Archivo del Autor: Cecilia del Carmen Villatoro Ramos

Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En esta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que $(\z, +)$ es un grupo, de ahí podemos tomar los subgrupos de las clases módulo $n$. Supongamos que tenemos las clases de equivalencia módulo $a$ y módulo $b$ respectivamente, $a,b\in \z$. Éstas se definen de esta manera:
\begin{align*}
\bar{a} = a + \z, \quad \bar{b} = b + \z.
\end{align*}

Si queremos sumar dos clases de equivalencia, usamos la suma usual en $\z$. Digamos
\begin{align*}
\bar{a} + \bar{b} = \overline{a+b}.
\end{align*}

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma $+_n$ en $\z_n$ usando $+_\z$ que es la suma del grupo $(\z,+)$. Entonces lo anterior quedaría:
\begin{align*}
\bar{a} +_n \bar{b} = \overline{a+_\z b}.
\end{align*}

El caso es que $+_n$ es una operación bien definida y $(\z_n,+_n)$ es un grupo.

Otra manera de escribirlo sería:
\begin{align*}
(a+\z) +_n (b+\z) = (a+_\z b) + \z.
\end{align*}
Donde, en este caso $+$ es notación.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos $G$ un grupo y $H$ un subgrupo y consideremos dos clases laterales izquierdas de $H$, digamos $aH$ y $bH$, lo que queremos es
\begin{align*}
aH \cdot_H bH = ab H.
\end{align*}

Donde $\cdot_H$ es el nuevo producto que queremos definir y $ab$ se hace con el producto en $G$.

Lo siguiente que queremos probar es si ese producto ($\cdot_H$) está bien definido. Para ello tenemos que tomar otro representante de las clases, para simplificarlo, tomemos sólo una $\tilde{a}H = aH$.

Entonces, queremos que $abH = \tilde{a}bH$, esto sucedería sólo de la siguiente manera,
\begin{align*}
abH = \tilde{a}b H \Leftrightarrow\;& (ab)^{-1} \tilde{a}b\in H\\
\Leftrightarrow\;& b^{-1}a^{-1}\tilde{a}b\in H.
\end{align*}

Entonces, ¿cómo sabemos que $b^{-1}a^{-1}\tilde{a}b\in H$? De por sí, sabemos que $a^{-1}\tilde{a} \in H$, pues $\tilde{a}H= aH$. Entonces, todo se reduce a que necesitamos que al conjugar elementos de $H$ sigamos obteniendo elementos en $H$.

Así que en esta entrada buscaremos definir un producto entre dos clases izquierdas usando el producto en $G$.

El grupo normal

Primero necesitamos definir formalmente qué es un conjugado en nuestro contexto.

Definición. Sea $G$ un grupo, $H$ subgrupo de $G$, $b,c \in G$. Decimos que $b$ es conjugado de $c$ si $b = aca^{-1}$ para alguna $a\in G$.

Dado $a\in G$ el conjugado de $H$ por el elemento $a$ es
$$aHa^{-1} = \{aha^{-1}|h\in H\}.$$

Observación. $aHa^{-1}$ es un subgrupo de $G$, para toda $a \in G$.

La demostración de esta observación te queda de tarea moral.

Definición. Sea $G$ un grupo, $N$ subgrupo de $G$. Decimos que $N$ es normal en $G$ si $ana^{-1} \in N$ para toda $a\in G$, $n\in N$.

Notación. $N\unlhd G$.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea $G$ un grupo, $N$ subgrupo de $G$. Las siguientes condiciones son equivalentes:

  1. $N\unlhd G$.
  2. $a N a^{-1} = N$ para todo $a\in G$.
  3. Toda clase laterial izquierda de $N$ en $G$ es una clase lateral derecha de $N$ en G.

Demostración. Sea $G$ un grupo, $N \leq G$.

$|1) \Rightarrow 2)]$ Supongamos que $N \unlhd G$. Sea $a\in G$.

P.D. $aNa^{-1} = N$.
Probaremos esto por doble contención.

$\subseteq]$ Como $N\unlhd G$, $ana^{-1} \in N$ para toda $n\in N$. Entonces el conjunto $aNa^{-1} = \{ana^{-1}|n\in N\}$ está contenido en $N$.

$\supseteq]$ Sea $n\in N$, como $N\unlhd G$, $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$. Entonces $n = a(a^{-1}n a)a^{-1} \in a N a^{-1}$.

Por lo tanto $aNa^{-1} = N$.

$|2) \Rightarrow 3)]$ Supongamos que para todo $a \in G$, entonces $aNa^{-1} = N$. Sea $a\in G$.

P.D. $aN = Na$.
De nuevo, probaremos esto por doble contención.

$\subseteq]$ Tomemos $an \in aN$ con $n\in N$, como $ana^{-1} \in aNa^{-1}$ y $ aNa^{-1}= N$ por hipótesis. Entonces $an = (ana^{-1}) a \in Na$.

$\supseteq]$ Tomemos $na \in Na$ con $n\in N$, como $a^{-1}na \in a^{-1}Na$ y $a^{-1}Na = N$ por hipótesis. Entonces $na = a(a^{-1}na) \in aN$.

Por lo tanto $aN = Na$.

$|3)\Rightarrow 1)]$ Supongamos que para todo $a\in G$, existe $b\in G$ tal que $aN = Nb$. Sea $a \in G$ y $n \in N$.

P.D. $ana^{-1} \in N$.

Por hipótesis $aN = Nb$ para alguna $b\in G$. Pero $a \in aN = Nb$, entonces $Na = Nb$.

Así $an\in aN = Na$ y entonces $an = \tilde{n}a$ para alguna $\tilde{n}\in N$. Entonces

\begin{align*}
ana^{-1} = (an)a^{-1} = (\tilde{n}a)a^{-1} = \tilde{n} \in N
\end{align*}
Por lo tanto $N \unlhd G$.

Así 1), 2) y 3) son equivalentes.

