Archivo de la etiqueta: subgrupo normal

Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Estamos trabajando con homomorfismos, que son funciones entre dos grupos que respetan sus operaciones. Entre las propiedades que vimos, está que el neutro del dominio siempre va al neutro del codominio. Es decir, al menos hay un elemento que, bajo el homomorfismo, cae en el neutro del codominio.

Para esta entrada consideraremos a la colección de todos los elementos del dominio que van al neutro del codominio. A este subconjunto, lo llamamos el núcleo de $\varphi$. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles $\varphi$ y tomar el subconjunto que resulta en el codominio, a esto le llamamos la imagen de $\varphi$. Estos dos subconjuntos van a ser importantes en el estudio de los homomorfismos.

La imagen muestra que para $\varphi: G\to \bar{G}$ un homomorfismo, el núcleo $\text{Núc }\varphi \subseteq G$ y la imagen $\text{Im }\varphi \subseteq \bar{G}$.

El núcleo y la imagen de un homomorfismo

Comencemos definiendo formalmente los subconjuntos.

Definición. Sean $G, \bar{G}$ grupos, $\varphi: G \to \bar{G}$ un homomorfismo. Definimos al núcleo de $\varphi$ como
\begin{align*}
\text{Núc } \varphi = \{g\in G | \varphi(g) = e_{\bar{G}}\}.
\end{align*}

Es decir, es el conjunto de todos los elementos de $G$ que, bajo $\varphi$ van a dar al neutro de $\bar{G}$.

Notación. Es común, por el nombre en alemán, denotar al $\text{Núc } \varphi$ como $\text{Ker }\varphi$, es llamado el Kernel de $\varphi$.

Definición. La imagen de $\varphi$ es
\begin{align*}
\text{Im } \varphi = \{\varphi(g) | g \in G\}.
\end{align*}

Notemos que $\text{Núc }\varphi \subseteq G$ y $\text{Im }\varphi \subseteq \bar{G}$.

Ejemplos.

  1. Tomemos el homomorfismo $\varphi: S_n \to \{+1,-1\}$ con $\varphi(\alpha) = sgn\, \alpha$ para toda $\alpha\in S_n$. Veamos quién es el núcleo de $\varphi$:
    \begin{align*}
    \text{Núc }\varphi &= \{\alpha\in S_n | \varphi(\alpha) = +1\} \\
    &= \{\alpha\in S_n | sgn\in\alpha = +1\} = A_n.
    \end{align*}
    Si tomamos el caso no trivial, con $n>1$,
    \begin{align*}
    \text{Im }\varphi = \{+1,-1\}.
    \end{align*}
    Ya que $\varphi((1)) = 1$ y $\varphi((1\,2)) = -1$.
    $\newline$
  2. Sea $n \in \z^+$. Consideremos el homomorfismo $\varphi: \z \to \mathbb{C}^*$ con
    \begin{align*}
    \varphi(m) = \left(e^{\frac{2\pi i}{n}}\right)^m \quad \forall m\in \z.
    \end{align*}
    Buscamos describir su núcleo y su imagen.
    \begin{align*}
    \text{Núc }\varphi &= \{m\in \z| \varphi(m) =1\}\\
    &= \{m\in\z | \left(e^{\frac{2\pi i}{n}}\right)^m = 1\} = n\z.
    \end{align*}
    La última igualdad se da porque ya sabemos que $e^{2\pi i} = 1$, más aún $e^{\theta i} = 1$ si y sólo si $\theta$ es un múltiplo de $2\pi$, entonces $ \left(e^{\frac{2\pi i}{n}}\right)^m = 1$ si y sólo si $m$ es un múltiplo de $n$.

    Ahora la imagen:
    \begin{align*}
    \text{Im }\varphi &= \{\varphi(m)| m \in \z\} \\
    &= \{\left(e^{\frac{2\pi i}{n}}\right)^m | m\in \z\} = \left< e^{\frac{2\pi i}{n}}\right>.
    \end{align*}

El núcleo y la imagen son subgrupos

Ahora, probaremos que el núcleo y la imagen de un homomorfismo no son sólo subconjuntos del dominio y codominio respectivamente, si no que son subgrupos.

Teorema. Sean $G, \bar{G}$ grupos, $\varphi:G\to\bar{G}$ un homomorfismo.

  1. $\text{Núc }\varphi \unlhd G$.
  2. $\text{Im }\varphi \leq \bar{G}$.
  3. $\varphi$ es un monomorfismo si y sólo si $\text{Núc }\varphi = \{e_G\}$.

Demostración.
Sean $G,\bar{G}$ grupos, $\varphi: G \to \bar{G}$ un homomorfismo.

  1. P.D. $\text{Núc }\varphi \unlhd G$.
    Primero probaremos que $\text{Núc }\varphi \leq G$.

    Como $\varphi$ es un homomorfismo, $\varphi(e_G) = e_{\bar{G}}$. Entonces $e_G \in \text{Núc }\varphi$.

    Si $a,b\in\text{Núc }\varphi$.
    \begin{align*}
    \varphi(ab^{-1}) &= \varphi(a) \varphi(b^{-1}) &\varphi \text{ es un homomorfismo}\\
    &=\varphi(a)(\varphi(b))^{-1} & \text{Proposición de homomorfismo} \\
    &= e_{\bar{G}}e_{\bar{G}}^{-1} = e_{\bar{G}} & a,b \in \text{Núc }\varphi
    \end{align*}
    Entonces $ab^{-1} \in \text{Núc }\varphi$. Por lo tanto $\text{Núc }\varphi \leq G$.

