierto para todo polinomio de grado menor a $d$. Tomemos un polinomio $p(x)$ de grado $d$. Por el teorema de irreducibilidad de polinomios reales, $p(x)$ no es irreducible, así que se puede factorizar como $p(x)=r(x)s(x)$ con $r(x)$ y $s(x)$ no constantes, y por lo tanto de grado menor al de $p(x)$. Por hipótesis inductiva, tienen una factorización como la del teorema. La factorización de $p(x)$ se obtiene multiplicando ambas. Esto termina la inducción.

$\square$

Veamos cómo podemos usar todas estas ideas en un problema en concreto de factorización en polinomios reales.

Problema. Factoriza al polinomio $x^{12}-1$ en polinomios irreducibles en $\mathbb{R}[x]$.

Solución. Usando identidades de factorización, podemos avanzar bastante:
\begin{align*}
x^{12}-1&=(x^6-1)(x^6+1)\\
&=(x^3-1)(x^3+1)(x^6+1)\\
&=(x-1)(x^2+x+1)(x+1)(x^2-x+1)(x^2+1)(x^4-x^2+1).
\end{align*}

Hasta aquí, $x+1$ y $x-1$ son factores lineales. Además, $x^2+x+1$, $x^2-x+1$ y $x^2+1$ son factores cuadráticos irreducibles pues sus discriminantes son, respectivamente, $-3,-3,-4$.

Aún queda un factor $x^4-x^2+1$ que por ser de grado $4$ no es irreducible. Sumando y restando $2x^2$, y luego factorizando la diferencia de cuadrados, tenemos:
\begin{align*}
x^4-x^2+1 &= x^4+2x^2+1-3x^2\\
&=(x^2+1)^2-3x^2\\
&=(x^2+1-\sqrt{3}x)(x^2+1+\sqrt{3}x).
\end{align*}

Cada uno de estos factores cuadráticos tiene discriminante $-1$, y por lo tanto es irreducible. Concluimos entonces que la factorización en irreducibles de $x^{12}-1$ en $\mathbb{R}[x]$ es
\begin{align*}
(x-1)(x&+1)(x^2+1)(x^2+x+1)\\
&(x^2-x+1)(x^2+\sqrt{3}x+1)(x^2-\sqrt{3}x+1).
\end{align*}

$\square$

Más adelante…

El teorema fundamental del álgebra y sus consecuencias en $\mathbb{R}$ son los resultados algebraicos más importantes que obtendremos en el estudio de polinomios, ya que nos permite caracterizar, al menos en teoría a todos los polinomios a partir de sus raíces.

En las siguientes entradas ocuparemos las herramientas que hemos desarrollado hasta ahora, sin embargo cambiaremos el enfoque de estudio, usaremos también herramientas de los cursos de cálculo para poder dar un análisis más detallado del comportamiento de los polinomios, y que nos servirán para que en muchos casos podamos encontrar las raíces de un polinomio, o cuando menos tener una idea de cómo son.

Tarea moral

  • Haz la construcción formal de $\mathbb{C}[x]$ a partir de sucesiones de complejos. Muestra que se pueden expresar en la notación de $x$ y sus potencias. Prueba los teoremas que hemos visto hasta ahora. Todo debe ser análogo al caso real, por lo que te servirá mucho para repasar los conceptos vistos hasta ahora.
  • Muestra la unicidad de la factorización en $\mathbb{C}[x]$ y en $\mathbb{R}[x]$.
  • Sea $z$ un complejo no real. Muestra que que $x-z$ y $x-\overline{z}$ son polinomios primos relativos en $\mathbb{C}[x]$.
  • Hay que tener cuidado en las hipótesis de los teoremas de esta entrada. Muestra que $3$ es una raíz del polinomio $x^3-6x^2+11x-6$, pero que $x^2-6x+9$ no divide a este polinomio.
  • Argumenta por qué en el teorema de factorización en polinomios reales sucede que $m+2n$ es el grado de $p(x)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Máximo común divisor de polinomios y algoritmo de Euclides

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos estudiando propiedades aritméticas del anillo de polinomios con coeficientes reales. En la entrada anterior introdujimos el algoritmo de la división, la noción de divisibilidad y los polinomios irreducibles. Además, mostramos el teorema del factor y el teorema del residuo. Lo que haremos ahora es hablar del máximo común divisor de polinomios.

Mucha de la teoría que desarrollamos en los enteros también se vale para $\mathbb{R}[x]$. Como en $\mathbb{Z}$, lo más conveniente para desarrollar esta teoría es comenzar hablando de ideales. Con estos buenos cimientos, veremos que el máximo común divisor de dos polinomios se puede escribir como «combinación lineal de ellos». Para encontrar la combinación lineal de manera práctica, usaremos de nuevo el algoritmo de Euclides.

Antes de comenzar, haremos una aclaración. Hasta ahora hemos usado la notación $f(x), g(x),h(x)$, etc. para referirnos a polinomios. En esta entrada frecuentemente usaremos nada más $f,g,h$, etc. Por un lado, esto simplificará los enunciados y demostraciones de algunos resultados. Por otro lado, no corremos el riesgo de confusión pues no evaluaremos a los polinomios en ningún real.

Ideales de $\mathbb{R}[x]$

Comenzamos con la siguiente definición clave, que nos ayuda a hacer las demostraciones de máximo común divisor de polinomios de manera más sencilla.

Definición. Un subconjunto $I$ de $\mathbb{R}[x]$ es un ideal si pasa lo siguiente:

  1. El polinomio cero de $\mathbb{R}[x]$ está en $I$.
  2. Si $f$ y $g$ son elementos de $\mathbb{R}[x]$ en $I$, entonces $f+g$ está en $I$.
  3. Si $f$ y $g$ son elementos de $\mathbb{R}[x]$, y $f$ está en $I$, entonces $fg$ está en $I$.

Ejemplo 1. El conjunto $I_0=\{f\in \mathbb{R}[x]\mid f(0)=0 \}$.

Evidentemente el polinomio constante $0$, está en $I_0$, ya que evaluado en cualquier número es cero (en particular al evaluarlo en 0).

Si $f,g\in I_0$, entonces $(f+g)(0)=f(0)+g(0)=0+0=0$, por lo que $f+g\in I_0$.

Finalmente, si $g\in I_0$ y $f$ es cualquier polinomio, tenemos que $(fg)(0)=f(0)g(0)=f(0)\cdot 0=0$, por lo que $fg\in I_0$. Con esto concluimos que $I_0$ es un ideal.

$\triangle$

Al igual que en los enteros, los únicos ideales consisten de múltiplos de algún polinomio. El siguiente resultado formaliza esto.

Teorema (caracterización de ideales en $\mathbb{R}[x]$). Un subconjunto $I$ es un ideal de $\mathbb{R}[x]$ si y sólo si existe un polinomio $f$ tal que $$I=f\mathbb{R}[x]:=\{fg: g \in \mathbb{R}[x]\}.$$

Demostración de «la ida». Primero mostraremos que cualquier conjunto de múltiplos de un polinomio dado $f$ es un ideal. Tomemos $f$ en $\mathbb{R}[x]$ y $$I=f\mathbb{R}[x]=\{fg: g \in \mathbb{R}[x]\}.$$

La propiedad (1) de la definición de ideal se cumple pues tomando $g=0$ tenemos que $f\cdot 0 = 0$ está en $I$.