$\blacksquare$

Observación. (Conmutatividad parcial)
Si $N\unlhd G$, dados $n\in N$ y $a\in G$. Si $an = \tilde{n}a$ para alguna $\tilde{n}\in N$, también $na = a \bar{n}$ para alguna $\bar{n} \in N$.

Ejemplos

  1. $A_n \unlhd S_n$ ya que si $\beta \in A_n$ y $\alpha\in S_n$.
    \begin{align*}
    sgn(\alpha\beta\alpha^{-1}) &= sgn\alpha \; sgn\beta \:sgn \,\alpha^{-1}\\
    & = sgn\alpha \;(+1) \;sgn \alpha \\
    & = +1
    \end{align*}
    Por lo tanto $\alpha\beta\alpha^{-1}\in A_n$.
  2. Consideremos
    \begin{align*}
    Q &= \{\pm 1, \pm i, \pm j, \pm k\}\\
    H &= \{\pm 1, \pm i\}
    \end{align*}
    Las clases laterales izquierdas de $H$ en $Q$ son: $H$ y $jH$.
    Las clases laterales derechas de $H$ en $Q$ son: $H$ y $Hj$.
    Además $jH = \{\mp j, \mp k\} = Hj$. Por lo tanto $H \unlhd Q$.
  3. Consideremos $D_{2(4)}$ las simetrías del cuadrado. Sea $a$ la rotación $\frac{\pi}{2}$, $b$ la reflexión on respecto al eje $x$.
    Sea $H = \{e, b\}$.
    Si tomamos la transformación $aba^{-1}$ podemos desarrollarla algebráicamente y visualmente. Primero lo haremos de manera algebráica y la visual la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    $aba^{-1} = aab = a^2b \not\in H$
    reflexión con respecto al eje $y$.
    Por lo tanto $H \not\unlhd D_{2(4)}$.
Representación gráfica de la transformación $aba^{-1}$.

Tarea moral

  1. Sean $W = \left< (1\;2)(3\;4)\right>$, $V = \{(1), (1\;2)(3\;4),(1\;3)(2\;4),(1\;4)(2\;3)\}\leq S_4$. Verifica si $W$ es normal en $V$, si $V$ es normal en $S_4$ y si $W$ es normal en $S_4$ ¿qué puedes concluir con ello?
  2. Sea $G$ un grupo, $H$ y $N$ subgrupos de $G$ con $N$ normal en $G$, prueba o da un contraejemplo:
    1. $N\cap H$ es normal en $H$.
    2. $N\cap H$ es normal en $G$.
  3. Demuestra o da un contraejemplo: Si $G$ es un grupo tal que cada subgrupo de él es normal, entonces $G$ es abeliano.
  4. Sea $G$ un grupo finito con un único subgrupo $H$ de orden $|H|$. ¿Podemos concluir que $H$ es normal en $G$?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas

Álgebra Moderna I: Caracterización de grupos cíclicos

Por Cecilia del Carmen Villatoro Ramos

Introducción

Gracias al teorema de Lagrange sabemos que el orden de todo subgrupo divide al del grupo que lo contiene, pero no sabemos si para cada divisor del orden del grupo, existe un subgrupo de ese tamaño. El siguiente teorema nos da una respuesta cuando hablamos de grupos cíclicos finitos.

Para grupos cíclicos, existe un único subgrupo de orden que divide al tamaño del grupo. Eso es lo primero que veremos en esta entrada. Después, demostraremos un resultado de teoría de números, usando teoría de conjuntos para llegar a una caracterización de los grupos cíclicos.

Todo divisor tiene un subgrupo de ese orden

Teorema. Sea $G$ un grupo finito cíclico de orden $n$. Para cada $d \in \z^+$ divisor de $n$ existe un único subgrupo de $G$ de orden $d$.

Demostración.
Sea $G$ un grupo finito cíclico de orden $n$ y sea $a \in G$ tal que $G = \left< a \right>$.

Sea $d\in \z^+$ con $d|n$.

P.D. Existe un subgrupo de $G$ de orden $d$.
Como $d|n$, entonces $n = dk$ con $k \in \z$.

Sabemos por un ejercicio que
\begin{align*}
o(a^k) = \frac{n}{(n,k)} = \frac{n}{k} = d.
\end{align*}

Así $|\left< a^k \right>| = o(a^k) = d$.

P.D. Que no hay otro subgrupo de orden $d$.
Sea $H\leq G$ con $|H|=d$. Como $G$ es cíclico, $H$ también es cíclico y, por ende, $H = \left< a^m \right>$ para alguna $m \in \z$, entonces

\begin{align*}
&e = (a^m)^{|H|} = (a^m)^d = a^{md}.
\end{align*}
Como $ a^{md} = e$, podríamos pensar que $o(a) = md$, sin embargo eso no es siempre cierto, lo que si es cierto es que $n|md$. Entonces, existe $q\in\z$ tal que
\begin{align*}
&md = nq\\
\Rightarrow \;& md = dkq &\text{Sustituyendo } n = dk\\
\Rightarrow \; &m=kq.
\end{align*}

Así $a^m = a^{kq} = (a^k)^q \in \left< a^k \right>$, entonces $H = \left< a^m\right> \leq \left< a^k\right> $. Pero $| \left< a^m\right>| = |\left< a^k\right>| = d$, por lo tanto $ \left< a^m\right> = \left< a^k\right>$.

$\blacksquare$

Demostrando resultados de teoría de números usando teoría de grupos

Para llegar a una caracterización de los grupos cíclicos, primero vamos a hacer unas pequeñas definiciones con la forma de anotaciones.

Notación. Sea $C$ grupo cíclico, entonces llamamos al conjunto de generadores del grupo cíclico $C$ como
$$\text{gen } C =\{a\in C | \left< a\right> = C\}.$$

Recordatorio. Dado $d \in \z^+$

$$\varphi(d) = \#\{m \in \{1,2,\dots,d\} | (m,d) = 1\}.$$
Es decir, $\varphi(d)$ es la cantidad de primos relativos con $d$. En este caso, $\varphi$ es la phi de Euler.