    Además, si $a\in G$ y $n\in\text{Núc }\varphi$:
    \begin{align*}
    \varphi(ana^{-1}) &= \varphi(a)\varphi(n)\varphi(a^{-1}) &\varphi\text{ es un homomorfismo}\\
    &= \varphi(a)\varphi(n)(\varphi(a))^{-1} &\text{Proposición}\\
    & = \varphi(a) e_{\bar{G}}(\varphi(a))^{-1} &n \in \text{Núc }\varphi \\
    &= \varphi(a) (\varphi(a))^{-1} = e_{\bar{G}}
    \end{align*}
    Así, $ana^{-1}\in \text{Núc }\varphi$. Esto nos dice que el núcleo de $\varphi$ es cerrado bajo conjugación. Por lo tanto $\text{Núc } \varphi \unlhd G$.
    $\newline$
  2. P.D. $\text{Im }\varphi \leq \bar{G}$.
    Primero veamos que el neutro de $\bar{G}$ está en $\text{Im }\varphi$. Esto pasa porque
    $$e_{\bar{G}} = \varphi(e_{G}) \in \text{Im }\varphi.$$

    Ahora, si $c,d\in \text{Im }\varphi$, entonces $c = \varphi(a), d = \varphi(b)$ para algunos $a,b\in G$.
    \begin{align*}
    ad^{-1} = \varphi(a)(\varphi(b))^{-1} &= \varphi(a)\varphi(b^{–1}) &\text{Proposición}\\
    &= \varphi(ab^{-1}) \in \text{Im }\varphi &\varphi\text{ es un homomorfismo}
    \end{align*}
    Por lo tanto $\text{Im }\varphi \leq \bar{G}$.
    $\newline$
  3. P.D. $\varphi$ es un monomorfismo si y sólo si $\text{Núc }\varphi = \{e_G\}$.

    $|\Rightarrow]$ Supongamos que $\varphi$ es un monomorfismo (un homomorfismo inyectivo).
    Como $\text{Núc }\varphi \leq G$, entonces $\{e_G\}\subseteq \text{Núc }\varphi$.
    Ahora, si $g\in \text{Núc }\varphi$, por la proposición anterior,
    \begin{align*}
    \varphi(g) = e_{\bar{G}} = \varphi(e_G).
    \end{align*}
    Y como $\varphi$ es inyectiva, $g = e_G$. Por lo tanto, $\text{Núc }\varphi = \{e_G\}$.

    $[\Leftarrow|$ Supongamos que $\text{Núc }\varphi =\{e_G\} $.
    Sean $a,b\in G$ tales que $\varphi(a) = \varphi(b)$. Entonces
    \begin{align*}
    e_{\bar{G}} &= \varphi(b)(\varphi(a))^{-1} \\
    &= \varphi(b)\varphi(a^{-1}) &\text{Proposición}\\
    &= \varphi(ba^{-1}) &\varphi\text{ es un homomorfismo}
    \end{align*}
    Entonces $ba^{-1} \in \text{Núc }\varphi = \{e_G\}$, así $ba^{-1} = e_G$, esto implica que $b = a$.
    Por lo tanto $\varphi$ es un monomorfismo.

$\blacksquare$

Observemos que el inciso 3 del teorema nos da una herramienta para determinar si un homomorfismo es inyectivo o no usando el núcleo.

Proyección Canónica

Ahora, tomando un grupo y un subgrupo normal, definiremos un epimorfismo de un grupo al grupo cociente.

Proposición. Sea $G$ un grupo, $N$ un subgrupo normal de $G$. La función $\pi_:G\to G/N$ con $\pi(a) = aN$ para toda $a\in G$, es un epimorfismo tal que $\text{Núc }\pi = N$.

Esta función se conoce como la proyección canónica.

Demostración.
Sea $G$ un grupo, $N\unlhd G$, $\pi: G\to G/N$ con $\pi(a) = aN$ para cualquier $a\in G$.

Veamos que $\pi$ es un homomorfismo
Sean $a,b \in G$, entonces
\begin{align*}
\pi(ab) = abN = (aN)(bN) = \pi(a)\pi(b).
\end{align*}

Ahora veamos que es suprayectivo. Esto es debido a que dado $aN\in G/N$, $$aN = \pi(a).$$

Por lo tanto $\pi$ es un epimorfismo.

Finalmente,
\begin{align*}
\text{Núc }\pi = \{a\in G| \pi(a) = e_{G/N}\} = \{a\in G| aN = N\} = N.
\end{align*}

$\blacksquare$

Ahora veamos un corolario que se desprende directamente de lo que acabamos de ver.

Corolario. Todo subgrupo normal es el núcleo de un homomorfismo. De hecho, es el núcleo de un epimorfismo.

Ejemplos

Para terminar veamos unos ejemplos

Ejemplo 1. Tomemos $\varphi:(\r,+) \to (\mathbb{C}^*, \cdot)$ con $\varphi(x) = e^{xi}$ para toda $x\in\r$. Toma 2 min para pensar porqué es un homomorfismo.