Para la propiedad (2), tomamos $fg_1$ en $I$ y $fg_2$ en $I$, es decir, con $g_1$ y $g_2$ en $\mathbb{R}[x]$. Su suma es, por la ley de distribución, el polinomio $f\cdot (g_1+g_2)$, que claramente está en $I$ pues es un múltiplo de $f$.

Para la propiedad (3), tomamos $fg$ en $I$ y $h$ en $\mathbb{R}[x]$. El producto $(fg)\cdot h$ es, por asociatividad, igual al producto $f\cdot(gh)$, que claramente está en $I$. De esta forma, $I$ cumple (1), (2) y (3) y por lo tanto es un ideal.

$\square$

Demostración de «la vuelta». Mostraremos ahora que cualquier ideal $I$ es el conjunto de múltiplos de un polinomio. Si $I=\{0\}$, que sólo tiene al polinomio cero, entonces $I$ es el conjunto de múltiplos del polinomio $0$. Así, podemos suponer que $I$ tiene algún elemento que no sea el polinomio $0$.

Consideremos el conjunto $A$ de naturales que son grado de algún polinomio en $I$. Como $I$ tiene un elemento no cero, $A$ es no vacío. Por el principio del buen orden, $A$ tiene un mínimo, digamos $n$. Tomemos en $I$ un polinomio $f$ de grado $n$. Afirmamos que $I$ es el conjunto de múltiplos de $f$, es decir, $$I=f\mathbb{R}[x].$$

Por un lado, como $f$ está en $I$ e $I$ es un ideal, por la propiedad (3) de la definición de ideal se tiene que $fg$ está en $I$ para todo $g$ en $\mathbb{R}[x]$. Esto muestra la contención $f\mathbb{R}[x]\subseteq I$.

Por otro lado, supongamos que hay un elemento $h$ que está en $I$, pero no es múltiplo de $f$. Por el algoritmo de la división, podemos encontrar polinomios $q$ y $r$ tales que $h-qf=r$ y $r$ es el polinomio cero o de grado menor a $f$. No es posible que $r$ sea el polinomio cero pues dijimos que $h$ no es múltiplo de $f$. Así, $r$ no es el polinomio cero y su grado es menor al de $f$.

Notemos que $-qf$ está en $I$ por ser un múltiplo de $f$ y que $h$ está en $I$ por cómo lo elegimos. Por la propiedad (2) de la definición de ideal se tiene entonces que $r=h+(-qf)$ también está en $I$. Esto es una contradicción, pues habíamos dicho que $f$ era un polinomio de grado mínimo en $I$, pero ahora $r$ tiene grado menor y también está en $I$. Por lo tanto, es imposible que exista un $h$ en $I$ que no sea múltiplo de $f$. Esto muestra la contención $I\subseteq f\mathbb{R}[x]$.

$\square$

Ejemplo 2. En el ejemplo anterior, $I_0$ denotaba el conjunto de polinomios que se anulan en $0$, podemos demostrar que $I_0=x\mathbb{R}[x]$, ya que si $f\in I_0$, por el teorema del factor, el polinomio $x-0$ divide a $f$, es decir que $f(x)=xg(x)$ para alguan $g\in \mathbb{R}[x]$. Esto prueba que $I_0\subseteq x\mathbb{R}$, dejamos el resto de los detalles como un ejercicio moral.

$\triangle$

El teorema anterior nos dice que cualquier ideal se puede escribir como los múltiplos de un polinomio $f$. ¿Es cierto que este polinomio $f$ es único? Para responder esto, pensemos qué sucede si se tiene $$f\mathbb{R}[x]=g\mathbb{R}[x],$$ o, dicho de otra forma, pensemos qué sucede si $f$ divide a $g$ y $g$ divide a $f$.

Si alguno de $f$ ó $g$ es igual a $0$, entonces el otro también debe de serlo. Así, podemos suponer que ninguno de ellos es igual a $0$. Como $g$ divide a $f$, podemos escribir a $f$ como $hg$ para $h$ un polinomio no cero. De manera similar, podemos escribir a $g$ como un polinomio $kf$ para $k$ un polinomio no cero. Pero entonces $$f=hg=hkf.$$

El grado del lado izquierdo es $\deg(f)$ y el del derecho es $\deg(h)+\deg(k)+\deg(f)$, de donde obtenemos que $\deg(h)=\deg(k)=0$. En otras palabras, concluimos que $h$ y $k$ son polinomios constantes y distintos de cero. Resumimos esta discusión a continuación.

Proposición. Tomemos $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$ distintos del polinomio $0$. Si $f(x)$ divide a $g(x)$ y $g(x)$ divide a $f(x)$, entonces $f(x)=hg(x)$ para un real $h\neq 0$. Del mismo modo, si $f(x)=hg(x)$ con $h$ un real, entonces $f(x)$ divide a $g(x)$ y $g(x)$ divide a $f(x)$.

Cuando sucede cualquiera de las cosas de la proposición anterior, decimos que $f(x)$ y $g(x)$ son asociados.

Ya que no hay un único polinomio que genere a un ideal, nos conviene elegir a uno de ellos que cumpla una condición especial. El coeficiente principal de un polinomio es el que acompaña al término de mayor grado. En otras palabras, si $p(x)$ es un polinomio de grado $n$ dado por $$p(x)=a_0+\ldots+a_nx^n,$$ con $a_n\neq 0$, entonces $a_n$ es coeficiente principal.

Definición. Un polinomio es mónico si su coeficiente principal es $1$.

Por la proposición anterior, existe un único polinomio mónico asociado a $p(x)$, y es $\frac{1}{a_n}p(x)$. Podemos resumir las ideas de esta sección mediante el siguiente teorema.

Teorema. Para todo ideal $I$ de $\mathbb{R}[x]$ distinto del ideal $\{0\}$, existe un único polinomio mónico $f$ tal que $I$ es el conjunto de múltiplos de $f$, en símbolos, $$I=f\mathbb{R}[x].$$

Máximo común divisor de polinomios

Tomemos $f$ y $g$ polinomios en $\mathbb{R}[x]$. Es sencillo ver, y queda como tarea moral, que el conjunto $$f\mathbb{R}[x]+g\mathbb{R}[x]=\{rf+sg: r,s \in \mathbb{R}[x]\}$$ satisface las propiedades (1), (2) y (3) de la definición de ideal. Por el teorema de caracterización de ideales, la siguiente definición tiene sentido.

Definición. El máximo común divisor de $f$ y $g$ es el único polinomio mónico $d$ en $\mathbb{R}[x]$ tal que $$f\mathbb{R}[x]+g\mathbb{R}[x] = d\mathbb{R}[x].$$ A este polinomio lo denotamos por $\MCD{f,g}$.

De manera inmediata, de la definición de $\MCD{f,g}$, obtenemos que es un elemento de $f\mathbb{R}[x]+g\mathbb{R}[x]$, o sea, una combinación lineal polinomial de $f$ y $g$. Este es un resultado fundamental, que enunciamos como teorema.

Teorema (identidad de Bézout). Para $f$ y $g$ en $\mathbb{R}[x]$ existen polinomios $r$ y $s$ en $\mathbb{R}[x]$ tales que $$\MCD{f,g}=rf+sg.$$

El nombre que le dimos a $\MCD{f,g}$ tiene sentido, en vista del siguiente resultado.