Ahora, veamos un resultado que se refiere más a asuntos de teoría de números. Pero esta vez lo demostraremos usando teoría de conjuntos.

Teorema. Sea $n\in \z^+$. Entonces $n = \displaystyle \sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d)$.

Demostración.
Sea $G$ un grupo cíclico de orden $n$.

Para cada $d|n$, tenemos que $1\leq d\leq n$ existe un único subgrupo de $G$ de orden $d$, digamos $C_d$.

P.D. $\displaystyle G = \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d$.

Lo probaremos por doble contención.

$\subseteq]$ Sea $a\in G$.

Sabemos que $\left< a \right>$ es un subgrupo de $G$ de orden $o(a)$, entonces $\left< a \right> = C\,o(a)$ y además $a \in \text{gen }C\, o(a)$. Así $\displaystyle a \in \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d.$

$\supseteq]$ Por construcción, se da que $\text{gen } C_d \subseteq G$ para cada $d|n$, $1 \leq d \leq n$.

P.D. Ahora veamos que la unión es disjunta.

Sean $d, d’ \in \{1,\dots, n\}$ divisores de $n$. Sea $a \in \text{gen } C_d \cap \text{gen } C_{d’}$.

Entonces
\begin{align*}
C_d &= \left< a \right> = C_{d’}\\
\Rightarrow \;d &= |C_d| = |C_{d’}| = d’\\
&\therefore d = d’.
\end{align*}

Así tenemos una unión disjunta,

\begin{align*}
|G| &= \left|\bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d \right| \\
& = \sum_{\substack{d|n \\ 1\leq d \leq n}} \#\text{gen } C_d &\text{Definición de gen }C.
\end{align*}

Luego, en un ejercicio ya probaste que si $C_d = \left<a\right>$, entonces $C_d = \left<a^k\right>$ si y sólo si $(k,d) = 1$. Por lo que tenemos tantos generadores como primos relativos haya con $d$. Así,
\begin{align*}
\sum_{\substack{d|n \\ 1\leq d \leq n}} \#\text{gen } C_d = \sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d).
\end{align*}

Por último, como $|G| = n$, se sigue que
\begin{align*}
\sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d) = n.
\end{align*}

$\blacksquare$

Ahora sí, la caracterización que todos esperábamos

Después de los resultados anteriores ya estamos listos para dar el siguiente teorema.

Teorema. Sea $G$ un grupo finito de orden $n$. $G$ en cíclico si y sólo si para cada $d \in \z^+$ divisor de $n$, $G$ tiene a lo más un subgrupo cíclico de orden $d$.

A pesar de que el enunciado dice que $G$ tiene a lo más un subgrupo cíclico, al final resulta que existe un único. La redacción es adrede para que la demostración del regreso no sea trivial.

Demostración.
Sea $G$ un grupo finito de orden $n$.

$|\Rightarrow]$ Si $G$ un cíclico, para cada $d \in \z^+$ divisor de $n$, $G$ tiene exactamente un sibgrupo cíclico de orden $d$.

$[\Leftarrow|$ Supongamos que para toda $d \in \z^+$ divisor de $n$, $G$ tiene a lo más un subgrupo cíclico de orden $d$, si existe lo denotaremos por $C_d$, si no existe definimos $C_d = \emptyset$ y definimos también $\text{gen } C_d = \emptyset$ en ese caso.

De nuevo, tenemos una unión disjunta. Demostrar la igualdad es análogo al teorema anterior.
\begin{align*}
G = \bigcup_{\substack{d|n\\1\leq d\leq n}} \text{gen }C_d.
\end{align*}

Entonces, usando el teorema anterior,

\begin{align*}
n = |G| = \sum_{\substack{d|n\\1\leq d \leq n}} \#\text{gen } C_d \leq \sum_{\substack{d|n\\1\leq d \leq n}} \varphi(d) = n
\end{align*}

Donde el teorema anterior se usa en la última igualdad.

Así, para toda $d|n$, con $1\leq d\leq n$ se tienen que $\#\text{gen } C_d = \varphi(d)$ de donde $\text{gen } C_d \neq \emptyset$.

Por lo tanto, para toda $d|n$ con $1\leq d \leq n$, $G$ tiene exactamente un subgrupo cíclico de orden $d$. En particular $G$ tiene exactamente un subgrupo cíclico de orden $n$ que debe ser $G$ mismo.

$\therefore G$ es cíclico. $\blacksquare$

Consecuencias

Corolario 1. Sea $G$ un grupo finito de orden $n$. Si para toda $d\in \z^+$ divisor de $n$ hay a lo más $d$ soluciones de $x^d = e$ en $G$, entonces $G$ es cíclico.

Demostración.
Sea $G$ un grupo finito, $|G| = n$, tal que $\forall d \ n \z^+$ que $d|n$, existen a lo más $d$ soluciones de $x^d = e$ en $G$.

P.D. $G$ es cíclico.

Supongamos por contradicción que para alguna $d\in\z^+$ que $d|n$ existen $C,C’$ con $C\neq C’$ subgrupos cíclicos de $G$ de orden $d$.

Por un lado, si $a\in C$, $e = a^{|C|} = a^d$. Por otro lado, si $a\in C’$, $e = a^{|C’|} = a^d$. Entonces para toda $a\in C\cup C’$, $a$ es solución de $x^d = e$.

Pero como $C \neq C’$, entonces $\#C\cup C’ > |C| = d$, entonces habría más de $d$ soluciones de $x^d=e$ en $G$. Esto es una contradicción.

Así, para toda $d\in\z^+$ tal que $d\in\n$ existe a lo más un subgrupo cíclico de orden $d$.

Por el teorema anterior, $G$ es cíclico.

$\blacksquare$

En realidad, nos interesa el corolario 1, para probar el corolario 2.

Corolario 2. Para todo campo finito $K$, el grupo multiplicativo $K^* = K\setminus\{0\}$ con la multiplicación del campo, es cíclico.

