Archivo de la etiqueta: álgebra

Álgebra Superior I: Determinante de matrices y propiedades

Por Eduardo García Caballero

Introducción

Uno de los conceptos más importantes en el álgebra lineal es la operación conocida como determinante. Si bien este concepto se extiende a distintos objetos, en esta entrada lo revisaremos como una operación que se puede aplicar a matrices cuadradas. Como veremos, el determinante está muy conectado con otros conceptos que hemos platicado sobre matrices

Definición para matrices de 2×2

A modo de introducción, comenzaremos hablando de determinantes para matrices de 2×2. Aunque este caso es sencillo, podremos explorar algunas de las propiedades que tienen los determinantes, las cuales se cumplirán de manera más genera. Así, comencemos con la siguiente definición.

Definición. Para una matriz A=(abcd), definimos su determinante como
det(A)=adbc.

Basándonos en esta definición, podemos calcular los determinantes
det(9352)=9235=3
y
det(43129)=4(9)(3)12=0.

Otra notación que podemos encontrar para determinantes es la notación de barras. Lo que se hace es que la matriz se encierra en barras verticales, en vez de paréntesis. Así, los determinantes anteriores también se pueden escribir como
|9352|=3y|43129|=0.

Primeras propiedades del determinante

El determinante de una matriz de 2×2 ayuda a detectar cuándo una matriz es invertible. De hecho, esto es algo que vimos previamente, en la entrada de matrices invertibles. En ella, dijimos que una matriz A=(abcd) es invertible si y sólo si se cumple que adbc0. ¡Aquí aparece el determinante! Podemos reescribir el resultado de la siguiente manera.

Teorema. Una matriz de la forma A=(abcd) es invertible si y sólo si det(A)0. Cuando el determinante es distinto de cero, la inversa es A1=1det(A)(dbca).

Otra propiedad muy importante que cumple el determinante para matrices de 2×2 es la de ser multiplicativo; es decir, para matrices A y B se cumple que det(AB)=det(A)det(B). La demostración de esto se basa directamente en las definiciones de determinante y de producto de matrices. Hagamos las cuentas a continuación para matrices A=(a11a12a21a22) y B=(b11b12b21b22).

Tenemos que:
det(AB)=det((a11a12a21a22)(b11b12b21b22))=det(a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22)=(a11b11+a12b21)(a21b12+a22b22)(a11b12+a12b22)(a21b11+a22b21)=a11a22b11b22a12a21b11b22a11a22b12b21+a12a21b12b21=(a11a22a12a21)(b11b22b12b21)=det(a11a12a21a22)det(b11b12b21b22)=det(A)det(B).

Interpretación geométrica del determinante de 2×2

El determinante también tiene una interpretación geométrica muy interesante. Si tenemos una matriz de 2×2, entonces podemos pensar a cada una de las columnas de esta matriz como un vector en el plano. Resulta que el determinante es igual al área del paralelogramo formado por estos vectores.

Por ejemplo, si consideramos la matriz
(4213),
podemos ver que el vector asociado a su primera columna es el vector (4,1), mientras que el vector asociado a su segunda columna es (2,3):

Así, el paralelogramo ABDC de la figura anterior formado por estos dos vectores tiene área igual a
det(4213)=4321=10.

No daremos la demostración de este hecho, pues se necesita hablar más sobre la geometría del plano. Sin embargo, las ideas necesarias para este resultado pueden consultarse en un curso de Geometría Analítica I.

Definición recursiva

También nos interesa hablar de determinantes de matrices más grandes. De hecho, nos interesa hablar del determinante de cualquier matriz cuadrada. La definición formal requiere de varios conocimientos de Álgebra Lineal I. Sin embargo, por el momento podemos platicar de cómo se obtienen los determinantes de matrices recursivamente. Con esto queremos decir que para calcular el determinante de matrices de 3×3, necesitaremos calcular varios de matrices de 2×2. Así mismo, para calcular el de matrices de 4×4 requeriremos calcular varios de matrices de 3×3 (que a su vez requieren varios de 2×2).

Para explicar cómo es esta relación de poner determinantes de matrices grandes en términos de matrices más pequeñas, primeramente definiremos la función sign, la cual asigna a cada pareja de enteros positivos (i,j) el valor
sign(i,j)=(1)i+j.
A partir de la función sign podemos hacer una matriz cuya entrada aij es sign(i,j). Para visualizarla más fácilmente, podemos pensar que a la entrada a11 (la cual se encuentra en la esquina superior izquierda) le asigna el signo “+”, y posteriormente va alternando los signos del resto de entradas. Por ejemplo, los signos correspondientes a las entradas de la matriz de 3×3
(a11a12a13a21a22a23a31a32a33)
serían
(+++++),
mientras que los signos correspondientes a las entradas de la matriz de 4×4
(a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44)
serían
(++++++++).

Ya que entendimos cómo se construyen estas matrices, el cálculo de determinantes se realiza como sigue.