Veamos el núcleo y la imágen de $\varphi$:
\begin{align*}
\text{Núc }\varphi &= \{x\in\r | \varphi(x) = 1\} \\
&= \{x\in\r | e^{xi} = 1\} \\
&= \{2\pi n | n \in \z\} = \left< 2\pi\right>.\\
\text{Im }\varphi &= \{\varphi(x) | x \in \r\} \\
& =\{e^{xi} | x\in\r\} \\
&= \{z\in \mathbb{C} | |z| = 1\} = \s^1.
\end{align*}
¿Cómo es $\r/\left<2\pi\right>$?
Tomemos $a,b\in \r$.
\begin{align*}
a + \left< 2\pi\right> = b + \left< 2\pi\right> &\Leftrightarrow a-b \in \left< 2\pi\right> \\
&\Leftrightarrow a-b= 2\pi n,\, n\in \z.
\end{align*}
Si lo anterior nos dice que dos números $a,b$ están en la misma clase si y sólo si difieren por un múltiplo de $2\pi$. Si lo pensamos en la recta numérica, nos dice que el $0$ y $2\pi$ quedan indentificados en la misma clase. Intuitivamente podríamos pensar que estamos doblando la recta numérica para obtener una circunferencia donde $0$ y $2\pi$ están en el mismo punto.

Así, $\r/\left< 2\pi\right> = \{a+\left< 2\pi\right> | a\in [0,2\pi)\}$.

Representación gráfica del ejemplo 1.

Ejemplo 2. Consideremos $\varphi: (\r^*,\cdot)\to (\r^*,\cdot)$ con $\varphi(x) = |x|$ para toda $x \in \r^*$ (recuerda que $\r^*=\r\setminus \{0\}$).
\begin{align*}
\text{Núc }\varphi &= \{x\in\r^* | \varphi(x) = 1\} \\
&= \{x\in\r^*| |x| = 1\} = \{+1,-1\}.\\
\text{Im }\varphi &= \{\varphi(x) | x \in \r^*\} \\
& =\{|x| | x\in\r^*\} = \r^+. \\
\end{align*}
¿Cómo es $\r^*/\{+1,-1\}$?
Tomemos $a,b\in \r^*$.
\begin{align*}
a\{+1,-1\}= b\{+1,-1\} &\Leftrightarrow a^{-1}b \in \{+1,-1\} \\
&\Leftrightarrow a^{–1}b=\pm 1 \Leftrightarrow b = \pm a.
\end{align*}
Entonces, dos clases laterales van a ser iguales si y sólo si sus representantes difieren a lo más sólo por el signo.

Lo que hicimos fue tomar a los reales sin el cero y estamos identificando a cada número real $a$ con su inverso aditivo. Entonces la imagen de $\varphi$ en realidad es como si dobláramos la recta por el 0 e identificamos a los reales negativos con su correspondiente positivo.

Así, $\r^*/ \{+1,-1\} = \{a \{+1,-1\} | a\in \r^+\}$.

Representación gráfica del ejemplo 2.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $\varphi:GL(2,\r) \to \r^*$ el homomorfismo tal que $\varphi(A) = \text{det }A$. Encuentra el núcleo y la imagen de $\varphi$.
  2. Sean $G,\bar{G}$ grupos y $\varphi: G\to\bar{G}$ un homomorfismo. ¿Es $ \text{Im }\varphi$ normal en $\bar{G}$? Prueba o da un contraejemplo.
  3. Sean $G,\bar{G}$ grupos y $\varphi: G\to \bar{G}$ un homomorfismo. Sean también, $H\leq G, \bar{H}\leq \bar{G}$.
    • ¿Qué puedes decir de $\varphi[H] = \{\varphi(h) | h \in H\}$?¿Y si $H\unlhd G$?
    • ¿Qué puedes decir de $\varphi^{-1}[\bar{H}] = \{g\in G| \varphi(g) \in \bar{H}\}$? ¿Y si $\bar{H}\unlhd\bar{G}$?
  4. En cada inciso calcula $\text{Núc } \varphi, \text{Im }\varphi, G/\text{Núc}$ y analiza cómo se relacionan:
    • $G$ grupo, $\varphi: G \to G$, con $\varphi =\text{id}_G $.
    • $G$ grupo, $\varphi: G \to G$, con $\varphi(g) = e_G$ para toda $g\in G$.
    • $\varphi: (\mathbb{C}^*, \cdot) \to (\r^*, \cdot)$, con $\varphi(z) = |z|$ para toda $z\in\mathbb{C}^*$.
    • $\varphi: \z \times \z \to \z\times\z$, con $\varphi(x,y) = (x,0)$ para toda $(x,y)\in \z\times\z$.

Más adelante…

Ahora que ya tenemos muy claras las definiciones de núcleo e imagen de un homomorfismo, comenzaremos a ver teoremas que relacionan lo que vimos aquí con isomorfismos y grupo cociente.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conmutador

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Vamos a ver una aplicación importante del grupo cociente. Sabemos que podemos dividir a los enteros en impares e impares. Esto se representa con $\z_2 = \{\bar{0}, \bar{1}\}$, donde todos los pares quedan identificados por $\bar{0}$ y los impares por $\bar{1}$. Esto es el objetivo del grupo cociente que definimos en la entrada anterior, identificar elementos en una misma clase lateral.

Ahora, si queremos traducir esto a un grupo general $G$, necesitamos sacar el cociente módulo un subgrupo $H$, entonces cada $h\in H$ es un representante de esta clase de equivalencia, de modo que todos los elementos de $H$ se identificarán entre sí, en particular, todos los elementos de $H$ quedarán identificados con el neutro $e$ de $H$ ya que $hH = eH$.