Demostración.
Sea $d\in \z^+$ tal que $d\big||K^*|$.

Ahora, nos fijamos en el polinomio $f(x) = x^d -1$ que tiene a lo más $d$ raíces en $K^*$. Porque las soluciones a esa ecuación son las $x^d = 1$, además, $1$ es el neutro multiplicativo de $K$.
Por lo tanto, por el corolario 1, $K^*$ es cíclico.

$\blacksquare$

Tarea moral

  1. Dada $d\in \z^+$ definimos
    \begin{align*}
    \phi(d) = \#\{m\in \{1,2,\dots,d\}\, | \, (m,d) = 1\}.
    \end{align*}
    Donde $(m,d)$ es máximo común divisor.
    Encuentra $\displaystyle \sum_{\substack{ d|n \\ 1\leq d \leq n}} \phi(d) $ para $n \in \{5,8,9,12\}$.
  2. Considera el conjunto
    \begin{align*}
    K = \left\{ \begin{pmatrix}
    a & b \\ b & a+b
    \end{pmatrix} \, \Big| a,b\in\z_2
    \right\}
    \end{align*}
    con las operaciones usuales. Prueba que $K$ es un campo con cuatro elementos y verifica que $K^*$ es cíclico.

Más adelante…

Con esta entrada concluimos por el momento con temas relacionados al orden de un grupo y de un subgrupo. En la próxima entrada comenzaremos una nueva tarea: encontrar una multiplicación apropiada entre dos clases laterales, para ello, regresaremos a estudiar un poco a los enteros.

Entradas relacionadas

Álgebra Moderna I: Teorema de Lagrange

Por Cecilia del Carmen Villatoro Ramos

Introducción

En la entrada anterior vimos que si tenemos un grupo $G$ y nos agarramos un subgrupo $H$, obtenemos una partición $H, a_1H, a_2H, a_3H, \dots, a_tH$ donde
\begin{align*}
|H| = \#a_2 H = \#a_3 H = \cdots = a_t H.
\end{align*}

Recuerda que $|G|$ se refiere al orden de un grupo y $\#a_iH$ es el orden de un conjunto que no es necesariamente un grupo. Esto quiere decir que el orden de $G$ es un $t$ veces del orden de $H$, en decir $|G| = t|H|.$ Este resultado sencillo pero importante es conocido como el Teorema de Lagrange, el teorema al que está dedicado esta entrada.

Joseph-Louis Lagrange, conocido simplemente como Lagrange, nació en 1739 y falleció en 1813.

Ejemplo de la partición $\{H, a_1H,\dots, a_tH\}$.

A pesar de que vivió antes de que la teoría de conjuntos se desarrollara en el siglo XIX, su trabajo fue muy importante para ella. Por eso este teorema tiene su nombre.

Ingredientes para la demostración

Lema. Sea $G$ un grupo, $H$ un subgrupo de $G$, $a\in G$. Entonces $$\# aH = |H|.$$

Demostración. Sean $G$ un grupo, $H\leq G$ y $a \in G$.

Consideremos $\varphi : H \to a \, H$, tal que $h \mapsto ah$.

Veamos que $\varphi$ es inyectiva ya que si tomamos $h, \bar{h} \in H$ son tales que $\varphi(h) = \varphi(\bar{h})$ entonces $ah = a \varphi$ y por cancelación, $h = (\bar h)$.

Además, $\varphi$ es suprayectiva ya que dado $ah \in aH$ con $h\in H$ tenemos
$$ ah = \varphi(h) \in \text{Im}\varphi. $$

Donde $\text{Im}\varphi$ es la imagen de $\varphi$.

Por lo tanto $|H| = \# a H$.

$\blacksquare$

Señoras y señores, les presento a Lagrange

Ahora ya tenemos todos los ingredientes para demostrar el teorema de Lagrange.

Teorema. (Teorema de Lagrange) Sea $G$ un grupo finito, $H$ subgrupo de $G$. Entonces $|H|$ divide al orden de $G$ y
$$\lceil G:H \rceil= \frac{|G|}{|H|}.$$

Demostración. Sea $G$ un grupo finito, $H\leq G$. Como $G$ es finito debe haber una cantidad finita de clases laterales izquierdas de $G$ en $G$, notemos que cada una es no vacía con al menos un elemento.

Sean $a_1, \dots , a_t \in G$ representantes de las distintas clases laterales izquierdas de $H$ en $G$, con $t = \lceil G : H \rceil$. Sabemos que $\displaystyle G = \bigcup^{t}_{i=1} a_i H$. Como $a_iH \cap a_jH = \emptyset$ para $i\neq j$, con $i,j\in\{1,\dots, t\}$, entonces la unión, es una unión disjunta. Así podemos hacer,

\begin{align*}
|G| = \left| \bigcup^{t}_{i=1} a_i H\right| &= \sum^{t}_{i=1} \#a_iH \\
&= \sum^{t}_{i = 1} |H| &\text{Lema anterior} \\
&= t|H| = \lceil G:H \rceil |H|
\end{align*}

Así $|G| = \lceil G : H \rceil |H|$, enconces $|H|\Big| |G|$ y $\displaystyle \lceil G : H \rceil = \frac{|G|}{|H|}$.

$\blacksquare$

Consecuencias del teorema

Corolario 1. Sea $G$ un grupo finito, $a\in G$. Entonces $o(a) \Big| |G|$. Así $a^{|G|} = e$.

Demostración. Sea $G$ un grupo finito, $a\in G$. Consideremos $\left< a \right> \leq G$. Por el teorema de Lagrange:

$$ o(a) = |\left< a \right>|\Big| |G| \Rightarrow o(a)\Big| |G|.$$

Así $|G| = o(a)q$, para algún $q \in \z$,
$$a^{|G|} = a^{o(a)q} = \left( a^{o(a)}\right)^q = e^q = e.$$

$\blacksquare$

Corolario 2. Todo grupo finito de orden primo es cíclico.