Estrategia. Realizaremos el cálculo de determinante de una matriz de n×n descomponiéndola para realizar el cálculo de determinantes de matrices de (n1)×(n1). Eventualmente llegaremos al calcular únicamente determinantes de matrices de 2×2, para las cuales ya tenemos una fórmula. Para esto, haremos los siguientes pasos repetidamente.

  1. Seleccionaremos una fila o columna arbitraria de la matriz original (como en este paso no importa cuál fila o columna seleccionemos, buscaremos una que simplifique las operaciones que realizaremos; generalmente nos convendrá seleccionar una fila o columna que cuente en su mayoría con ceros).
  2. Para cada entrada aij en la fila o columna seleccionada, calculamos el valor de
    sign(i,j)aijdet(Aij),
    donde Aij es el la matriz que resulta de quitar la fila i y la columna j a la matriz original.
  3. El determinante de la matriz será la suma de todos los términos calculados en el paso anterior.

Veamos algunos ejemplos de cómo se utiliza la estrategia recién descrita.

Ejemplo con matriz de 3×3

Consideremos la matriz de 3×3
(311612432).

A primera vista no hay alguna fila o columna que parezca simplificar los cálculos, por lo cual podemos proceder con cualquiera de estas; nosotros seleccionaremos la primera fila.
(31-1612432).

Para cada término de la primera fila, calculamos el producto
sign(i,j)aijdet(Ai,j),
obteniendo
sign(1,1)(a11)det(A11)=+(3)det(◼◼◼◼12◼32)=+(3)det(1232)=+(3)[(1)(2)(2)(3)]=+(3)(4)=12,sign(1,2)(a12)det(A12)=(1)det(◼◼◼6◼24◼2)=(1)det(6242)=(1)[(6)(2)(2)(4)]=(1)(4)=4,sign(1,3)(a13)det(A13)=+(1)det(◼◼◼61◼43◼)=+(1)det(6143)=+(1)[(6)(3)(1)(4)]=+(1)(14)=14.

Finalmente, el determinante de nuestra matriz original será la suma de los términos calculados; es decir,
(311612431)=(12)+(4)+(14)=6.

Ejemplo con matriz de 4×4

En el siguiente ejemplo veremos cómo el escoger una fila o columna en específico nos puede ayudar a simplificar mucho los cálculos.

Consideremos la matriz
(4022132520231041).

Observemos que el valor de tres de las entradas de la segunda columna es 0. Por esta razón, seleccionaremos esta columna para descomponer la matriz:
(4022132520231041).

El siguiente paso será calcular el producto
sign(i,j)aijdet(Aij),
para cada entrada de esta columna. Sin embargo, por la elección de columna que hicimos, podemos ver que el valor de aij es 0 para tres de las entradas, y por tanto también lo es para el producto que deseamos calcular. De este modo, únicamente nos restaría calcular el producto
sign(2,2)a22det(A22)=+(3)det(4◼22◼◼◼◼2◼231◼41)=+(3)det(422223141).
Se queda como ejercicio al lector concluir que el resultado de este último producto es 30.

De este modo, obtenemos que
det(4022132520231041)=0+30+0+0=30.

Aunque esta definición recursiva nos permite calcular el determinante de una matriz cuadrada de cualquier tamaño, rápidamente se vuelve un método muy poco práctico (para obtener el determinante de una matriz de 6×6 tendríamos que calcular hasta 60 determinantes de matrices de 2×2). En el curso de Álgebra Lineal I se aprende otra definición de determinante a través de permutaciones, de las cuales se desprenden varios métodos más eficientes para calcular determinante. Hablaremos un poco de estos métodos en la siguiente entrada.

Las propiedades de 2×2 también se valen para n×n

Las propiedades que enunciamos para matrices de 2×2 también se valen para determinantes de matrices más grandes. Todo lo siguiente es cierto, sin embargo, en este curso no contamos con las herramientas para demostrar todo con la formalidad apropiada:

  • El determinante es multiplicativo: Si A y B son matrices de n×n, entonces det(AB)=det(A)det(B).
  • El determinante detecta matrices invertibles: Una matriz A de n×n es invertible si y sólo si su determinante es distinto de 0.
  • El determinante tiene que ver con un volumen: Los vectores columna de una matriz A de n×n hacen un paralelepípedo n-dimensional cuyo volumen n-dimensional es justo detA.

Más adelante…

En esta entrada conocimos el concepto de determinante de matrices, vimos cómo calcularlo para matrices de distintos tamaños y revisamos cómo se interpreta cuando consideramos las matrices como transformaciones de flechas en el plano. En la siguiente entrada enunciaremos y aprenderemos a usar algunas de las propiedades que cumplen los determinantes.