Teorema. Para $f$ y $g$ en $\mathbb{R}[x]$ distintos del polinomio cero se tiene que:

  • $\MCD{f,g}$ divide a $f$ y a $g$.
  • Si $h$ es otro polinomio que divide a $f$ y a $g$, entonces $h$ divide a $\MCD{f,g}$.

Demostración. Por definición, $$f\mathbb{R}[x]+g\mathbb{R}[x] = \MCD{f,g}\mathbb{R}[x].$$ El polinomio $f$ pertenece al conjunto del lado izquierdo, pues lo podemos escribir como $$1\cdot f + 0 \cdot g,$$ así que también está en el lado derecho. Por ello, $f$ es un múltiplo de $\MCD{f,g}$. De manera similar se prueba que $g$ es un múltiplo de $\MCD{f,g}$.

Para la segunda parte, escribimos a $\MCD{f,g}$ como combinación lineal polinomial de $f$ y $g$, $$\MCD{f,g}=rf+sg.$$ De aquí es claro que si $h$ divide a $f$ y a $g$, entonces $h$ divide a $\MCD{f,g}$.

$\square$

Todo esto va muy bien. El máximo común divisor de dos polinomios en efecto es un divisor, y es «el mayor», en un sentido de divisibilidad. Además, como en el caso de $\mathbb{Z}$, lo podemos expresar como una combinación lineal de sus polinomios. En la tarea moral puedes ver algunos ejemplos que hablan del concepto dual: el mínimo común múltiplo.

El algoritmo de Euclides

Al igual que como sucede en los enteros, podemos usar el algoritmo de la división iteradamente para encontrar el máximo común divisor de polinomios, y luego revertir los pasos para encontrar de manera explícita al máximo común divisor como una combinación lineal polinomial de ellos. Es un buen ejercicio enunciar y demostrar que esto es cierto. No lo haremos aquí, pero veremos un ejemplo de cómo aplicar el algoritmo.

Problema: Encuentra el máximo común divisor de los polinomios
\begin{align*}
a(x)&=x^7+x^6+x^5+x^4+x^3+x^2+x+1\\
b(x)&=x^4+x^3+x^2+x+1,
\end{align*} y exprésalo como combinación lineal de $a(x)$ y $b(x)$.

Solución. Aplicando el algoritmo de la división repetidamente, tenemos lo siguiente:

\begin{align*}
a(x)&=x^3b(x)+(x^2+x+1)\\
b(x)&=x^2(x^2+x+1)+(x+1)\\
x^2+x+1&=x(x+1)+1.
\end{align*}

Esto muestra que $a(x)$ y $b(x)$ tienen como máximo común divisor al polinomio $1$. Por lo que discutimos antes, debe haber una combinación lineal polinomial de $a(x)$ y $b(x)$ igual a $1$ Para encontrarla de manera explícita, invertimos los pasos:

\begin{equation*}
\begin{split}
1 & =(x^2+x+1)-x(x+1)\\
& =(x^2+x+1)-x(b(x)-x^2(x^2+x+1))\\
& =(x^2+x+1)(x^3+1)-xb(x)\\
& =(x^3+1)(a(x)-x^3(b(x))-xb(x)\\
& =(x^3+1)a(x)-x^3(x^3+1)b(x)-xb(x)\\
& =(x^3+1)a(x)+(-x^6-x^3-x)b(x)
\end{split}
\end{equation*}

Así, concluimos que una combinación lineal que sirve es: $$(x^3+1)a(x)+(-x^6-x^3-x)b(x) = 1.$$

$\triangle$

Más adelante…

Como mencionamos, los conceptos que desarrollamos en esta sección son muy similares a los que desarrollamos para $\mathbb{Z}$, sin embargo, para que puedas acostumbrarte a la notación, en la siguiente entrada practicaremos como calcular el Máximo Común Divisor para dos polinomios.

Después de eso, el siguiente paso será extrapolar el concepto de elementos primos en el conjunto de los polinomios y con esa nueva herramienta ver la posibilidad de poder dar un resultado análogo al teorema fundamental de la aritmética que dimos en $\mathbb{Z}$.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que el conjunto $$f\mathbb{R}[x]+g\mathbb{R}[x]=\{rf+sg: r,s \in \mathbb{R}[x]\}$$ satisface las propiedades (1), (2) y (3) de la definición de ideal.
  2. Encuentra el máximo común divisor de los polinomios $x^8-1$ y $x^6-1$. Exprésalo como combinación lineal de ellos.
  3. Muestra que la intersección de dos ideales de $\mathbb{R}[x]$ es un ideal de $\mathbb{R}[x]$.
  4. Al único polinomio mónico $m$ tal que $$f\mathbb{R}[x]\cap g\mathbb{R}[x]=m\mathbb{R}[x]$$ le llamamos el mínimo común múltiplo de $f$ y $g$, y lo denotamos $\mcm{f,g}$. Muestra que es un múltiplo de $f$ y de $g$ y que es «mínimo» en el sentido de divisibilidad.
  5. Muestra que si $f$ y $g$ son polinomios mónicos en $\mathbb{R}[x]$ distintos del polinomio cero, entonces $fg = \MCD{f,g} \mcm{f,g}$. ¿Es necesaria la hipótesis de que sean mónicos? ¿La puedes cambiar por una hipótesis más débil?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial $V$ de dimensión finita $n\geq 1$ sobre un campo $F$, una transformación lineal $T:V\to V$ y una forma $n$-lineal $f:V^n\to F$, se puede mostrar que la transformación $$T_f:V^n\to F$$ dada por $$T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))$$ también es una forma $n$-lineal. Además, se puede mostrar que si $f$ es alternante, entonces $T_f$ también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n\geq 1$ sobre el campo $F$. Para cualquier transformación lineal $T:V\to V$ existe un único escalar $\det T$ en $F$ tal que $$f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)$$ para cualquier forma $n$-lineal alternante $f:V^n\to F$ y cualquier elección $x_1,\ldots,x_n$ de vectores en $V$.

Demostración. Fijemos una base $B=(b_1,\ldots,b_n)$ cualquiera de $V$. Llamemos $g$ a la forma $n$-lineal alternante $\det_{(b_1,\ldots,b_n)}$. Por la discusión de arriba, la asignación $T_g:V^n\to F$ dada por $$(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))$$ es una forma $n$-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que $$T_g = T_g(b_1,\ldots,b_n) \cdot g.$$ Afirmamos que $\det T:= T_g(b_1,\ldots, b_n)$ es el escalar que estamos buscando.

En efecto, para cualquier otra forma $n$-lineal alternante $f$, tenemos por el mismo teorema que $$f=f(b_1,\ldots,b_n) \cdot g.$$ Usando la linealidad de $T$ y la igualdad anterior, se tiene que

\begin{align*}
T_f &= f(b_1,\ldots,b_n)\cdot T_g\\
&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\
&= \det T \cdot f.
\end{align*}

Con esto se prueba que $\det T$ funciona para cualquier forma lineal $f$. La unicidad sale eligiendo $(x_1,\ldots,x_n)=(b_1,\ldots,b_n)$ y $f=g$ en el enunciado del teorema, pues esto forza a que $$\det T = g(T(b_1),\ldots,T(b_n)).$$

$\square$

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar $\det T$ del teorema anterior es el determinante de la transformación lineal $T$.

Para obtener el valor de $\det T$, podemos entonces simplemente fijar una base $B=(b_1,\ldots,b_n)$ y el determinante estará dado por $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).$$ Como el teorema también prueba unicidad, sin importar que base $B$ elijamos este número siempre será el mismo.