Por otro lado, recordemos que en general el grupo no es abeliano, es decir no sucede que $ab = ba$ para $a,b \in G$. Pero si tomamos $H \unlhd G$ de modo que $ab \in H$ y $ba \in H$, entonces $abH = baH$ y las clases representadas por $ab$ y $ba$ serán la misma, por lo que $aH$ y $bH$ conmutarán en el cociente. Si recordamos la relación de equivalencia definida en entradas anteriores podemos obtener las siguientes equivalencias,
\begin{align*}
abH = baH \Leftrightarrow (ab)^{-1}ba = b^{-1}a^{-1}ba \in H.
\end{align*}

Como nos interesa que $G/H$ sea abeliano, necesitamos que la palabra $b^{-1}a^{-1}ba \in H$ para toda $a,b \in G$. Esto nos obliga a que el conjunto $\{b^{-1}a^{-1}ba | a,b \in G \}$ esté contenido en $H$. En general, este conjunto no es necesariamente un grupo, pero podemos considerar el generado y así, nos interesaría que el generado esté contenido en $H$:
$$\left< b^{-1}a^{-1}ba | a,b \in G \right> \subseteq H.$$

El objetivo de esta entrada es definir primero al conmutador de $a$ y $b$. Luego, definir al generado por la colección de todos los conmutadores en el grupo. Todo esto con el objetivo de construir un grupo cociente abeliano, aunque $G$ no lo sea.

Subgrupo conmutador de $G$

Definción. Sea $G$ un grupo, $a,b\in G$. El conmutador de $a$ y $b$ es $$[a, b]= aba^{-1}b^{-1}.$$

El subgrupo conmutador de $G$ es $$G’ = \left< [a,b] | a, b\in G \right>.$$

Observación 1. $G’ = \{e\}$ si y sólo si $G$ es abeliano.

Demostración.

\begin{align*}
G’ = \{e\} &\Leftrightarrow [a,b]= e \quad \forall a,b \in G \Leftrightarrow aba^{-1}b^{-1} = e \quad \forall a,b \in G\\
&\Leftrightarrow ab = ba \quad \forall a,b\in G \Leftrightarrow G \text{ es abeliano.}
\end{align*}

$\blacksquare$

Esa observación nos dice intuitivamente que entre más grande sea el conmutador, $G$ está más alejado de ser abeliano.

Observación 2. El inverso de un conmutador es un conmutador.

La demostración queda como tarea moral.

Observación 3. El conmutador es un subgrupo normal de $G$, es decir, $G’\unlhd G$.

Demostración.
Para probar que el conmutador es un subgrupo normal, necesitamos ver que $G’$ es cerrado bajo conjugación. Pero como los elementos de $G’$ son palabras donde las letras son conmutadores o sus inversos, y por la observación anterior son palabras donde las letras son conmutadores, entonces basta ver que al conjugar un conmutador obtenemos un elemento en $G’$, es decir que $g[a,b]g^{-1} \in G’$ para todos $g,a,b\in G$.

Sean $a,b,g\in G$.

\begin{align*}
g[a,b] g^{-1} = gaba^{-1}b^{-1}g^{-1}.\\
\end{align*}
Para ver que este elemento está en $G’$ debemos ver a $gaba^{-1}b^{-1}g^{-1}$ como un producto de conmutadores, para eso agregaremos al neutro antes de $b^{-1}g^{-1}$, con el neutro expresado como $g^{-1}b^{-1}bg$. Luego, nos fijamos qué términos dan lugar a conmutadores y obtenemos lo siguiente:
\begin{align*}
g[a,b] g^{-1} &= gaba^{-1}b^{-1}g^{-1}\\
&= gaba^{-1}\,(g^{-1}b^{-1}bg)\,b^{-1}g^{-1} \\
&= (ga)b(ga)^{-1} b^{-1} bgb^{-1}g^{-1} \\
&= [ga,b]\,|\,[b,g]\in G’
\end{align*}

Por lo tanto $G’ \unlhd G$.

$\blacksquare$

Condiciones sobre un subgrupo para que el cociente sea abeliano

Teorema. Sea $G$ un grupo, $H$ un subgrupo de $G$. Tenemos que

$G’\subseteq H$ si y sólo si, $H \unlhd G$ y $G/H$ es abeliano.

Demostración.
Sea $G$ un grupo $H\leq G$.

$|\Rightarrow]$ Supongamos que $G’ \subseteq H.$

P.D. $H\unlhd G$.
Sean $h\in H$, $g\in G$.
P.D. $ghg^{-1}\in H$

Sabemos que $ghg^{-1}h^{-1} = [g, h] \in G’$ por definición de conmutador, y por hipótesis $G’ \subseteq H$. Así, $ghg^{-1}h^{-1}\in H$.

Luego, nombremos $ghg^{-1}h^{-1} = \tilde{h}$ con $ \tilde{h} \in H$. Despejando lo que nos interesa, obtenemos $ghg^{-1} = \tilde{h}h\in H$. Con esto probamos que todo conjugado de $H$ sigue viviendo en $H$.

Por lo tanto $H \unlhd G$.


P.D. $G/H$ es abeliano.