Tarea moral

  1. Calcula los determinantes de las siguientes matrices:
    • (5839),(101119),(31381329)
    • (152318025),(184053001),(111222333)
    • (5712301022225110),(12345678910111213141516)
  2. Demuestra que para una matriz A y un entero positivo n se cumple que det(An)=det(A)n.
  3. Sea A una matriz de 3×3. Muestra que det(A)=det(AT).
  4. Sea A una matriz invertible de 2×2. Demuestra que det(A)=det(A1)1.
  5. ¿Qué le sucede al determinante de una matriz A cuando intercambias dos filas? Haz algunos experimentos para hacer una conjetura, y demuéstrala.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En ésta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que (Z,+) es un grupo, de ahí podemos considerar el subgrupo nZ formado por los múltiplos de n, y trabajar con las clases módulo n. Supongamos que tenemos a,bZ y las clases de equivalencia de a y b módulo n . Éstas se definen de la siguiente manera:
a¯=a+nZ,b¯=b+nZ.

Si queremos sumar dos clases de equivalencia, usamos la suma usual en Z. Digamos
a¯+b¯=a+b.

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma +n en Zn usando +Z que es la suma del grupo (Z,+). Entonces lo anterior quedaría:
a¯+nb¯=a+Zb.

Resulta que +n es una operación bien definida y (Zn,+n) es un grupo.

Otra manera de escribirlo sería:
(a+Z)+n(b+Z)=(a+Zb)+Z.
Donde, en este caso estamos usando la notación aditiva.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos G un grupo y H un subgrupo y consideremos dos clases laterales izquierdas de H, digamos aH y bH, lo que queremos es definir, en caso de ser posible, un producto entre clases del siguiente modo:
aHHbH=abH.

donde H es el nuevo producto entre clases y ab se hace con el producto en G.

Sin embargo, debemos verificar que este producto H esté bien definido. Para ello tenemos que ver que no depende de los representantes elegidos. Tomemos entonces otros representantes de las clases, para simplificarlo, cambiemos sólo el representante de una de las dos clases, digamos a~G tal que a~H=aH.

Entonces, quisiéramos que abH=a~bH, pero esto sucedería sólo de la siguiente manera,
abH=a~bH(ab)1a~bHb1a1a~bH.

Entonces, ¿cómo sabemos que b1a1a~bH? Lo que sí sabemos es que a1a~H, pues a~H=aH. Entonces, bastaría pedir que si hH, al multiplicar a h a un lado por un elemento de G, y al otro por su inverso, sigamos obteniendo elementos en H.

En esta entrada usaremos la idea anterior para definir un producto entre dos clases izquierdas usando el producto en G.

Subgrupos normales

Primero necesitamos definir formalmente qué es un conjugado.

Definición. Sea G un grupo, b,cG. Decimos que b es conjugado de c si b=aca1 para alguna aG.

Dado aG y H un subgrupo de G,el conjugado de H por el elemento a es
aHa1={aha1|hH}.

Observación. aHa1 es un subgrupo de G, para toda aG.

La demostración de esta observación queda de tarea moral.

Definición. Sea G un grupo, N subgrupo de G. Decimos que N es normal en G si ana1N para todas aG, nN.

Notación. NG.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea G un grupo, N subgrupo de G. Las siguientes condiciones son equivalentes:

  1. NG.
  2. aNa1=N para todo aG.
  3. Toda clase laterial izquierda de N en G es una clase lateral derecha de N en G.

Demostración. Sea G un grupo, NG.

|1)2)] Supongamos que NG. Sea aG.

P.D. aNa1=N.
Probaremos esto por doble contención.

] Como NG, ana1N para toda nN. Entonces el conjunto aNa1={ana1|nN} está contenido en N.

] Sea nN, como NG, a1na=a1n(a1)1N. Entonces n=a(a1na)a1aNa1.

Por lo tanto aNa1=N.

|2)3)] Supongamos que para todo aG, entonces aNa1=N. Sea aG.

P.D. aN=Na.
De nuevo, probaremos esto por doble contención.

] Tomemos anaN con nN, como ana1aNa1, y aNa1=N por hipótesis, entonces an=(ana1)aNa.

] Tomemos naNa con nN, como a1naa1Na, y a1Na=N por hipótesis, entonces na=a(a1na)aN.

Por lo tanto aN=Na.

|3)1)] Supongamos que para todo aG, existe bG tal que aN=Nb. Sean aG y nN.

P.D. ana1N.

Por hipótesis aN=Nb para alguna bG. Pero aaN=Nb, entonces aNb, por lo que a es otro representante de la clase lateral Nb, y en consecuencia Na=Nb. Tenemos entonces que aN=Nb=Na

Así, anaN=Na y entonces an=n~a para alguna n~N. Entonces

ana1=(an)a1=(n~a)a1=n~N.
Por lo tanto NG.

Así 1), 2) y 3) son equivalentes.

◼

Observación. (Conmutatividad parcial)
Si NG, dados nN y aG, tenemos que an=n~a para alguna n~N, también na=an^ para alguna n^N.