Ejemplo 1. Vamos a encontrar el determinante de la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(2z,2y,2x).$$ Para ello, usaremos la base canónica de $\mathbb{R}^3$. Tenemos que
\begin{align*}
T(1,0,0)&=(0,0,2)=2e_3\\
T(0,1,0)&=(0,2,0)=2e_2\\
T(0,0,1)&=(2,0,0)=2e_1.
\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de $T$ como $$\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).$$

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas $1$ y $3$ su signo cambia en $-1$. Usando la $3$-linealidad en cada entrada, podemos sacar un factor $2$ de cada una. Así, tenemos:
\begin{align*}
\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\
&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\
&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\
&=-8.
\end{align*}

Concluimos entonces que el determinante de $T$ es $-8$.

$\triangle$

Ejemplo 2. Vamos ahora a encontrar el determinante de la transformación $T:\mathbb{R}_n[x]\to \mathbb{R}_n[x]$ que deriva polinomios, es decir, tal que $T(p)=p’$. Tomemos $q_0=1,q_1=x,\ldots,q_n=x^n$ la base canónica de $\mathbb{R}_n[x]$.

Notemos que, $T(1)=0$, de modo que los vectores $T(1),\ldots,T(x^n)$ son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que $$\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.$$ Concluimos entonces que $\det T = 0$.

$\triangle$

Determinantes de matrices

La expresión $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))$$ para una transformación lineal $T$ también nos permite poner al determinante en términos de las entradas de la matriz de $T$ con respecto a la base $B$. Recordemos que dicha matriz $A_T=[a_{ij}]$ tiene en la columna $i$ las coordenadas de $b_i$ en la base $B$. En otras palabras, para cada $i$ se cumple que $$T(b_i)=\sum_{j=1}^n a_{ji}b_i.$$

Usando esta notación, obtenemos que $$\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ de manera que podemos expresar a $\det T$ en términos únicamente de su matriz en la base $B$.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz $A$ en $M_n(F)$ de entradas $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$ A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}
\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en $M_2(F)$, digamos $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$ debemos considerar dos permutaciones: la identidad y la transposición $(1,2)$.

La identidad tiene signo $1$ y le corresponde el sumando $ad$. La transposición tiene signo $-1$ y le corresponde el sumando $bc$. Así, $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.$$

$\triangle$

Retomando la discusión antes de la definición, tenemos entonces que $\det T = \det A_T$, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de $T$ depende de la base elegida, pero como vimos, el determinante de $T$ no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. El determinante de $A$ y el de $P^{-1}AP$ son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que $a_{ij}=0$ si $i>j$. Vamos a estudiar la expresión $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si una permutación $\sigma$ no es la identidad, entonces hay un entero $i$ que no deja fijo, digamos $\sigma(i)\neq i$. Tomemos a $i$ como el mayor entero que $\sigma$ no deja fijo. Notemos que $\sigma(i)$ tampoco queda fijo por $\sigma$ pues $\sigma(\sigma(i))=\sigma(i)$ implica $\sigma(i)=i$, ya que $\sigma$ es biyectiva, y estamos suponiendo $\sigma(i)\neq i$. Por la maximalidad de $i$, concluimos que $\sigma(i)<i$.Entonces el sumando correspondiente a $\sigma$ es $0$ pues tiene como factor a la entrada $a_{i\sigma(i)}=0$.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es $1$. De esta forma,
\begin{align*}
\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\
&=a_{11}\cdot \ldots \cdot a_{nn}.
\end{align*}

$\square$

Más adelante…

En esta entrada planteamos cómo se define el concepto de matriz para transformaciones lineales y cómo esta definición se extiende naturalmente a la definición del determinante de una matriz, recordando que a cada transformación lineal se le puede asociar una matriz y viceversa.

En las siguientes entradas vamos a ver qué propiedades que cumplen los determinantes y aprenderemos diferentes técnicas para calcularlos. A lo largo de la unidad, desarrollaremos bastante práctica en el cálculo y la manipulación de los determinantes, ya sea el determinante de un conjunto de vectores, de una transformación lineal o de una matriz.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transformación $T_f$ definida en la entrada es $n$-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal $T:\mathbb{R}^n \to \mathbb{R}^n$ dada por $$T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).$$
  • Calcula por definición el determinante de las matrices $$\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}$$ y $$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.$$
  • Calcula por definición el determinante de la matriz $$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}$$ y compáralo con el de la matriz de $3\times 3$ del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Algoritmo de la división, teorema del factor y teorema del residuo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Tal vez te hayas dado cuenta de que ya hablamos de suma, producto y resta de polinomios, pero aún no hemos hablado de la división. Una razón es que no todos los polinomios tienen inverso multiplicativo. Sin embargo, los polinomios sí tienen un algoritmo de la división parecido al que estudiamos para el conjunto $\mathbb{Z}$ de enteros. A partir de él podemos extender varios de los conceptos aritméticos de $\mathbb{Z}$ a $\mathbb{R}[x]$: divisibilidad, máximo común divisor, factorización, etc. Luego, estos aspectos se pueden conectar a evaluación de polinomios mediante el un teorema clave: el teorema del factor.

Como recordatorio, hasta ahora, ya construimos el anillo $\mathbb{R}[x]$ de polinomios con coeficientes reales y vimos que era un dominio entero. También, vimos que una copia de $\mathbb{R}$ vive en $\mathbb{R}[x]$, con lo justificamos pasar de la notación de sucesiones, a la notación usual de polinomios usando el símbolo $x$ y sus potencias. En la entrada anterior también hablamos del grado de un polinomio (cuando no es el polinomio cero), de la evaluación de polinomios y de raíces.

Algoritmo de la división

Recordemos que en $\mathbb{Z}$ tenemos un algoritmo de la división que dice que para enteros $a$ y $b\neq 0$ existen únicos enteros $q$ y $r$ tales que $a=qb+r$ y $0\leq r < |b|$.

En $\mathbb{R}[x]$ hay un resultado similar. Pero hay que tener cuidado al generalizar. En $\mathbb{R}[x]$ no tenemos una función valor absoluto que nos permita decir que encontramos un «residuo más chiquito». Para la versión polinomial del algoritmo de la división tenemos que usar una función que diga «qué tan grande es un polinomio»: el grado.

Teorema (algoritmo de la división en $\mathbb{R}[x]$). Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$, donde $g(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $q(x)$ y $r(x)$ en $\mathbb{R}[x]$ tales que $$f(x)=q(x)g(x)+r(x),$$ en donde $r(x)$ es el polinomio cero, o $\deg(r(x))<\deg(g(x))$.

Demostración. Probaremos la parte de existencia. La parte de unicidad queda como tarea moral. Para probar la existencia, haremos inducción fuerte sobre el grado de $f(x)$. Sin embargo, antes de poder hacer esto, necesitamos hacer el caso en el que $f(x)$ no tiene grado, es decir, cuando es el polinomio cero.

Si $f(x)$ es el polinomio cero, entonces $q(x)=0$ y $r(x)=0$ son polinomios que funcionan, pues $0=0\cdot g(x)+0$, para cualquier polinomio $g(x)$.