Sean $a,b\in G$.

\begin{align*}
a^{-1}b^{-1} ab &=a^{-1}b^{-1} (a^{-1})^{-1}(b^{-1})^{-1} = \lceil a^{-1}, b^{-1} \rceil \in G’ \subseteq H \Rightarrow a^{-1}b^{-1}ab\in H \\
& \Rightarrow (ba)^{-1} ab\in H \Rightarrow baH = ab H \\
& \Rightarrow bHaH=aHbH.
\end{align*}

Como $aH$ y $bH$ son clases arbitrarias en $G/H$, concluimos que $G/H$ es abeliano.

$[\Leftarrow|$ Supongamos que $H \unlhd G$ y $G/H$ es abeliano.

Tomemos $a,b\in G$ arbritrarios.

Como $G/H$ es abeliano, entonces $a^{-1}Hb^{-1}H = b^{-1}Ha^{-1}H$, es decir $a^{-1}b^{-1}H = b^{-1}a^{-1}H.$ Entonces $(b^{-1}a^{-1})^{-1}a^{-1}b^{-1}\in H$, pero $(b^{-1}a^{-1})^{-1}a^{-1}b^{-1}=aba^{-1}b^{-1}=[a, b]$, entonces $[a, b]\in H$ para todos $a,b\in G$.

Así $G’ \subseteq H$.

$\blacksquare$

Ejemplo

Para terminar, veamos un ejemplo sencillo pero importante.

Tomemos $S_3$ y $A_3$.

Sabemos que $A_3 \unlhd S_3$ y $S_3/A_3 = \{A_3, (1\;2) A_3\}$ que es abeliano. De hecho, en la entrada anterior analizamos el caso general, puedes verificar cómo es la operación del grupo cociente con la tabla que dimos y verificar que $S_3/A_3 $ que es abeliano.

Entonces $S_{3}’ \subseteq A_3 = \{(1), (1\;2\;3),(1\;3\;2)\}$.

Como $S_3$ no es abeliano, por la observación que dimos $S’_3 \neq \{(1)\}$. Concluimos que $S’_3=A_3.$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que el inverso de un conmutador también es un conmutador.
  2. Sea $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$ el grupo diédrico formado por las simetrías de un cuadrado, con $a$ la rotación de $\frac{\pi}{2}$ y $b$ la reflexión con respecto al eje x.
    1. Calcula el cociente de $D_{2(4)}$ módulo $\left< a^2 \right>$.
    2. Encuentra $D_{2(4)}’$.
  3. Sea $G$ un grupo, $H$ y $K$ subgrupos normales de $G$ tales que $G/H$ y $G/K$ son abelianos, ¿es entonces $G/H\cap K$ abeliano?

Más adelante…

¡Felicidades! Esta es la última entrada de la unidad 2. Esta unidad se trató de definir nuevas estructuras que nos ayudan para describir mejor a los grupos y subgrupos. Hablamos sobre el orden del grupo y extendimos propiedades de los enteros hacia la generalidad de los grupos, como separar un grupo en clases de equivalencia. La siguiente entrada introduce la tercera unidad de este curso y presenta un tema nuevo: unas funciones que «respetan» o «abren» operaciones.

Entradas relacionadas

Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En entradas anteriores definimos el índice de $H$ en $G$ con $H$ un subgrupo del grupo $G$. Además, dimos la definición de subgrupo normal, y demostramos equivalencias usando clases laterales izquierdas y derechas.

Cuando sólo hay dos clases laterales en $G$, es muy fácil concluir esa equivalencia, es decir, es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. Digamos, si $[G:H] = 2$ y tomamos $a,b\in G$. Por un lado tenemos que se crea una partición $\mathcal{P}_1 = \{H, aH\}$ de $G$ y por otro lado tenemos $\mathcal{P}_2 = \{H, Hb\}$. Como ambas particiones tienen $H$, entonces necesariamente $aH = Hb$. Así, concluimos que $H \unlhd G$.

Lo anterior lo demostraremos de manera formal en esta entrada.

Representación gráfica de qué sucede cuando $[G:H]=2$.

Proposición sobre subgrupos

Proposición. Sean $G$ un grupo y $H$ un subgrupo de $G$.

  1. Si $[G : H ] = 2$, entonces $g^2\in H$ para toda $g\in G$.
  2. Si $[G : H ]= 2$, entonces $H$ es normal en $G$.

Demostración.
Sea $G$ un grupo, $H\leq G$ con $[G : H ]= 2$.

$1.$ P.D. $g^2 \in H$ para toda $g \in G$.

Sea $g\in G$. Como $[G : H ]= 2$ hay dos clases laterales izquierdas, $H$ y $aH$ para alguna $a \in G\setminus H$, y $G = H\dot\cup aH$, donde $\dot\cup$ en este caso es una unión disjunta.

Como $g\in G$, entonces $g\in H$ ó $g \in aH$.

Si $g\in H$, al ser $H$ un subgrupo, $g^2\in H$.
Si $g\in aH$, $g = ah$ para alguna $h\in H$.
Por lo tanto $g^2 = ahah$.