Ejemplos

  1. AnSn ya que si βAn y αSn.
    sgn(αβα1)=sgnαsgnβsgnα1=sgnα(+1)sgnα=+1
    Por lo tanto αβα1An.
  2. Consideremos
    Q={±1,±i,±j,±k}H={±1,±i}
    Las clases laterales izquierdas de H en Q son: H y jH.
    Las clases laterales derechas de H en Q son: H y Hj.
    Además jH={±j,±k}=Hj. Por lo tanto HQ.
  3. Consideremos D2(4) las simetrías del cuadrado. Sea a la rotación π2, b la reflexión con respecto al eje x.
    Sea H={e,b}.
    Si tomamos la transformación aba1 podemos desarrollarla algebraicamente y geométricamente. Primero lo haremos de manera algebraica y interpretación geométrica la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    aba1=aab=a2bH
    con a2b la reflexión con respecto al eje y.
    Por lo tanto HD2(4).
Representación gráfica de la transformación aba1.

Tarea moral

  1. Sean W=(12)(34), V={(1),(12)(34),(13)(24),(14)(23)}S4. Verifica si W es normal en V, si V es normal en S4 y si W es normal en S4 ¿qué puedes concluir con ello?
  2. Sea G un grupo, H y N subgrupos de G con N normal en G, prueba o da un contraejemplo:
    1. NH es normal en H.
    2. NH es normal en G.
  3. Demuestra o da un contraejemplo: Si G es un grupo tal que cada subgrupo de él es normal, entonces G es abeliano.
  4. Sea G un grupo finito con un único subgrupo H de orden |H|. ¿Podemos concluir que H es normal en G?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran a los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas

Álgebra Superior II: Ideales en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada pasada hablamos del concepto de divisibilidad en los números enteros. Enunciamos y demostramos varias de sus propiedades. La noción de divisibilidad da lugar a muchos otros conceptos importantes dentro de la teoría de los números enteros, como el máximo común divisor, el mínimo común múltiplo y los números primos. Así mismo, la noción de divisibilidad está fuertemente ligada con los ideales en los enteros.

En esta entrada hablaremos de este último concepto a detalle. Es una entrada un poco técnica, pero nos ayudará para asentar las bases necesarias para poder hablar de los máximos comunes divisores y los mínimos comunes múltiplos con comodidad un poco más adelante.

Ideales en los enteros y una equivalencia

Los ideales son ciertas estructuras importantes en matemáticas. En el caso particular de los números enteros, tenemos la siguiente definición.

Definición. Un ideal de Z es un subconjunto I de Z que cumple las siguientes dos propiedades:

  • No es vacío.
  • Es cerrado bajo restas, es decir, si a y b están en I, entonces ab también.

Veamos un ejemplo sencillo. Diremos que un número entero es par si es múltiplo de 2 y que es impar si no es múltiplo de dos.

Ejemplo. El conjunto de todos los números pares son un ideal de Z. Este conjunto claramente no es vacío, pues adentro de él está, por ejemplo, el 2. Además, si tenemos que dos números a y b son pares, entonces por definición podemos encontrar enteros k y l tales que a=2k y b=2l, de modo que ab=2k2l=2(kl), lo cual nos dice que ab también es par.

Como veremos un poco más adelante, el ejemplo anterior se puede generalizar. Antes de ver esto, veremos una caracterización un poco distinta de lo que significa ser un ideal.

Proposición. Un subconjunto I de Z es un ideal si y sólo si cumple las siguientes tres propiedades:

  • No es vacío.
  • Es cerrado bajo sumas, es decir, si a y b están en I, entonces a+b también.
  • Es absorbente, es decir, si a está en I y b está en Z, entonces ab también está en I.

Demostración. Primero veremos que si I es un ideal, entonces cumple las tres propiedades anteriores. Luego veremos que si I cumple las tres propiedades anteriores, entonces es un idea.

Supongamos que I es un ideal. Por definición, no es vacío, que es lo primero que queríamos ver. Veamos ahora que es cerrado bajo sumas. Supongamos que a y b están en I. Como I es cerrado bajo restas y bb=0, obtenemos que b está en I. Usando nuevamente que b es cerrado bajo restas para 0 y b, obtenemos que 0b=b también está en I. Usando una última vez la cerradura de la resta, obtenemos ahora que a+b=a(b) está en I, como queríamos.

La tercera propiedad la demostraremos primero para los b0 por inducción. Si b=0, debemos ver que 0a=0 está en I. Esto es cierto pues en el párrafo anterior ya vimos por qué 0 está en I. Supongamos ahora que para cierta b fija se tiene que ab está en I. Por la cerradura de la suma obtenemos que ab+a=ab+a1=a(b+1) también está en I, como queríamos. Aquí usamos que 1 es identidad multiplicativa, la distributividad, la hipótesis inductiva y la cerradura de la suma.

Nos falta ver qué pasa con los b<0. Sin embargo, si b<0, tenemos que a(b) sí está en I (pues b>0). Así, por la cerradura de la resta tenemos que 0a(b)=ab está en I.