Asumamos entonces a partir de ahora que $f(x)$ no es el polinomio cero. Hagamos inducción sobre el grado de $f(x)$. Si $f(x)$ es de grado $0$, entonces es un polinomio de la forma $f(x)=a$ para $a$ en $\mathbb{R}$. Hay dos casos de acuerdo al grado de $g(x)$:

  • Si $g(x)$ es de grado $0$, es de la forma $g(x)=b$ para un real no cero y podemos tomar $q(x)=a/b$ y $r(x)=0$.
  • Si $g(x)$ es de grado mayor a $0$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$. Esta es una elección válida pues se cumple \begin{align*}\deg(r(x))&=\deg(f(x))\\& =0\\& <\deg(g(x)).\end{align*}.

Esto termina la demostración de la base inductiva.

Supongamos que el resultado es cierto para cuando $f(x)$ tiene grado menor a $n$ y tomemos un caso en el que $f(x)$ tiene grado $n$. Hagamos de nuevo casos con respecto al grado de $g(x)$, al que llamaremos $m$. Si $m>n$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$, que es una elección válida pues $$\deg(r(x))=n<m.$$

En el caso de que $m\leq n$, escribamos explícitamente a $f(x)$ y a $g(x)$ en términos de sus coeficientes como sigue: \begin{align*}f(x)&=a_0+\ldots+a_nx^n\\g(x)&=b_0+\ldots+b_mx^m.\end{align*}

Consideremos el polinomio $$h(x):=f(x)-\frac{a_n}{b_m}x^{n-m}g(x).$$ Notemos que en $h(x)$ el coeficiente que acompaña a $x^n$ es $a_n-\frac{a_nb_m}{b_m}=0$, así que el grado de $h(x)$ es menor al de $f(x)$ y por lo tanto podemos usar la hipótesis inductiva para escribir $$h(x)=t(x)g(x)+u(x)$$ con $u(x)$ el polinomio $0$ o $\deg(u(x))<\deg(g(x))$. De esta forma,
\begin{align*}
f(x)&=t(x)g(x)+u(x)+\frac{a_n}{b_m}x^{n-m}g(x)\\
&=\left(t(x)+\frac{a_n}{b_m}x^{n-m}\right)g(x)+u(x).
\end{align*}

Así, eligiendo $q(x)=t(x)+\frac{a_n}{b_m}x^{n-m}$ y $r(x)=u(x)$, terminamos la hipótesis inductiva.

$\square$

Aplicando el algoritmo de la división de forma práctica

Veamos ahora un ejemplo de cómo se puede aplicar este teorema anterior de forma práctica. A grandes rasgos, lo que podemos hacer es «ir acumulando» en $q(x)$ a los términos $\frac{a_n}{b_m}x^{n-m}$ que van apareciendo en la inducción, y cuando $h(x)$ se vuelve de grado menor a $q(x)$, lo usamos como residuo. Hagamos un ejemplo concreto.

Ejemplo. Tomemos $f(x)=x^5+x^4+x^3+x^2+2x+3$ y $g(x)=x^2+x+1$. Vamos a aplicar iteradamente las ideas de la demostración del teorema anterior para encontrar los polinomios $q(x)$ y $r(x)$ tales que $$f(x)=q(x)g(x)+r(x),$$ con $r(x)$ el polinomio $0$ o de grado menor a $g(x)$.

Como el grado de $f(x)$ es $5$, el de $g(x)$ es $2$ y $5>2$, lo primero que hacemos es restar $x^{5-2}g(x)=x^3g(x)$ a $f(x)$ y obtenemos:

$$h_1(x)=f(x)-x^3g(x)=x^2+2x+3.$$

Hasta ahora, sabemos que $q(x)=x^3+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_1(x)=x^2+2x+3$. Como el grado de $h_1(x)$ es $2$, el de $g(x)$ es $2$ y $2\geq 2$, restamos $x^{2-2}g(x)=1\cdot g(x)$ a $h_1(x)$ y obtenemos.

$$h_2(x)=h_1(x)-g(x)=x+2.$$

Hasta ahora, sabemos que $q(x)=x^3+1+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_2(x)=x+2$. Como el grado de $h_2(x)$ es $1$, el de $g(x)$ es $2$ y $2>1$, entonces el cociente es $0$ y el residuo es $h_2(x)=x+2$.

De esta forma, concluimos que $$q(x)=x^3+1$$ y $$r(x)=x+2.$$

En conclusión,
\begin{align*}
x^5+ & x^4+x^3+x^2+2x+3\\
&= (x^3+1)(x^2+x+1) + x+2.
\end{align*}

Esto se puede verificar fácilmente haciendo la operación polinomial.

$\triangle$

Hay una forma más visual de hacer divisiones de polinomios «haciendo una casita». Puedes ver cómo se hace esto en el siguiente video en Khan Academy, y los videos que le siguen en la lista.

Divisibilidad en polinomios

Cuando trabajamos en $\mathbb{Z}$, estudiamos la noción de divisibilidad. Si en el algoritmo de la división obtenemos que $r(x)$ es el polinomio $0$, entonces obtenemos una noción similar para $\mathbb{R}[x]$.

Definición. Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$. Decimos que $g(x)$ divide a $f(x)$ si existe un polinomio $q(x)$ tal que $f(x)=q(x)g(x)$.

Ejemplo 1. El polinomio $x^3-1$ divide al polinomio $x^4+x^3-x-1$, pues $$x^4+x^3-x-1 = (x^3-1)(x+1).$$

$\triangle$

Ejemplo 2. Si $g(x)$ es un polinomio no cero y constante, es decir, de la forma $g(x)=a$ para $a\neq 0$ un real, entonces divide a cualquier otro polinomio en $\mathbb{R}[x]$. En efecto, si $$f(x)=a_0+a_1x+\ldots + a_nx^n$$ es cualquier polinomio y tomamos el polinomio $$q(x)=\frac{a_0}{a}+\frac{a_1}{a}x+\ldots + \frac{a_n}{a}x^n,$$ entonces $f(x)=g(x)q(x)$.

$\triangle$

El último ejemplo nos dice que los polinomios constantes y no cero se comportan «como el $1$ se comporta en los enteros». También nos dice que cualquier polinomio tiene una infinidad de divisores. Eso nos pone en aprietos para definir algo así como los «polinomios primos» en términos del número de divisores. En la siguiente sección hablaremos de cómo hacer esta definición de manera adecuada.

Polinomios irreducibles

Cuando trabajamos con enteros, vimos que es muy útil poder encontrar la factorización en términos de números primos. En polinomios no tenemos «polinomios primos», pero tenemos un concepto parecido.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante, y no es posible escribirlo como producto de dos polinomios no constantes en $\mathbb{R}[x]$.

Ejemplo. El polinomio $$x^4+x^2+1$$ no es irreducible en $\mathbb{R}[x]$ pues $$x^4+x^2+1=(x^2+x+1)(x^2-x+1).$$

Los polinomios $x^2+x+1$ y $x^2-x+1$ sí son irreducibles en $\mathbb{R}[x]$. Más adelante veremos por qué.

$\triangle$

La razón por la cual quitamos a los polinomios constantes es parecida a la cual en $\mathbb{Z}$ no consideramos que $1$ sea primo: ayuda a enunciar algunos teoremas más cómodamente.

Hay unos polinomios que fácilmente se puede ver que son irreducibles: los de grado $1$.

Proposición. Los polinomios de grado $1$ en $\mathbb{R}[x]$ son irreducibles.