Pero también, $g^2 \in G = H\dot\cup aH$. Por un lado, si $g^2\in aH$, $g^2 = a \tilde{h}$ con $\tilde{h} \in H$.
\begin{align*}
&\Rightarrow a \tilde{h} = g^2 = ah a h \\
&\Rightarrow \;\tilde{h} = hah & \text{Cancelamos la } a \text{ que se repite}\\
&\Rightarrow a = h^{-1}\tilde{h}h^{-1}  &\text{Despejando }{a}.
\end{align*}

Pero cada uno de $h,\tilde{h}, h^{-1}  \in H$. Por lo que $a \in H$ y esto sería una contradicción.
Por lo tanto $g^2 \in H$.

$2. $ Como $[G : H ]= 2$ hay dos clases laterales izquierdas $H$ y $aH$ con $a \in G\setminus H$. Hay también dos clases laterales derechas $H$ y $Hb$ con $b \in G\setminus H$ y además
$$H\dot\cup aH = G = H\dot\cup Hb.$$

Si $g\in aH$, entonces $g \not\in H$, así $g\in G = H\dot\cup Hb$ pero $g\not\in H$, y entonces $g\in Hb$. Por lo que $aH \subseteq Hb$.

Si $g\in Hb$, entonces $g\not\in H$, así $g\in G = H\dot\cup aH$ pero $g\not\in H$, y entonces $g\in aH$. Por lo que $Hb\subseteq aH$.

Así, $aH=Hb$ y toda clase lateral izquierda es una clase lateral derecha.
Por lo tanto, podemos concluir que $H \unlhd G$.

$\blacksquare$

Ejemplos.

Enunciamos dos ejemplos sencillos:

  1. Como $[S_n: A_n ]= 2$, entonces $A_n\unlhd S_n$.
  2. En $D_{2n} = \left<a,b\right>$ con $a$ la rotación $2\pi/n$ y $b$ la reflexión con respecto al eje $x$.
    Sea $H =\left< a \right>$.
    \begin{align*}
    [D_{2n} : H ]= \frac{|D_{2n}|}{|H|} = \frac{2n}{n} = 2.
    \end{align*}
    Por lo tanto $H \unlhd D_{2n}$.

Más teoremas de subgrupos

Veamos que el hecho de que un número divida al orden de un grupo, no implica que haya un subgrupo de ese tamaño. Esto se puede ilustrar con un ejemplo.

Teorema. Sea $A_4$ el subgrupo alternante de $S_4$.
$A_4$ no tiene subgrupos de orden $6$.

Demostración.
Consideremos el subgrupo $A_4$ de $S_4$.

Sabemos que
$$|A_4| = \frac{|S_4|}{2} = \frac{4!}{2}= \frac{24}{2} = 12.$$

Así, $6\Big| |A_4|$.

P.D. $A_4$ no tiene subgrupos de orden $6$.

Supongamos que existe $H\leq A_4$ con $|H| = 6$.

\begin{align*}
\Rightarrow& [A_4 : H ]= \frac{A_4}{H} = \frac{12}{6} = 2 \\
\Rightarrow& H \unlhd A_4 &\text{Prop. anterior inciso 2.}
\end{align*}

Sea $\beta = (a \; b \; c) \in A_4$ un $3-$ciclo.
Por el inciso 1 de la proposición anterior $(\beta^2)^2\in H$. Luego, $\beta = \beta^4 = (\beta^2)^2 \in H$. Así, todo $3-ciclo$ está en $H$.

Pero en $S_4$ hay exactamente ocho $3-$ciclos. Entonces $|H| \geq 8$ y esto es una contradicción pues supusimos que $|H| = 6$.

Por lo tanto $A_4$ no tiene subgrupos de orden 6.

$\blacksquare$

Ahora veamos qué sucede si multiplicamos dos subgrupos. Esta multiplicación es posible y tiene sentido, pero esto no siempre nos da un subgrupo, aquí damos algunos casos en donde esto sí pasa.

Teorema. Sea $G$ un grupo, $H,K$ subgrupos de $G$.

  1. Si $H \unlhd G$ o $K \unlhd G$, entonces $HK \leq G$.
  2. Si $H \unlhd G$ y $K \unlhd G$, entonces $HK \unlhd G$.

Demostración.

Sea $G$ un grupo, $H$ y $K$ subgrupos de $G$.

$1.$ Supongamos que $H \unlhd G$.

P.D. $HK \leq G$.
Por un resultado de una entrada previa, basta ver que $HK = KH$.

Si $h\in H$, $k\in K$, como $H \unlhd G$, entonces $hk = k\tilde{h}$ con $\tilde{h}\in H$ por la conmutatividad parcial. Por lo tanto $HK \subseteq KH$.

Además $kh = \bar{h}k$ con $\bar{h} \in H$, de nuevo, por la conmutatividad parcial ya que $H\unlhd G$. Por lo tanto $KH \subseteq HK$.

Así, $HK = KH$ y $HK \leq G$.

Para $K\unlhd G$ se demuestra que $HK = KH$ de forma análoga.