Apenas llevamos la mitad de la demostración, pues vimos que la definición de ideal implica las tres propiedades que se mencionan. Pero el regreso es más sencillo. Supongamos que un conjunto I cumple las tres propiedades mencionadas. Como cumple la primera, entonces no es vacío. Ahora vemos que es cerrado bajo restas. Tomemos a y b en I. Como cumple la segunda propiedad, tenemos que (1)b=b está en I. Como cumple la cerradura de la suma, tenemos que a+(b)=ab está en I. Así, I es cerrado bajo restas.

◻

La ventaja del resultado anterior es que nos permitirá pensar a los ideales de una o de otra forma, de acuerdo a lo que sea más conveniente para nuestros fines más adelante.

Clasificación de ideales

Veamos la generalización de nuestro ejemplo de números pares e impares.

Definición. Sea n un entero. Al conjunto de todos los múltiplos de n lo denotaremos por nZ y lo llamaremos el conjunto de los múltiplos de n, es decir:

nZ={nm:mZ}.

Proposición. Si n es cualquier entero, entonces nZ es un ideal de Z.

Demostración. Claramente nZ no es vacío pues, por ejemplo, 0=0n está en nZ. La demostración de la cerradura de la resta se sigue de un corolario de la entrada anterior. Si a,b están en nZ, entonces ambos son divisibles entre n, así que su resta ab también. Así, ab está en nZ.

◻

El ejemplo anterior de hecho da todos los posibles ideales que existen en Z. El siguiente teorema enuncia esto con precisión.

Teorema. Un conjunto I de Z es un ideal si y sólo si existe un entero no negativo n tal que I=nZ.

Demostración. Tomemos I un ideal de Z. Existe la posibilidad de que I={0}, pues en efecto este es un ideal: es no vacío (pues tiene a 0) y es cerrado bajo restas (pues sólo hay que verificar que 00=0 está en I). Si este es el caso, entonces I=0Z, como queríamos. Así, a partir de ahora supondremos que I no es este conjunto. Veremos que I tiene por lo menos un elemento positivo.

Sea aI cualquier elemento que no sea 0. Si a es positivo, entonces ya lo logramos. Si a es negativo, entonces notamos que 0=aa está en I, y que entonces a=0a está en I. Pero entonces a es un número positivo en I.

Debido a esto, por el principio del buen orden podemos tomar al menor entero positivo n que está en I. Afirmamos que I=nZ. Por la caracterización de ideales que dimos en la sección anterior, todos los múltiplos de n están en I, así que InZ.

Veamos que InZ procediendo por contradicción. Supongamos que este no es el caso, y que entonces existe un mI que no sea múltiplo de n. Por el algoritmo de la división, podemos escribir m=qn+r con 0<r<n. Como m está en I y qn está en I, tendríamos entonces que mqn=r está en I. ¡Pero esto es una contradicción! Tendríamos que r está en I y que 0<r<n, lo cual contradice que n era el menor entero positivo en I que tomamos con el principio del buen orden. Esta contradicción sólo puede evitarse si m es múltiplo de n, como queríamos.

◻

Un teorema como el anterior se conoce como un teorema de clasificación pues nos está diciendo cómo son todas las posibles estructuras que definimos a partir de un criterio fácil de enunciar.

Ideal generado por dos elementos

Dado un conjunto de números enteros S, podríamos preguntarnos por el ideal más chiquito que contenga a S. Un ejemplo sencillo es tomar S con sólo un elemento, digamos S={n}. En este caso, es fácil convencerse de que el ideal más pequeño que contiene a S es precisamente nZ (ve los problemas de la tarea moral).

Un caso un poco más interesante es, ¿qué sucede si tenemos dos elementos?

Ejemplo. ¿Cuál será el menor ideal posible I que tiene a los números 13 y 9? Empecemos a jugar un poco con la propiedad de la cerradura de la resta. Como 13 y 9 están, entonces también está 4=139. Como 9 y 4 están, entonces también está 5=94. Así mismo, debe estar 1=54. Pero aquí ya llegamos a algo especial: que el 1 está. Recordemos los ideales también cumplen que una vez que está un número, están todos sus múltiplos. Así, 1Z está contenido en I. Pero entonces I=1Z=Z.

◻

No siempre obtenemos Z como respuesta. Para un ejemplo en donde se obtiene 2Z, ve los problemas de la tarea moral. En la siguiente entrada hablaremos con más detalle de la respuesta, pero por el momento probaremos lo siguiente.

Proposición. Si a y b son enteros, entonces:

  • El conjunto M={ra+sb:r,sZ} es un ideal de Z que tiene a a y a b.
  • Si I es un ideal de Z que tiene a a y a b, entonces MI.

En otras palabras, «M es el ideal más pequeño (en contención) que tiene a a y a b».

Demostración. Veamos primero que M en efecto es un ideal. Para ello, notemos que no es vacío pues, por ejemplo, 0=0a+0b está en M. Además, es cerrado bajo restas pues si tenemos dos elementos en M, son de la forma ra+sb y ka+lb, y su resta es (ra+sb)(ka+lb)=(rk)a+(sl)b, que vuelve a estar en M pues rk y sl son enteros. Además, a=1a+0b, lo que muestra que a está en M y b=0a+1b, lo que muestra que b está en M también. Con esto demostramos el primer punto.