Demostración. Sea $G$ un grupo finito, $|G| = p$ con $p$ primo.

Como $|G| > 1$ sea $a \in G \setminus \{e\}$. Por el corolario 1,
$$1 < o(a) \Big| |G| = p.$$

Entonces $o(a) = p$. Así $\left< a \right> = G$ y $G$ es cíclico.

$\blacksquare$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Sea $G$ un grupo finito, $H$ y $K$ subgrupos de $G$ con $K\subseteq H$. En cada inciso (son los ejercicios 2 y 3 de la entrada anterior) justifica usando el teorema de Lagrange ¿cómo es $[G:K]$ en términos de $[G:H]$ y $[H_K]$?
    1. $G = Q$ los cuaternios, $H = \left<i\right>$ y $K = \{\pm 1\}$.
    2. $G = S_4$, $H = A_4$ y $K = \left<(1\;2\;3)\right>$.
  2. Encuentra todos los subgrupos del grupo de los cuaternios y de $\z_8$ ¿de qué orden son? ¿cuántos hay del mismo orden?

Opcional

Revisa el video de la Sorbona: Lagrange-Universidad de la Sorbona. Se puede poner poner subtítulos en español.

Más adelante…

El teorema de Lagrange es uno de los resultados más importantes del curso. Se usará multiples veces. Por lo pronto, en la siguiente entrada, revisitaremos los grupos cíclicos y usaremos el teorema de Lagrange para probar una caracterización de esos grupos.

Entradas relacionadas

Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de $H$ en $G$

Por Cecilia del Carmen Villatoro Ramos

Introducción

Como pudiste darte cuenta por el título, en esta entrada definiremos una relación de equivalencia en un grupo. Permítenos dar una motivación usando un grupo que tal vez ya hayas estudiado en cursos anteriores como el de Álgebra Superior II.

Dicho grupo tan importante, es el de los enteros con la suma $(\z, +)$. Para $a,b\in \z$ es posible establecer una relación $\thicksim$ dentro de los enteros como sigue
\begin{align*}
a \thicksim b \Leftrightarrow b-a \text{ es múltiplo de } n.
\end{align*}
Esta relación de equivalencia induce una partición de $\z$, con exáctamente $n$ conjuntos. Donde cada conjunto es una de las clases módulo $n$. En esta entrada queremos introducir una relación parecida, pero generalizada a cualquier grupo.

Comencemos modificando este ejemplo un poco. Primero, llamemos $H$ al conjunto de todos los enteros múltiplos de $n$. Así nuestra relación quedaría, para $a,b\in \z$,
\begin{align*}
a \thicksim b \Leftrightarrow b-a \in H.
\end{align*}

Luego, notemos que a pesar de que la operación que usamos para definir el grupo es la suma usual, nuestra relación está definida usando la resta. En realidad, lo que está pasando es que estamos sumando $b$ con el inverso aditivo de $a$, es decir $-a$. Entonces $b -a = b + (-a)$. Además, $(\z,+)$ es un grupo abeliano, por lo que $b + (-a) \in H \Leftrightarrow (-a) + b \in H$. Para nuestra generalización usaremos el segundo caso.

Así, tenemos que comenzar agarrando un subgrupo cualquiera de $G$, es decir, nos tomamos $H\leq G.$ Entonces nuestra relación debe quedar, dados $a,b\in G$,
\begin{align*}
a \thicksim b \Leftrightarrow a^{-1}b\in H.
\end{align*}

Ya al tener esa relación y demostrar que es una relación de equivalencia, usaremos las propiedades de grupo para descubrir que las clases de equivalencia son las clases laterales vistas en la entrada anterior.

Relación Generalizada

Lo anterior queda formalizado en la siguiente definición.

Definición. Sea $G$ un grupo y $H$ un subgrupo de $G$. Definimos una relación en $G$ del siguiente modo: dados $a,b \in G$,

\begin{align*}
a \thicksim b \Leftrightarrow a^{-1}b \in H.
\end{align*}

Ahora, demostraremos que esa relación, así como la de la introducción, es una relación de equivalencia.

Observación. La definición anterior es una relación de equivalencia.

Demostración.
Sean $G$ un grupo y $H\leq G$.

Primero, tomamos $a \in G$.
También podemos tomar $a^{-1}$ . Así $a^{-1}a = e \in H$. Por lo tanto $a \thicksim a$ y nuestra relación es reflexiva.

Ahora tomamos $a,b \in G$. Si $a \thicksim b$, entonces $a^{-1} b\in H$.

\begin{align*}
\Rightarrow b^{-1}a = (a^{-1}b)^{-1} \in H \Rightarrow b \thicksim a
\end{align*}

Por lo que nuestra relación es simétrica.

Sean $a,b,c \in G$. Si $a \thicksim b$ y $b \thicksim c$, entonces $a^{-1}b \in H$ y $b^{-1}c \in H$, entonces usando la cerradura de $H$ y asociando de otra manera, obtenemos

\begin{align*}
a^{-1}c = (a^{-1}b)(b^{-1}c) \in H \Rightarrow a \thicksim c.
\end{align*}

Así, nuestra relación es transitiva.

Por lo tanto, nuestra relación es una relación de equivalencia.

$\square$

Nótese que para probar las tres propiedades de una relación de equivalencia (reflexividad, simetría y transitividad) usamos las tres condiciones de un subgrupo (la existencia del neutro, la cerradura de los inversos y la cerradura del producto).

A continuación, veamos cómo son las clases de equivalencia:
Sea $a \in H$.

\begin{align*}
\bar{a} &= \{b \in G | a \thicksim b\} = \{b \in G | a^{-1}b \in H\} \\
&= \{b \in G | a^{-1}b = h, h \in H\} = \{b \in G | b = ah, h \in H\} \\
&= \{ah | h \in H\} = a H.
\end{align*}

Ahora veremos algunas observaciones de lo anterior.