$2.$ Supongamos que $H \unlhd G$, $K\unlhd G$.
Sean $h\in H, k \in K$ y $a\in G$. Veamos que $a(hk)a^{-1} \in HK.$

Agregando un neutro,
$$a(hk)a^{-1} = ah(a^{-1} a) ka^{-1} = (aha^{-1}) (aka^{-1}).$$

Pero como $H \unlhd G$ sabemos que $aha^{-1} \in H$, y como $K \unlhd G$ sabemos que $aka^{-1} \in K$, entonces $a(hk)a^{-1} = (aha^{-1}) (aka^{-1}) \in HK.$

Por lo tanto $HK \unlhd G$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $G$ un grupo, $H$ un subgrupo de $G$ con $3 = [G:H]$. ¿Es $H$ normal en $G$?
  2. Prueba que en $S_4$ hay exactamente ocho $3$-ciclos.
  3. Demuestra que $A_5$ no tiene subgrupos de orden 20: Supón por contradicción que $H$ es un subgrupo de de orden 20.
    1. Sea $\alpha \in A_5$ un $5$-ciclo. Prueba que si $\alpha\not\in H$ entonces $H, \alpha H$ y $\alpha^2 H$ son las 3 clases laterales izquierdas de $H$ en $A_5$.
    2. Prueba que $\alpha^3$ no está en ninguna de esas tres clases laterales.
    3. Concluye que $\alpha \in H$ para todo $\alpha$ 5-ciclo, y así $H$ tendría más de 20 elementos.
  4. Sea $G$ un grupo, $H$ y $K$ subgrupos de $G$. Prueba o da un contraejemplo:
    1. Si $HK$ es un subgrupo de $G$, entonces $H$ es normal en $G$ o $K$ es normal en $G$.
    2. Si $HK$ es un subgrupo normal de $G$, entonces $H$ es normal en $G$ y $K$ es normal en $G$.

Más adelante…

Esta entrada es la última antes de comenzar un pequeño tema nuevo: el grupo cociente. Seguiremos viendo cómo se pueden generar particiones de los grupos y definiremos una operación entre los elementos de esta partición.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En ésta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que $(\z, +)$ es un grupo, de ahí podemos considerar el subgrupo $n\z$ formado por los múltiplos de $n$, y trabajar con las clases módulo $n$. Supongamos que tenemos $a,b\in \z$ y las clases de equivalencia de $a$ y $b$ módulo $n$ . Éstas se definen de la siguiente manera:
\begin{align*}
\bar{a} = a + n\z, \quad \bar{b} = b + n\z.
\end{align*}

Si queremos sumar dos clases de equivalencia, usamos la suma usual en $\z$. Digamos
\begin{align*}
\bar{a} + \bar{b} = \overline{a+b}.
\end{align*}

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma $+_n$ en $\z_n$ usando $+_\z$ que es la suma del grupo $(\z,+)$. Entonces lo anterior quedaría:
\begin{align*}
\bar{a} +_n \bar{b} = \overline{a+_\z b}.
\end{align*}

Resulta que $+_n$ es una operación bien definida y $(\z_n,+_n)$ es un grupo.

Otra manera de escribirlo sería:
\begin{align*}
(a+\z) +_n (b+\z) = (a+_\z b) + \z.
\end{align*}
Donde, en este caso estamos usando la notación aditiva.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos $G$ un grupo y $H$ un subgrupo y consideremos dos clases laterales izquierdas de $H$, digamos $aH$ y $bH$, lo que queremos es definir, en caso de ser posible, un producto entre clases del siguiente modo:
\begin{align*}
aH \cdot_H bH = ab H.
\end{align*}

donde $\cdot_H$ es el nuevo producto entre clases y $ab$ se hace con el producto en $G$.

Sin embargo, debemos verificar que este producto $\cdot_H$ esté bien definido. Para ello tenemos que ver que no depende de los representantes elegidos. Tomemos entonces otros representantes de las clases, para simplificarlo, cambiemos sólo el representante de una de las dos clases, digamos $\tilde{a}\in G$ tal que $\tilde{a}H = aH$.

Entonces, quisiéramos que $abH = \tilde{a}bH$, pero esto sucedería sólo de la siguiente manera,
\begin{align*}
abH = \tilde{a}b H \Leftrightarrow\;& (ab)^{-1} \tilde{a}b\in H\\
\Leftrightarrow\;& b^{-1}a^{-1}\tilde{a}b\in H.
\end{align*}

Entonces, ¿cómo sabemos que $b^{-1}a^{-1}\tilde{a}b\in H$? Lo que sí sabemos es que $a^{-1}\tilde{a} \in H$, pues $\tilde{a}H= aH$. Entonces, bastaría pedir que si $h\in H$, al multiplicar a $h$ a un lado por un elemento de $G$, y al otro por su inverso, sigamos obteniendo elementos en $H$.

En esta entrada usaremos la idea anterior para definir un producto entre dos clases izquierdas usando el producto en $G$.

Subgrupos normales

Primero necesitamos definir formalmente qué es un conjugado.

Definición. Sea $G$ un grupo, $b,c \in G$. Decimos que $b$ es conjugado de $c$ si $b = aca^{-1}$ para alguna $a\in G$.

Dado $a\in G$ y $H$ un subgrupo de $G$,el conjugado de $H$ por el elemento $a$ es
$$aHa^{-1} = \{aha^{-1}|h\in H\}.$$

Observación. $aHa^{-1}$ es un subgrupo de $G$, para toda $a \in G$.

La demostración de esta observación queda de tarea moral.

Definición. Sea $G$ un grupo, $N$ subgrupo de $G$. Decimos que $N$ es normal en $G$ si $ana^{-1} \in N$ para todas $a\in G$, $n\in N$.

Notación. $N\unlhd G$.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea $G$ un grupo, $N$ subgrupo de $G$. Las siguientes condiciones son equivalentes:

  1. $N\unlhd G$.
  2. $a N a^{-1} = N$ para todo $a\in G$.
  3. Toda clase laterial izquierda de $N$ en $G$ es una clase lateral derecha de $N$ en G.