Para el segundo punto, supongamos que a está en I y que b está en I también. Como I es idea, tiene a todos los múltiplos de a y los de b, es decir, a todos los números de la forma ra y sb. Como es ideal, también es cerrado bajo sumas, así que tiene todas las formas de números de este estilo. En particular, tiene a todos los números de la forma ra+sb (variando r y s), es decir, a todos los elementos de I, como queríamos.

◻

Quizás notaste algo raro. El conjunto M es un ideal, pero se ve un poco distinto de los que obtuvimos con nuestra caracterización de la sección anterior. Parece más bien que «está hecho por dos enteros» en vez de estar hecho sólo por uno. Esto no es problema. Nuestra caracterización nos dice que debe existir un entero d tal que M=dZ. Esto nos llevará en la siguiente entrada a estudiar el máximo común divisor.

Intersección de ideales

Los ideales de Z son subconjuntos, así que podemos aplicarles operaciones de conjuntos. ¿Qué sucede si intersectamos dos ideales? La siguiente operación nos dice que

Proposición. Si I y J son ideales de Z, entonces IJ también.

Demostración. La demostración es sencilla. Como I y J son ideales, se puede ver que ambos tienen al 0, y que por lo tanto su intersección también. Ahora veamos que IJ es cerrada bajo restas. Si a y b están en IJ, entonces a y b están en I. Como I es cerrado bajo restas, ab está en I. Análogamente, está en J. Así, ab está en IJ, como queríamos.

◻

Este resultado motivará nuestro estudio del mínimo común múltiplo un poco más adelante.

Más adelante…

Esta fue una entrada un poco técnica, pero ahora ya conocemos a los ideales en los enteros, algunas de sus propiedades y hasta los caracterizamos. La idea de tomar el ideal generado por dos elementos nos llevará a estudiar en la siguiente entrada el concepto de máximo común divisor. Y luego, la idea de intersectar ideales nos llevará en un par de entradas a explorar la noción de mínimo común múltiplo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Imagina que sabes que un ideal tiene al número 6. Esto forza a que también tenga a 66=0. Así, esto forza a que también tenga el 06=6. Sigue así sucesivamente, jugando con todas las nuevas restas que deben quedarse dentro del ideal. ¿Cuál es el menor ideal que puede tener al 6?
  2. Repite lo anterior, pero ahora suponiendo que tu ideal tiene a los números 10 y 12. ¿Qué números puedes obtener si repetidamente puedes hacer restas? ¿Quién sería el menor ideal que tiene a ambos números?
  3. Sean I1,,Ik ideales de N. Demuestra que I1I2Ik también es un idea. Como sugerencia, usa inducción.
  4. Toma a los ideales 6Z y 8Z. Por el resultado de la entrada, tenemos que su intersección A también es un ideal. Intenta averiguar y demostrar quién es el k tal que A=kZ.
  5. ¿Es cierto que la unión de dos ideales siempre es un ideal? Si es falso, encuentra contraejemplos. Si es verdadero, da una demostración. Si es muy fácil, ¿puedes decir exactamente para qué enteros m y n sucede que mZnZ es un ideal?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: Polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Lo primero que queremos determinar en un problema de clasificación es cuáles son los objetos que clasificaremos. En esta entrada los definimos con toda precisión: serán los polinomios cuadráticos en dos variables y las curvas cuadráticas.

Los primeros son expresiones algebraicas que mezclan a dos variables x y y mediante sumas y productos, pero teniendo grado dos. Las segundas son aquellos conjuntos del plano en donde se anula un polinomio cuadrático.

Polinomios cuadráticos en dos variables

Comencemos con una definición algebraica.

Definición. Un polinomio cuadrático en dos variables P es una función P:R2R de la forma P((x,y))=Ax2+Bxy+Cy2+Dx+Ey+F, para algunos reales A,B,C,D,E,F, en donde alguno de A, B ó C es distinto de cero.

En ocasiones, para abreviar «polinomio cuadrático en dos variables» simplemente usaremos las siglas «PCDV».

Ejemplo. Todas las expresiones que aparecen en las cónicas canónicas que hemos estudiado son PCDVs. Por ejemplo, la ecuación canónica de la elipse x2a2+y2b2=1 puede reescribirse como b2x2+a2y2a2b2=0. Del lado izquierdo de esta igualdad tenemos un PCDV. De manera similar, la ecuación canónica de la parábola y2=4px puede reescribirse como y24px=0. Una vez más al lado izquierdo nos aparece un PCDV.

Ejemplo. Si consideramos las dos rectas 3x+5y+1=0 y 2x2y+1=0 y «multiplicamos» sus ecuaciones, entonces obtenemos de nuevo un PCDV pues el producto es:

(3x+5y+1)(2x2y+1)=6x26xy+3x+10xy10y2+5y+2x2y+1=6x2+4xy10y2+5x+3y+1.