Demostración. Si $f(x)$ es un polinomio de grado $1$, entonces no es constante. Además, no se puede escribir a $f(x)$ como el producto de dos polinomios no constantes pues dicho producto tiene grado al menos $2$.

$\square$

Hay otros polinomios en $\mathbb{R}[x]$ que no son de grado $1$ y que son irreducibles. Por ejemplo, con la teoría que tenemos ahora te debe ser fácil mostrar de tarea moral que $x^2+1$ es irreducible en $\mathbb{R}[x]$.

La razón por la que siempre insistimos en que la irreducibilidad sea en $\mathbb{R}[x]$ es por que a veces un polinomio no se puede factorizar en polinomios con coeficientes reales, pero sí con coeficientes complejos. Aunque $x^2+1$ sea irreducible en $\mathbb{R}[x]$, si permitimos coeficientes complejos se puede factorizar como $$x^2+1=(x+i)(x-i).$$

Más adelante seguiremos hablando de irreducibilidad. Por ahora, nos enfocaremos en los polinomios de grado $1$.

Teorema del factor

Una propiedad clave de los polinomios de grado $1$ es que, es lo mismo que $x-a$ divida a un polinomio $p(x)$, a que $a$ sea una raíz de $p(x)$.

Teorema (del factor). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El polinomio $x-a$ divide a $p(x)$ si y sólo si $p(a)=0$.

Demostración. De acuerdo al algoritmo de la división, podemos escribir $$p(x)=(x-a)q(x)+r(x),$$ en donde $r(x)$ es $0$ o un polinomio de grado menor estricto al de $x-a$. Como el grado de $x-a$ es $1$, la única posibilidad es que $r(x)$ sea un polinomio constante $r(x)=r$. Así, $p(x)=(x-a)q(x)+r$, con $r$ un real.

Si $p(a)=0$, tenemos que $$0=p(a)=(a-a)q(a)+r=r,$$ de donde $r=0$ y entonces $p(x)=(x-a)q(x)$, lo que muestra que $x-a$ divide a $p(x)$.

Si $x-a$ divide a $p(x)$, entonces $p(x)=(x-a)q(x)$, de donde $p(a)=(a-a)q(a)=0$, por lo que $a$ es raíz de $p(x)$.

$\square$

Ejemplo. Consideremos el polinomio $p(x)=x^3-6x^2+11x-6$. ¿Podremos encontrar algunos polinomios lineales que lo dividan? A simple vista, notamos que la suma de sus coeficientes es $1-6+11-6=0$. Esto nos dice que $p(1)=0$. Por el teorema del factor, tenemos que $x-1$ divide a $p(x)$. Tras hacer la división, notamos que $$p(x)=(x-1)(x^2-5x+6).$$

Veamos si podemos seguir factorizando polinomios lineales que no sean $x-1$. Si un polinomio $x-a$ divide a $p(x)$, por el teorema del factor debemos tener $$0=p(a)=(a-1)(a^2-5a+6).$$ Como $a\neq 1$, entonces $a-1\neq 0$, de modo que tiene que pasar $$a^2-5a+6=0,$$ en otras palabras, hay que encontrar las raíces de $x^2-5x+6$.

Usando la fórmula general cuadrática, tenemos que las raíces de $x^2-5x+6$ son
\begin{align*}
x_1&=\frac{5+\sqrt{25-24}}{2}=3\\
x_2&=\frac{5-\sqrt{25-24}}{2}=2.
\end{align*}

Usando el teorema del factor, concluimos que tanto $x-2$ como $x-3$ dividen a $p(x)$. Hasta ahora, sabemos entonces que $$p(x)=(x-1)(x-2)(x-3)h(x),$$ donde $h(x)$ es otro polinomio. Pero $(x-1)(x-2)(x-3)$ ya es un polinomio de grado $3$, como $p(x)$ y su coeficiente de $x^3$ es $1$, como el de $p(x)$. Concluimos que $h(x)=1$ y entonces $$p(x)=(x-1)(x-2)(x-3).$$

$\triangle$

Teorema del residuo

En realidad, la técnica que usamos para el teorema del factor nos dice algo un poco más general. Cuando escribimos $$p(x)=(x-a)q(x)+r$$ y evaluamos en $a$, obtenemos que $p(a)=r$. Reescribimos esta observación como un teorema.

Teorema (del residuo). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El residuo de dividir $p(x)$ entre $x-a$ es $p(a)$.

Problema. Encuentra el residuo de dividir el polinomio $p(x)=x^8-x^5+2x^3+2x$ entre el polinomio $x+1$.

Solución. Se podría hacer la división polinomial, pero esto es largo y no nos piden el polinomio cociente, sólo el residuo. Así, podemos resolver este problema más fácilmente usando el teorema del residuo.

Como $x+1=x-(-1)$, el residuo de la división de $p(x)$ entre $x+1$ es $p(-1)$. Este número es
\begin{align*}
p(-1)&=(-1)^8-(-1)^5+2(-1)^3+2(-1)\\
&=1+1-2-2\\
&=-2.
\end{align*}

$\square$

Más adelante…

Los teoremas que hemos visto en esta entrada serán las principales herramientas algebraicas que tendremos en el estudio de los polinomios así como en la búsqueda de las raíces de los polinomios y en resolver la pregunta sobre su irreductibilidad.

El algoritmo de la división nos servirá (como nos sirvió en $\mathbb{Z}$ para poder precisar el algoritmo de Euclides y definir el máximo común divisor de dos polinomios.

Por ahora, en la siguiente entrada, nos encargaremos de practicar lo aprendido y resolver ejercicios sobre raíces y residuos de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el polinomio $x$ no tiene inverso multiplicativo.
  2. Demuestra la parte de unicidad del algoritmo de la división.
  3. Muestra que el polinomio $x^2+1$ es irreducible en $\mathbb{R}[x]$. Sugerencia. Procede por contradicción. Una factorización tiene que ser de la forma $x^2+1=p(x)q(x)$ con $p$ y $q$ de grado $1$.
  4. Factoriza en términos lineales al polinomio $p(x)=x^3-12x^2+44x-48$. Sugerencia. Intenta enteros pequeños (digamos de $-3$ a $3$) para ver si son raíces. Uno de ellos funciona. Luego, usa el teorema del factor para expresar a $p(x)$ como un polinomio lineal por uno cuadrático. Para encontrar el resto de factores lineales, encuentra las raíces del cuadrático.
  5. Encuentra el residuo de dividir el polinomio $x^5-x^4+x^3-x^2+x-1$ entre el polinomio $x-2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Inmersión de R en R[x], grado y evaluación de polinomios

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada comenzaremos mostrando que podemos usar «la notación de siempre» para los polinomios, usando un símbolo $x$ y potencias. Después de eso, hablaremos del grado de un polinomio y de cómo se comporta con las operaciones que hemos definido. Finalmente, haremos una distinción importante entre los polinomios, y las funciones que inducen.

Como recordatorio, en la entrada anterior definimos a los polinomios y sus operaciones de suma y multiplicación. Para ello, construimos a los polinomios como sucesiones en las que casi todos los términos son $0$. Vimos que bajo estas operaciones se obtiene un dominio entero, es decir, un anillo conmutativo con unidad multiplicativa en donde se vale la regla de cancelación.

Regresando a la notación con $x$ y potencias

Ya dimos cimientos sólidos para construir al anillo de polinomios con coeficientes reales y sus operaciones. Es momento de regresar a la «notación usual» usando $x$ y sus potencias, pues será más práctica en lo que viene.