Observación. Sean $G$ un grupo, $H\leq G$ y $a,b\in G$, entonces
\begin{align*}
a H = bH & \Leftrightarrow a^{-1}b \in H.
\end{align*}

En particular,
\begin{align*}
H = bH & \Leftrightarrow b \in H
\end{align*}

Nota. Análogamente se puede trabajar con clases laterales derechas, i.e. ($Ha = Hb \Leftrightarrow ba^{-1}\in H$).

Como $\thicksim$ es una relación de equivalencia, esta induce una partición y, como sus clases de equivalencia son las clases laterales, tenemos el siguiente teorema.

Teorema. Sea $G$ un grupo, $H$ subgrupo de $G$.

  1. $aH \neq \emptyset \quad \forall a \in G$ .
  2. Si $a,b \in G$ son tales que $aH \cap bH \neq \emptyset$, entonces $aH = bH$.
  3. $\displaystyle \bigcup_{a\in G} aH = G$

Claramente el teorema anterior enuncia las características de una partición, por lo que no hay nada que probar.

Ejemplos

  1. Consideremos al grupo de los cuaternios $Q$ , tomemos el subgrupo $H = \left< i \right> = \{\pm 1 , \pm i\}$. Veamos qué sucede con sus clases laterales.
    \begin{align*}
    jH &= \{j(+1), j(-1), j(+i), j(-i)\}\\
    &= \{j, -j, -k k\} \\
    &= Hj.
    \end{align*}
    La última igualdad la puedes comprobar tú, multiplicando los mismos elementos por $j$, pero ahora del lado izquierdo.
    Así, las clases laterales son:
    • Clases laterales izquierdas: $H, jH$.
    • Clases laterales derechas: $H, Hj$.
  2. Tomemos $S_3$ y $H = \{(1), (32)\}$.
    Primero, veamos cómo se ven las clases laterales izquierdas.
    Primero, tenemos la clase del neutro, es decir $(1) H = H$. Luego, tenemos que tomarnos un elemento de $S_3$ que no esté en $H$, digamos $(1\;2\;3)$, entonces,
    \begin{align*}
    (1\;2\;3)H &= \{(1\;2\;3)(1), (1\;2\;3)(3\;2)\}\\
    &= \{(1\;2\;3), (1\;2)\}.
    \end{align*}
    Repetimos lo anterior, tomamos un elemento de $S_3$ que no esté $H$ y sea distinto al que ya nos tomamos para obtener una clase distinta. Esto nos da
    \begin{align*}
    (1\;3\;2)H &= \{(1\;3\;2)(1), (1\;3\;2)(3\;2)\} \\
    & = \{(1\;3\;2)(1\;3)\}.\\
    \end{align*}
    Por lo que las clases laterales izquierdas son:
    \begin{align*}
    &(1)H = H\\
    &(1\;2\;3)H = \{(1\;2\;3), (1\;2)\}\\
    &(1\;3\;2)H = \{(1\;3\;2)(1\;3)\}.\\
    \end{align*}
    De la misma manera obtenemos las clases laterales derechas:
    \begin{align*}
    &H(1) = H \\
    &H(1\;2\;3) = \{(1)(1\;2\;3), (3\;2)(1\;2\;3)\} = \{(1\;2\;3), (1\;3)\} \\
    &H(1\;3\;2) = \{(1)(1\;3\;2), (3\;2)(1\;3\;2)\} = \{(1\;3\;2), (1\;2)\}.\\
    \end{align*}
    Este ejemplo nos permite ver que las clases laterales izquierdas y las clases laterales derechas no siempre coinciden.
Partición del ejemplo 1.
Partición de las clases laterales izquierdas del ejemplo 2.
Partición de las clases laterales derechas del ejemplo 2.

Número de elementos en las clases laterales

El último ejemplo nos dice que las clases laterales derechas e izquierdas no siempre coinciden, sin embargo probaremos que siempre hay la misma cantidad de ambas.

Teorema. Sea $G$ un grupo, $H$ un subgrupo de $G$. Entonces

\begin{align*}
\#\{a H | a \in G\} = \#\{Ha | a \in G\}.
\end{align*}

Demostración.

Sea $\psi: \{a H | a \in G\} \to \{Ha | a \in G\}$, definida como $\psi(aH) = Ha^{-1} \quad \forall a \in G$. Probaremos que esta función es biyectiva.

Pequeño paréntensis:

Antes de comenzar con la demostración, pongamos atención a la definición de $\psi$. En un inicio podríamos pensar ¿por qué no hacemos $\psi(aH) = Ha$? La respuesta es simple, porque esto no funcionaría. Definamos una nueva función para ejemplificar, sea $\phi: \{a H | a \in G\} \to \{Ha | a \in G\} $ tal que $\phi(aH ) = Ha$.

Tomemos $b\in G$ tal que $aH = bH$, para que $\phi$ esté bien definida, necesitaríamos que $\phi(aH) = \phi(bH)$, es decir $Ha = Hb$. Por la relación que definimos, esto implica que si $a^{-1}b \in H$, entonces $ba^{-1} \in H$, pero esto no necesariamente es cierto porque el grupo puede no ser abeliano. Lo que sí sabemos es que si $a^{-1}b\in H$, entonces $Ha^{-1}b = H$, y así $Ha^{-1} = Hb^{-1}$.

Por esto es que escogimos a $\psi$ de esa manera.

Termina paréntesis. Ahora sí comencemos con la demostración.

Sean $a,b \in G$,

\begin{align*}
aH = bH & \Leftrightarrow a^{-1}b \in H \\
&\Leftrightarrow Ha^{-1}b = H \\
& \Leftrightarrow Ha^{-1} = Hb ^{-1} \\
& \Leftrightarrow \psi (aH) = \psi (bH).
\end{align*}
Por tanto, $\psi$ está bien definida y es inyectiva.

Además, dada $Ha, a \in G$.

\begin{align*}
Ha = H(a^{–1})^{-1} = \psi(a^{-1} H)
\end{align*}

así $\psi$ es suprayectiva.