Curvas cuadráticas

Cuando tenemos una expresión algebraica que depende de dos variables x y y, entonces podemos preguntarnos por cómo es la figura geométrica que se obtiene al considerar los puntos (x,y) del plano que hacen que la expresión algebraica sea igual a cero. Un ejemplo de esto es cuando consideramos las expresiones del estilo Ax+By+C. Las parejas (x,y) que hacen que esta expresión sea igual a cero forman una recta en el plano. En efecto, forman la recta en forma normal dada por la ecuación (A,B)(x,y)=C, como puedes verificar.

Esta idea es mucho más general. A partir de los polinomios cuadráticos en dos variables también podemos hacernos la misma pregunta: ¿cómo se ven las parejas (x,y) que anulan un polinomio cuadrático? La respuesta será importante, así que las figuras que se construyen así les damos su propio nombre.

Definición. Una curva cuadrática es el conjunto de puntos (x,y) del plano que anulan a un polinomio cuadrático en dos variables P. En otras palabras, es un conjunto de la forma C:={(x,y)R2:Ax2+Bxy+Cy2+Dx+Ey+F=0}.

A P le llamamos el polinomio asociado a C. A C le llamamos la curva descrita (o dada) por P. Quizás usaremos terminología un poco distinta, pero que siga dejando evidente que P y C están relacionados.

Ejemplo. Ya hemos estudiado anteriormente algunas curvas cuadráticas: las cónicas canónicas. Por ejemplo, si tomamos el PCDV P((x,y))=4x29y236 y nos preguntamos para cuáles parejas (x,y) esto es igual a cero, como respuesta tenemos que son aquellas parejas (x,y) tales que 4x29y236=0, lo cual podemos reescribir como x29y24=1. Esta es la hipérbola canónica de semieje mayor 3 y semieje menor 2. Podemos verla en la siguiente figura.

Ejemplo. ¿Qué sucede si nos fijamos en la curva descrita por el polinomio cuadrático en dos variables 6x2+4xy10y2+5x+3y+1 que construimos en un ejemplo anterior? Si recuerdas, obtuvimos este polinomio cuadrático en dos variables a partir de multiplicar dos expresiones. De esta forma, tenemos que 6x2+4xy10y2+5x+3y+1=0 si y sólo si (3x+5y+1)(2x2y+1)=0. Pero el producto de dos cosas es igual a cero si y sólo si alguna es igual a cero. Así, alguna de las expresiones 3x+5y+1 y 2x2y+1 debe ser igual a cero. Si la primera es cero, entonces (x,y) es un punto en la recta normal 1 de ecuación (3,5)(x,y)=1. Si la segunda es cero, entonces (x,y) es un punto en la recta normal 2 de ecuación (2,2)(x,y)=1. Así, la curva cuadrática descrita por el PCDV es la unión de 1 con 2. Podemos verla en la siguiente figura.

Forma matricial de polinomios cuadráticos en dos variables

Cuando trabajamos con rectas, nos convenía tener varias formas de expresarlas: la forma paramétrica ayudaba a determinar fácilmente el paralelismo, la forma baricéntrica nos daba fórmulas sencillas para los puntos medios, la forma normal nos permitía encontrar distancias, etc. Así mismo, cuando trabajamos con polinomios cuadráticos en dos variables es de ayuda tener más de una expresión.

Podemos reescribir un polinomio cuadrático en dos variables P((x,y))=Ax2+Bxy+Cy2+Dx+Ey+F de una manera más compacta usando multiplicación matricial. Para ello, definimos M=(AB2B2C),k=(DE),v=(xy). Con esta notación, e interpretando a las matrices de 1×1 como reales, tenemos que P se puede reescribir de la siguiente manera: P(v)=v.

En efecto, al realizar las operaciones en el lado derecho obtenemos:

vtMv+ktv+F=(xy)(AB2B2C)(xy)+(DE)(xy)+F=(xy)(Ax+B2yB2x+Cy)+Dx+Ey+F=Ax2+Bxy+Cy2+Dx+Ey+F.

Observa que cuando pasamos un polinomio cuadrático en dos variables a forma matricial entonces siempre obtenemos una matriz M simétrica.

Ejemplo. La forma matricial del PCDV que encontramos anteriormente 6x2+4xy10y2+5x+3y+1 es

(xy)(62210)(xy)+(53)(xy)+1.

nota que el coeficiente de xy se tuvo que dividir entre 2 para llegar a las entradas de la matriz. Es importante recordar esto al pasar de la forma en coordenadas a la forma matricial.

En caso de ser necesario, también podemos pasar fácilmente de la forma matricial de un polinomio cuadrático en dos variables a su forma en coordenadas.

Ejemplo. Si comenzamos con el polinomio cuadrático en dos variables con forma matricial (xy)(2113)(xy)+(03)(xy)1,

entonces su forma en coordenadas es 2x22xy+3y23y1.

Observa que las entradas 1 fuera de la diagonal principal de la matriz al salir se duplican para conformar el coeficiente de xy. Es importante recordar esto al pasar de forma matricial a forma en coordenadas.