Para empezar, notemos que a cada real $r$ podemos asociarle el polinomio $(r,\overline{0})$. Esta es una asociación en la que las operaciones de suma y producto de $\mathbb{R}$ se corresponden con las de $\mathbb{R}[x]$.

Observa además que tras esta asociación, el real $0$ es el polinomio $(\overline{0})$ y el real $1$ es el polinomio $(1,\overline{0})$, así que la asociación respeta los neutros de las operaciones. De manera similar se puede mostrar que la asociación respeta inversos aditivos y multiplicativos.

Por esta razón, para un real $r$ podemos simplemente usar el símbolo $r$ para el polinomio $(r,\overline{0})$, y todas las operaciones siguen siendo válidas. Para expresar a cualquier otro polinomio, nos bastará con introducir un símbolo más, y potencias.

Definición. Definimos $x$ como el polinomio $\{0,1,\overline{0}\}$. Para cada natural $n$ definimos $x^n$ como el polinomio $\{a_n\}$ tal que $a_j=1$ si $j=n$ y $a_j=0$ para $j\neq n$.

Ejemplo 1. La definición de arriba implica $x^0=1$ y $x^1=x$. El polinomio $x^3$ es el polinomio $$(0,0,0,1,\overline{0}).$$

$\triangle$

Ejemplo 2. Hagamos la multiplicación de los polinomios $x^2$ y $x^3$. Estos son, por definición, $(0,0,1,\overline{0})$ y $(0,0,0,1,\overline{0})$. Hagamos esta multiplicación con el método de la tabla:

$0$$0$$1$
$0$$0$$0$$0$
$0$$0$$0$$0$
$0$$0$$0$$0$
$1$$0$$0$$1$
Multiplicación de $x^2$ y $x^3$.

El producto es el polinomio $(0,0,0,0,0,1,\overline{0})$, que por definición es el polinomio $x^5$.

$\triangle$

En general, para $m$ y $n$ enteros no negativos se tiene que $x^mx^n = x^{m+n}$, como puedes verificar de tarea moral.

Ya que tenemos al símbolo $x$ y sus potencias, necesitaremos también agregar coeficientes para poder construir cualquier polinomio.

Definición. Dados un polinomio $a:=\{a_n\}$ y un real $r$, definimos al polinomio $ra$ como la sucesión $$ra:=\{ra_n\},$$ es decir, aquella obtenida de multiplicar cada elemento de $a$ por $r$.

Ejemplo 3. Si tomamos al polinomio $$a=\left(0,\frac{1}{2},0,\frac{1}{3},\overline{0}\right)$$ y al real $r=6$, tenemos que $$6a=\left(0,3,0,2,\overline{0}\right).$$

Observa que $3x$ es el polinomio $(0,3,\overline{0})$, que $2x^3$ es el polinomio $(0,0,0,2,\overline{0})$ y que la suma de los dos es precisamente el polinomio $6a$, de modo que podemos escribir $$6a=3x+2x^3.$$

Si tomamos cualquier polinomio $a$ y al real $ 0$, tenemos que $$0a=\{0,0,0,0,\ldots\}=(\overline{0}),$$ es decir, $0a$ es el polinomio cero.

$\triangle$

La siguiente proposición es sencilla y su demostración queda como tarea moral.

Proposición. Para cualquier polinomio $a=\{a_n\}$ en $\mathbb{R}[x]$, los reales $a_0,a_1,\ldots$ son los únicos reales tales que $$a=a_0+a_1x+a_2x^2+a_3x^3+\ldots.$$

Todo lo que hemos discutido en esta sección permite que ahora sí identifiquemos formalmente al polinomio $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ con la expresión $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots$$

y que realicemos las operaciones en $\mathbb{R}[x]$ «como siempre», es decir, sumando coeficientes de términos iguales y multiplicando mediante la distribución y reagrupamiento. Así, a partir de ahora ya no usaremos la notación de sucesiones y simplemente escribiremos a los polinomios con la notación de $x$ y sus potencias. También, favoreceremos llamarles a los polinomios $p(x),q(x),r(x),\ldots$ en vez de $a,b,c,\ldots$.

Ejercicio. Realiza la operación $6(\frac{1}{2}+x)(1+3x^2)$.

Solución. Por asociatividad, podemos hacer primero la primer multiplicación, que da $3+6x$. Luego, multiplicamos este polinomio por el tercer término. Podemos usar las propiedades de anillo para distribuir y agrupar, o bien, podemos seguir usando el método de la tabla.

Cuando hacemos lo primero, queda
\begin{align*}
(3+6x)(1+3x^2)&=3+9x^2+6x+18x^3\\
&=3+6x+9x^2+18x^3.
\end{align*}

Si hacemos lo segundo, tendríamos que hacer la siguiente tabla (¡cuidado con dejar el cero correspondiente al término $x$ del segundo factor!)

$3$$6$
$1$$3$$6$
$0$$0$$0$
$3$$9$$18$
Multiplicación de dos polinomios

Leyendo por diagonales, el resultado es $$3+6x+9x^2+18x^3,$$ tal y como calculamos con el primer método.

$\triangle$

Grado de polinomios

Vamos a definir «grado» para todo polinomio que no sea el polinomio $0$. Es muy importante recordar que el polinomio $0$ no tiene grado.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es de grado $n$ si es de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ para reales $a_0,\ldots,a_n$ y $a_n\neq 0$. Al grado de $p(x)$ lo denotamos por $\deg(p(x))$.

Por la discusión de la sección anterior, el grado está bien definido. En términos de la sucesión correspondiente al polinomio, su grado es el mayor entero que sea subíndice de una entrada no cero.

Ejemplo 1. El grado del polinomio $p(x)=3$ es $0$. De hecho, todo polinomio que viene de un real tiene grado $0$. Excepto el polinomio $0$.

El grado del polinomio $q(x)=1+2x^3+3x^7$ es $7$.

Sin embargo, el polinomio $r(x)=0$ no tiene grado, pues es el polinomio $0$.

Notemos que el polinomio $s(x)=2+4x$ se escribe como $(2,4,\overline{0})$ en notación de sucesión. La entrada $0 $ es $2$, la entrada $1$ es $4$ y el resto de las entradas son $0$. El grado de $s(x)$ es $1$, que es precisamente la posición de la última entrada distinta de $0$ en su notación de sucesión.

$\triangle$

El siguiente resultado habla de cómo interactúa el grado con operaciones de polinomios.

Proposición. Si $p(x)$ y $q(x)$ son polinomios en $\mathbb{R}[x]$ distintos de cero, entonces:

  • El grado del producto cumple $$\deg(p(x)q(x)) = \deg(p(x))+\deg(q(x)).$$
  • El grado de la suma cumple $$\deg(p(x)+q(x))\leq \max(\deg(p(x)),\deg(q(x))).$$
  • Si $\deg(p(x))>\deg(q(x))$, entonces $$\deg(p(x)+q(x))=\deg(p(x)).$$

Demostración. Supongamos que los grados de $p(x)$ y $q(x)$ son, respectivamente, $m$ y $n$, y que $p(x)$ y $q(x)$ son
\begin{align*}
p(x)&=a_0+a_1x+\ldots+a_mx^m\\
q(x)&=b_1+b_1x+\ldots+b_nx^n.
\end{align*}
La demostración de la primera parte ya la hicimos en la entrada anterior. En la notación que estamos usando ahora, vimos que el coeficiente de $x^{m+n}$ en $p(x)q(x)$ es justo $a_mb_n\neq 0$, y que este es el término de mayor exponente.