Por lo tanto $\# \{aH | a \in G\} = \# \{Ha|a\in G\}.$

$\square$

Ahora, ya sabemos que la cantidad de clases laterales izquierdas es la misma que la de clases laterales derechas. Entonces podemos nombrar esto como el índice.

Definición. Sea $G$ un grupo, $H$ un subgrupo de $G$. El índice de $H$ en $G$ es

\begin{align*}
[G:H ] = \# \{aH | a\in G\}.
\end{align*}

Ejemplos

Retomemos los ejemplos que ya hemos visto.

  1. Tomemos a $Q$ como los cuaternios, $H= \left< i \right> = \{\pm 1, \pm i\}$
    $[Q:H]= 2$.
  2. Ahora, tomemos $S_3$, $H = \{(1), (3 2)\}$. Como ya vimos,
    $[S_3:H]= 3$.
  3. Consideremos el grupo $(\z, +)$ y $H = \{6m | m \in \z\}$.
    Hay 6 clases laterales: $H, 1+H, 2+H, 3+H, 4+H, 5+H$. Que serían los múltiplos de $6$, $6+1$, $6+2$, $\dots$ respectivamente.
    Así, $[\z, H ]= 6$.

Tarea moral

  1. Analizando los ejemplos que tienes hasta ahora observa si existe alguna relación entre el orden de un grupo $G$, el orden del subgrupo $H$ y la cantidad de clases laterales de $H$ en $G$.
  2. Considera $\{\pm 1\} \leq \left< i \right> \leq Q$. Describe las clases laterales izquierdas de $\{\pm 1\}$ en $\left< i \right>$, las clases laterales izquierdas de $\left< i \right>$ en $Q$, y las clases laterales izquierdas de $\{\pm 1\}$ en $Q$. Encuentra $[Q: \{\pm 1\}]$, $[Q:\left< i \right>]$ y $[\left< i \right>: \{\pm 1\}]$.
  3. Considera $\left< (1\;2\;3) \right> \leq A_4 \leq S_4$. Describe las clases laterales izquierdas de $\left< (1\;2\;3) \right>$ en $A_4$, las clases laterales izquierdas de $A_4$ en $S_4$, y las clases laterales izquierdas de $\left< (1\;2\;3) \right>$ en $S_4$. Encuentra $[S_4:\left< (1\;2\;3) \right>]$, $[S_4: A_4]$ y $[A_4: \left< (1\;2\;3) \right>]$.

Opcional

Puedes checar el video de Mathologer.

Más adelante…

Ahora conoces el índice de $H$ en $G$. Recúerdalo para la siguiente entrada, porque intentaremos describir el orden de $G$ en términos del orden de $H$ y del índice. Sin hacer trampa, ¿cómo crees que se puede relacionar el orden de $G$ y el índice?

Entradas relacionadas

Álgebra Moderna I: Producto de subconjuntos y Clases Laterales

Por Cecilia del Carmen Villatoro Ramos

Introducción

Antes de comenzar conviene que recordemos que estamos trabajando con grupos. Un conjunto con una operación da lugar a un grupo si cumple ciertas condiciones, entre ellas tener un neutro y ser cerrado bajo su operación. Ahora nos interesamos por los subconjuntos cualquiera del grupo, no necesariamente subgrupos. Esta entrada está dedicada al estudio del producto de dichos subconjuntos.

La primera parte comienza definiendo a nuestro producto y lo ilustramos con unos ejemplos. La segunda parte pretende responder a la pregunta ¿cuándo es el producto de dos subconjuntos un subgrupo? En la tercera parte, nos imaginamos un caso particular, ¿qué pasa cuando uno de los subconjuntos elegidos es unitario? Es decir, estamos multiplicando un subgrupo de $G$ por un solo elemento de $G$.

Producto de $S$ con $T$

Definición. Sea $G$ un grupo, $S,T$ subconjuntos no vacíos de $G$. El producto de $S$ con $T$ es el conjunto

$$ST = \{st|s\in S, t\in T\}.$$

El orden de los elementos de $ST$ es importante, recordemos que $G$ no es necesariamente abeliano. Más adelante analizaremos más al respecto.

Nota: Cuando escribimos $st$ nos referimos a la operación que pertenece al grupo $(G, \cdot)$. Por ejemplo, si tomamos a $\z$, la operación sería la suma $+$ usual.

Tomamos dos subgrupos $S$ y $T$ de $G$. Si multiplicamos sus elementos, el resultado queda en $G$

Ejemplos.

  1. Tomemos las permutaciones de $S_3 = \{(1), (1\;2), (1 \;3), (2 \; 3), (1 \; 2 \; 3), (1\;3\;2)\}$. Consideramos a $S$ como $S=\{(1\;2)\}$ y a $T$ como $T=\{(1\;2\;3), (1\;3\;2)\}$. Entonces, su producto queda
    \begin{align*}
    ST &= \{(1\;2) (1\;2\;3), (1\;2)(1\;3\;2)\}\\
    &= \{(2\;3), (1\;3)\}.
    \end{align*}
  2. Si consideramos $(\z, +)$, podemos tomar a $S$ y a $T$ como
    \begin{align*}
    S &= 2\z = \{2n|n\in \z\},\\
    T &= 3\z = \{3m|m\in\z\}.
    \end{align*}
    En este caso, el producto se denota como $S+T$ y este conjunto es
    \begin{align*}
    S+T = 2\z + 3\z = \{2n+3m|n,m\in\z\} = \z.
    \end{align*}
    Donde la última igualdad se da porque $(2,3) = 1$ (es decir, $2$ y $3$ son primos relativos).

¿Cuándo es el producto un subgrupo de $G$?

Vamos a ver qué pasa ahora a la hora de multiplicar subgrupos. Durante la demostración del siguiente teorema, observaremos que en general, el producto no es un subgrupo debido a un detalle de la conmutatividad de los elementos.

Teorema. Sea $G$ un grupo, $H$, $K$ subgrupos de $G$. Entonces,
\begin{align*}
HK \leq G \; \text{ si y sólo si } \; HK = KH.
\end{align*}

Demostración.
Sea $G$ un grupo, $H,K$ subgrupos de $G$.