Más adelante…

En esta entrada definimos qué son los polinomios cuadráticos en dos variables y qué son las curvas cuadráticas.

Por un lado, mencionamos que todas las ecuaciones de cónicas canónicas que hemos visto tienen polinomios cuadráticos en dos variables. ¿Será que todas las ecuaciones de cónicas también tienen polinomios cuadráticos en dos variables? Por otro lado, vimos que algunas curvas cuadráticas son cónicas. Pero nos pasó algo un poco raro: en un ejemplo salieron dos rectas que se intersectan, que quizás estrictamente no pensamos como una cónica usual (elipse, hipérbola, parábola).

¿Cómo serán todas las curvas cuadráticas? ¿Serán sólo las cónicas usuales y algunas excepciones o podrán tener formas muy extrañas? Eso lo estudiaremos después.

También en esta entrada vimos la forma matricial de un polinomio cuadrático en dos variables. De momento, no hemos hablado de la utilidad que tiene pensar a un PCDV así. Sin embargo, en la siguiente entrada veremos que esta expresión es fundamental para ver qué sucede cuando «combinamos» un polinomio cuadrático con una transformación afín.

Tarea moral

  1. Usa alguna herramienta tecnológica (como GeoGebra) para trazar las curvas cuadráticas descritas por los siguientes polinomios cuadráticos en dos variables:
    • x22xy+3y2+x5y+7
    • 3y2+5y+x
    • x2+y25x5y+3
    • xyxy+7
    • x2+2xy3y2x+5y7
  2. Sea P:R2R dada por P((x,y))=(Ax+By+C)(Dx+Ey+F). Demuestra que P es un polinomio cuadrático en dos variables. Luego, demuestra que:
    1. Si AEBD0, entonces la curva cuadrática dada por P es la unión de dos rectas que se intersectan.
    2. Si AEBD=0, entones la curva cuadrática dada por P es la unión de dos rectas paralelas (no necesariamente distintas).
  3. Demuestra que la intersección de una recta con una curva cuadrática sólo puede ser:
    1. Vacía,
    2. Un punto,
    3. Dos puntos, o
    4. Una infinidad de puntos.
  4. Demuestra que cualquier curva cuadrática C puede ser descrita a través de una infinidad de polinomios cuadráticos en dos variables.
  5. Considera la gráfica de la función f(x)=sin(x). ¿Será que esta gráfica es una curva cuadrática? Intenta demostrar por qué sí o por qué no.

Entradas relacionadas

Álgebra Lineal II: Otras aplicaciones de formas canónicas de Jordan

Por Elizabeth Chalnique Ríos Alvarado

Introducción

En las notas anteriores desarrollamos teoría interesante acerca de las formas canónicas de Jordan, ahora vamos a ver algunos ejemplos de todo eso.

Ejemplo 1

Considera la matriz A=(1000200100000000100010002)

Calculamos χA(X) expandiendo det(XI5A) con respecto a la tercera fila y obtenemos (usando de nuevo la expansión respecto a la segunda fila en el nuevo determinante) χA(X)=X|X10020X0001X0100X+2|=X2|X1020X010X+2|=X3|X121X+2|=X4(X+1)

El eigenvalor 1 tiene multiplicidad algebraica 1, por lo que hay un solo bloque de Jordan asociado con este eigenvalor, de tamaño 1. Ahora, veamos qué pasa con el eigenvalor 0 que tiene multiplicidad algebraica 4. Sea Nm el número de bloques de Jordan de tamaño m asociados con ese eigenvalor. Por el Teorema visto en la nota anterior tenemos que N1=rango(A2)2rango(A)+5, N2=rango(A3)2rango(A2)+rango(A) etcétera. Puedes checar fácilmente que A tiene rango 3.

Luego, calculemos A2=(1000200000000000010010002), A3=(1000200000000000000010002).

Nota que A2 tiene rango 2 (pues una base del generado por sus filas está dada por la primera y cuarta fila) y A3 tiene rango 1. De donde, N1=223+5=1, por lo que hay un bloque de Jordan de tamaño 1 y N2=122+3=0, entonces no hay un bloque de Jordan de tamaño 2. Dado que la suma de los tamaños de los bloques de Jordan asociados con el eigenvalor 0 es 4, y como ya sabemos que hay un bloque de tamaño 1 y no hay de tamaño 2, deducimos que hay un bloque de tamaño 3 y que la forma canónica de Jordan de A es (1000000000000100000100000).

Ejemplo 2

Más adelante…

Con esto finalizamos el curso de Álgebra Lineal II, lo que sigue es el maravilloso mundo del Álgebra Moderna.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Usa el Teorema de Jordan para probar que cualquier matriz AMn(C) es similar a su transpuesta.
  2. Prueba que si AMn(C) es similar a 2A, entonces A es nilpotente.
  3. Usa el teorema de Jordan para probar que si AMn(C) es nilpotente, entonces A es similar a 2A.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»