Para la segunda y tercera partes, podemos asumir que $m\geq n$. Tenemos que $p(x)+q(x)$ es $$\left(\sum_{i=0}^n (a_i+b_i)x^i\right) + a_{n+1}x^{n+1}+\ldots+a_mx^m.$$ De aquí, se ve que el máximo exponente que podría aparecer es $m$, lo cual prueba la segunda parte.

Para la tercer parte, cuando $m>n$ tenemos que el coeficiente de $x^m$ es $a_m\neq 0$, y que es el término con mayor exponente. Así, el grado de la suma es $m$.

$\square$

La hipótesis adicional del tercer punto es necesaria, pues en la suma de dos polinomios del mismo grado, es posible que «se cancele» el término de mayor grado.

Ejemplo 2. El producto de los polinomios $1+x+x^2+x^3$ y $1-x$ es $1-x^4$. Esto concuerda con lo que esperábamos de sus grados. El primero tiene grado $3$, el segundo grado $1$ y su producto grado $4=3+1$.

La suma de los polinomios $1+\pi x^3 + \pi^2 x^5$ y $1-\pi x^3$ es $2+\pi^2x^5$, que es un polinomio de grado $5$, como esperaríamos por la tercer parte de la proposición.

La suma de los polinomios $4x^5+6x^7$ y $6x^5+4x^7$ es $10x^5+10x^7$. Es de grado $7$, como esperaríamos por la segunda parte de la proposición.

Sin embargo, en la suma de polinomios el grado puede disminuir. Por ejemplo, los polinomios $1+x^3-x^7$ y $1+x^2+x^7$ tienen grado $7$, pero su suma es el polinomio $2+x^2+x^3$, que tiene grado $3$.

$\triangle$

Evaluación de polinomios e introducción a raíces

Es importante entender que hay una diferencia entre un polinomio, y la función que induce. Por la manera en que definimos a los polinomios, «en el fondo» son sucesiones, incluso con la nueva notación de $x$ y potencias. Sin embargo, cualquier polinomio define una función.

Definición. Si tenemos un polinomio $$p(x)=a_0+a_1x+\ldots+a_nx^n$$ en $\mathbb{R}$, éste define una función aplicar $p$ que es una función $f_p:\mathbb{R}\to \mathbb{R}$ dada por $$f_p(r)=a_0+a_1r+a_2r^2+\ldots+a_nr^n$$ para todo $r\in \mathbb{R}$.

Ejemplo 1. El polinomio $p(x)=3x^2+4x^3$ induce a la función $f_p:\mathbb{R}\to \mathbb{R}$ tal que $f_p(r)=3r^2+4r^3$. Tenemos, por ejemplo, que $$f_p(1)=3\cdot 1^2 + 4\cdot 1^3 = 7$$ y que $$f_p(2)=3\cdot 2^2 + 4\cdot 2^3=44.$$

$\triangle$

Como las reglas de los exponentes y la multiplicación por reales funciona igual en $\mathbb{R}$ que en $\mathbb{R}[x]$, la evaluación en un real $r$ obtiene exactamente lo mismo a que si simplemente reemplazamos $x$ por $r$ y hacemos las operaciones. Por ello, usualmente no distinguimos entre $p(x)$ y $f_p$, su función evaluación, y para un real $r$ usamos simplemente $p(r)$ para referirnos a $f_p(r)$.

De manera totalmente análoga, podemos pensar a $p(x)$ como una función $p:\mathbb{C}\to \mathbb{C}$. También, como comentamos al inicio, podemos definir a los polinomios con coeficientes complejos, es decir a $\mathbb{C}[x]$, y pensarlos como funciones.

Es momento de introducir una definición clave para lo que resta del curso.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ o $\mathbb{C}[x]$ y sea $r$ un real o complejo. Decimos que $r$ es una raíz de $p(x)$ si $p(r)=0$.

Ejemplo 2. El polinomio $p(x)=3$ no tiene raíces, pues para cualquier real o complejo $r$ se tiene $p(r)=3\neq 0$. Por otro lado, cualquier real o complejo es raíz del polinomio $z(x)=0$.

El polinomio $q(x)=x^2+1$ no tiene raíces en $\mathbb{R}$ pues $q(r)\geq 1$ para cualquier real $r$. Pero sí tiene raíces en $\mathbb{C}$, pues $$q(i)=i^2+1=-1+1=0.$$

El polinomio $s(x)=x(x-1)(x-1)=x^3-2x^2+x$ tiene como únicas raíces a $ 0$ y $1$, lo cual se puede verificar fácilmente antes de hacer la multiplicación. Esto debería darnos la intuición de que conocer a las raíces de un polinomio nos permite factorizarlo y viceversa. Esta intuición es correcta y la formalizaremos más adelante.

$\triangle$

Cuando hablamos de los números complejos, vimos cómo obtener las raíces de los polinomios de grado $2$, y de los polinomios de la forma $x^n-a$ en $\mathbb{C}$. La mayor parte de lo que haremos de aquí en adelante en el curso será entender a las raíces reales y complejas de más tipos de polinomios.

Más adelante…

Ya que hemos formalizado la notación estándar que conocemos de los polinomios, su estudio podrá ser más cómodo, hacemos énfasis en que casi todas las definiciones que dimos en esta sección se apoyaros simplemente en un uso adecuado de la notación; por lo que no hay que perder de vista que en el fondo, los polinomios siguen siendo sucesiones de números, y que el símbolo $x$ solo es una forma de representar la sucesión $(0,1,\overline{0})$.

Aun así, hemos justificado que este cambio de notación no tiene nada que envidiar a la notación original, por lo que en las siguientes entradas, ocuparemos la notación más familiar, lo cual será una pieza clave, para hacer más legibles las demostraciones en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Pasa el polinomio $(0,0,0,0,4,0,3,\overline{0})$ a notación con $x$ y potencias. Luego, pasa el polinomio $1-x^3+x^6-x^9$ a notación de sucesión. Suma ambos polinomios y exprésalos en notación con $x$. Multiplícalos usando distribución y agrupamiento. Multiplícalos usando una tabla.
  2. Prueba usando la definición de multiplicación y de $x^n$ que para $m$ y $n$ enteros no negativos se tiene que $x^{m+n}= x^m x^n$.
  3. Toma $P_1(x),\ldots,P_m(x)$ polinomios en $\mathbb{R}[x]$ de grado $n_1,\ldots,n_m$ respectivamente. ¿Cuál es el grado de $P_1(x)+\ldots+P_m(x)$? ¿Y el grado de $P_1(x)\cdot \ldots \cdot P_m(x)$?
  4. Usando distribución y agrupamiento, muestra que para cada entero positivo $n$ se cumple que $$(1-x)(1+x+x^2+\ldots+x^{n-1})=1-x^n.$$
  5. Justifica que si $r(x)$ es un polinomio y $f_r$ es la función aplicar $r$, entonces para cualesquiera polinomios $p(x)$ y $q(x)$, se tiene que $f_p+f_q=f_{p+q}$ y que $f_pf_q=f_{pq}$.

Para practicar la aritmética de polinomios, puedes ir a la sección correspondiente de Khan Academy.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»