$|\Rightarrow)$ Supongamos que $HK \leq G$.
P.D. $KH=HK$

Procedemos por doble contención.
$\subseteq]$
Sea $x\in KH$, entonces existen $k \in K$ y $h \in H$ tales que $x = kh$.

Como $HK$ es subgrupo de $G$, entonces $h^{-1}k^{-1} \in HK$, así
\begin{align*}
x^{-1} = (kh)^{-1} = h^{-1}k^{-1} \in HK.
\end{align*}

Entonces, $x^{-1} \in HK$, y como $HK$ es subgrupo, $x \in HK$. Por lo tanto $KH \subseteq HK$.

$\supseteq]$
Sea $x \in HK$.

Observación: Si intentamos hacer lo mismo de antes, tomaríamos $h \in H$ y $k \in K$ tales que $x = hk$, así $x^{-1} = k^{-1}h^{-1}$ ya que en el inverso se invierte el orden, es decir $x^{-1} \in KH$. Pero como no sabemos nada de $KH$, nos atoramos aquí. Por lo tanto, tomaremos un camino un tanto diferente.

Sabemos que $HK\leq G$, entonces sabemos que $x^{-1} \in HK$. Entonces existen $h \in H$ y $k\in K$ tales que $x^{-1}=hk$. Así,

\begin{align*}
&x = (x^{-1})^{-1} = (hk)^{-1} = k^{-1}h^{-1} \in KH
\end{align*}
Por lo tanto $HK \subseteq KH$.

Así, $HK = KH$.

$\Leftarrow|)$ Supongamos que $HK = KH$.
P.D. $HK \leq G$.

Observemos primero que $e = ee \in HK$.

Ahora consideremos $x,y \in HK$, entonces
\begin{align*}
x = hk && h, \overline{h} \in H \\
y = \bar{h} \bar{k} && k,\overline{k} \in K.
\end{align*}

Entonces
\begin{align*}
xy^{-1} = (hk)(\bar{h} \bar{k})^{-1} &= (hk)(\bar{k}^{-1} \bar{h}^{-1})\\
&= h \left( (k\bar{k}^{-1})\bar{h}^{-1} \right).
\end{align*}

Pero
\begin{align*}
&(k\bar{k}^{-1}) \bar{h}^{-1} \in KH = HK &\text{Por la hipótesis} \\
\Rightarrow &\,(k \bar{k}^{-1})\bar{h}^{-1} =\hat{h}\hat{k} & \text{ con } \hat{h}\in H,\hat{k}\in K.
\end{align*}

Sustituyendo los valores $$xy^{-1} = h(\hat{h}\hat{k}) = (h\hat{h})\hat{k} \in HK.$$

Por lo tanto $HK \leq G$.

$\blacksquare$

Del teorema anterior se sigue este corolario:

Corolario. Sea $G$ un grupo abeliano, $H,K$ subgrupos de $G$. Tenemos que $HK$ es un subgrupo de $G$.

Clases Laterales

Ahora, tomemos $T = \{a\}$ con $a \in G$. De esta manera $TH = \{a\}H$, pero para simplificar la notación, usaremos $\{a\}H = aH$. A este caso específico, lo llamaremos clase lateral. A continuación lo definiremos de una manera más formal.

Definición. Sean $G$ un grupo, $H$ un subgrupo de $G$, $a\in G$.
La clase lateral izquierda de $H$ en $G$ con representante $a$ es
$$ aH = \{ah | h\in H\}. $$
La clase lateral derecha de $H$ en $G$ con representante $a$ es
$$Ha = \{ha|h\in H\}.$$

Ambas clases son análogas, aunque como veremos más adelante no necesariamente iguales, y para fines prácticos trabajaremos sólo con una, pero es importante definir ambas.

Ejemplos.

  1. Sean $G = S_n\, ,$ $H =A_n\, ,$ con $n\geq 2$.
    \begin{align*}
    (1\;2)\;A_n &= \{ (1\;2)\alpha \,|\, \alpha\in A_n\} \\
    & = \{\beta \in S_n \,| \, sgn\,\beta = -1\}.
    \end{align*}
  2. Sea $G=\r^2$ con la suma usual,
    \begin{align*}
    H &= \{(x,x) \,|\, x\in\r\}\\
    &\text{y }(a,b) \in\r^2 \\
    \text{Entonces, } \\
    (a,b) + H &= \{(a,b) +(x,x) \,|\, x\in \r\},
    \end{align*} que geométricamente es la diagonal trasladada por el vector $(a,b).$
Representación de $(a,b) + H$.

Tarea moral

  1. Prueba o da un contraejemplo: Si $G$ es un grupo y $S$ y $T$ son subconjuntos de $G$ tales que $ST$ es un subgrupo de $G$, entonces $S$ y $T$ son subgrupos de $G$.
  2. Sea $D_{2(6)} = \{\text{id}, a, \dots, a^5, b, ab, \dots, a^5b \}$ el grupo diédrico formado por las simetrías de un hexágono, con $a$ la rotación de $\frac{\pi}{3}$ y $b$ la reflexión con respecto al eje $x$. Calcula las clases laterales izquierdas y derechas de $\left< a \right>$ en $D_{2(6)}$.
  3. En cada inciso calcula $HK$ y determina si es un subgrupo de $S_4$.
    1. $H = \{(1), (1\;2)\}$ y $K = \{(1), (1\;3)\}$.
    2. $H = \{(1), (1\;2)\}$ y $K = \{(1), (3\;4)\}$.

Más adelante…

En la siguiente entrada definiremos una relación de equivalencia y, al tratar de describir las clases de equivalencias inducidas, podremos relacionar las clases laterales con los elementos de $H$. Además, continuaremos respondiendo a las preguntas: ¿qué relación existe entre el número de elementos de las clases laterales derechas e izquierdas? y ¿qué es el índice de $H$ en $G$?

Entradas relacionadas