Demostración. Sea $G$ un grupo, $N \leq G$.

$|1) \Rightarrow 2)]$ Supongamos que $N \unlhd G$. Sea $a\in G$.

P.D. $aNa^{-1} = N$.
Probaremos esto por doble contención.

$\subseteq]$ Como $N\unlhd G$, $ana^{-1} \in N$ para toda $n\in N$. Entonces el conjunto $aNa^{-1} = \{ana^{-1}|n\in N\}$ está contenido en $N$.

$\supseteq]$ Sea $n\in N$, como $N\unlhd G$, $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$. Entonces $n = a(a^{-1}n a)a^{-1} \in a N a^{-1}$.

Por lo tanto $aNa^{-1} = N$.

$|2) \Rightarrow 3)]$ Supongamos que para todo $a \in G$, entonces $aNa^{-1} = N$. Sea $a\in G$.

P.D. $aN = Na$.
De nuevo, probaremos esto por doble contención.

$\subseteq]$ Tomemos $an \in aN$ con $n\in N$, como $ana^{-1} \in aNa^{-1}$, y $ aNa^{-1}= N$ por hipótesis, entonces $an = (ana^{-1}) a \in Na$.

$\supseteq]$ Tomemos $na \in Na$ con $n\in N$, como $a^{-1}na \in a^{-1}Na$, y $a^{-1}Na = N$ por hipótesis, entonces $na = a(a^{-1}na) \in aN$.

Por lo tanto $aN = Na$.

$|3)\Rightarrow 1)]$ Supongamos que para todo $a\in G$, existe $b\in G$ tal que $aN = Nb$. Sean $a \in G$ y $n \in N$.

P.D. $ana^{-1} \in N$.

Por hipótesis $aN = Nb$ para alguna $b\in G$. Pero $a \in aN = Nb$, entonces $a\in Nb$, por lo que $a$ es otro representante de la clase lateral $Nb$, y en consecuencia $Na = Nb$. Tenemos entonces que $aN = Nb=Na$

Así, $an\in aN = Na$ y entonces $an = \tilde{n}a$ para alguna $\tilde{n}\in N$. Entonces

\begin{align*}
ana^{-1} = (an)a^{-1} = (\tilde{n}a)a^{-1} = \tilde{n} \in N.
\end{align*}
Por lo tanto $N \unlhd G$.

Así 1), 2) y 3) son equivalentes.

$\blacksquare$

Observación. (Conmutatividad parcial)
Si $N\unlhd G$, dados $n\in N$ y $a\in G$, tenemos que $an = \tilde{n}a$ para alguna $\tilde{n}\in N$, también $na = a \hat{n}$ para alguna $\hat{n} \in N$.

Ejemplos

  1. $A_n \unlhd S_n$ ya que si $\beta \in A_n$ y $\alpha\in S_n$.
    \begin{align*}
    sgn \,(\alpha\beta\alpha^{-1}) &= sgn \,\alpha \; sgn \,\beta \:sgn \,\alpha^{-1}\\
    & = sgn \,\alpha \;(+1) \;sgn \, \alpha \\
    & = +1
    \end{align*}
    Por lo tanto $\alpha\beta\alpha^{-1}\in A_n$.
  2. Consideremos
    \begin{align*}
    Q &= \{\pm 1, \pm i, \pm j, \pm k\}\\
    H &= \{\pm 1, \pm i\}
    \end{align*}
    Las clases laterales izquierdas de $H$ en $Q$ son: $H$ y $jH$.
    Las clases laterales derechas de $H$ en $Q$ son: $H$ y $Hj$.
    Además $jH = \{\pm j, \pm k\} = Hj$. Por lo tanto $H \unlhd Q$.
  3. Consideremos $D_{2(4)}$ las simetrías del cuadrado. Sea $a$ la rotación $\frac{\pi}{2}$, $b$ la reflexión con respecto al eje $x$.
    Sea $H = \{e, b\}$.
    Si tomamos la transformación $aba^{-1}$ podemos desarrollarla algebraicamente y geométricamente. Primero lo haremos de manera algebraica y interpretación geométrica la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    $aba^{-1} = aab = a^2b \not\in H$
    con $a^2b$ la reflexión con respecto al eje $y$.
    Por lo tanto $H \not\unlhd D_{2(4)}$.
Representación gráfica de la transformación $aba^{-1}$.

Tarea moral

  1. Sean $W = \left< (1\;2)(3\;4)\right>$, $V = \{(1), (1\;2)(3\;4),(1\;3)(2\;4),(1\;4)(2\;3)\}\leq S_4$. Verifica si $W$ es normal en $V$, si $V$ es normal en $S_4$ y si $W$ es normal en $S_4$ ¿qué puedes concluir con ello?
  2. Sea $G$ un grupo, $H$ y $N$ subgrupos de $G$ con $N$ normal en $G$, prueba o da un contraejemplo:
    1. $N\cap H$ es normal en $H$.
    2. $N\cap H$ es normal en $G$.
  3. Demuestra o da un contraejemplo: Si $G$ es un grupo tal que cada subgrupo de él es normal, entonces $G$ es abeliano.
  4. Sea $G$ un grupo finito con un único subgrupo $H$ de orden $|H|$. ¿Podemos concluir que $H$ es normal en $G$?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran a los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas