Archivo del Autor: Julio Sampietro

Álgebra Lineal II: Polinomio mínimo de transformaciones lineales y matrices

Por Julio Sampietro

Introducción

Anteriormente definimos qué quiere decir evaluar un polinomio en una matriz o en una transformación lineal. En esta entrada definiremos uno de los objetos más importantes del álgebra lineal: el polinomio mínimo. Si bien al principio nos va a costar un poco calcularlo, esto se compensa por la cantidad de propiedades teóricas que cumple. Comenzaremos dando su definición, y mostrando su existencia y unicidad. Luego exploraremos algunas propiedades y veremos ejemplos, seguido de un pequeño teorema de cambio de campos. Finalmente introduciremos un objeto similar (el polinomio mínimo puntual) y haremos unos ejercicios para cerrar.

El concepto de polinomio mínimo podría resultarle familiar a los más algebraicos de mente: ¡todo se debe a que trabajamos con dominios de ideales principales, o incluso euclidianos! Si has trabajado anteriormente con conceptos como el mínimo común múltiplo en enteros, puede que varios de los argumentos de esta entrada te suenen conocidos.

Existencia y unicidad

Comenzamos con un espacio vectorial $V$ de dimensión $n$ sobre un campo $F$. Fijando una transformación lineal $T:V\to V$, queremos entender para qué polinomios se cumple que $P(T)=0$. Nota como podríamos haber cambiado la pregunta: si fijamos un polinomio $P$, podríamos buscar todas las transformaciones $T$ tales que $P(T)=0$. Ésta pregunta la estudiaremos más adelante.

Definimos el conjunto

\begin{align*}
I(T)=\lbrace P\in F[X]\mid P(T)=0\rbrace.
\end{align*}

El polinomio cero pertenece a $I(T)$ de manera trivial. Una cosa importante es que este conjunto $I(T)$ que vamos a estudiar en verdad es «interesante», en el sentido de que debemos ver que hay más polinomios adentro y no es únicamente el conjunto $\lbrace 0\rbrace$. Una manera de ver esto es sabiendo que el espacio de transformaciones lineales de $V$ en $V$ tiene dimensión $n^2$ (lo puedes pensar como el espacio de matrices). Entonces, las $n^2+1$ transformaciones $\operatorname{Id}, T, T^2, \dots, T^{n^2}$ no pueden ser todas linealmente independientes: uno de los corolarios del lema de Steinitz es que en un espacio de dimensión $n$ a lo más se pueden tener $n$ vectores linealmente independientes. Entonces existe una combinación lineal no trivial y nula

\begin{align*}
a_0 \operatorname{Id}+a_1 T+\dots + a_{n^2} T^{n^2}=0.
\end{align*}

Luego $a_0+a_1X+\dots+a_{n^2}X^{n^2}$ es un polinomio no cero tal que $P(T)=0$, es decir $P\in I(T)$.

Con el argumento de arriba vimos que $I(T)$ es «interesante» en el sentido de que tiene polinomios no cero. El siguiente teorema se puede entender como que $I(T)$ se puede describir muy fácilmente.

Teorema. Existe un único polinomio mónico, distinto de cero $\mu_T$ tal que $I(T)$ es precisamente el conjunto de múltiplos de $\mu_T$. Es decir

\begin{align*}
I(T)=\mu_T \cdot F[X]=\lbrace \mu_T \cdot P(X)\mid P(X)\in F[X]\rbrace.
\end{align*}

La demostración hará uso del algoritmo de la división para polinomios. Te lo compartimos aquí, sin demostración, por si no lo conoces o no lo recuerdas.

Teorema (algoritmo de la división en $\mathbb{F}[x]$). Sean $M(x)$ y $N(x)$ polinomios en $F[x]$, donde $N(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $Q(x)$ y $R(x)$ en $F[x]$ tales que $$M(x)=Q(x)N(x)+R(x),$$ en donde $R(x)$ es el polinomio cero, o $\deg(R(x))<\deg(G(x))$.

Si te interesa saber cómo se demuestra, puedes seguir la teoría de polinomios disponible en la Unidad 4 del curso de Álgebra Superior II.

Demostración. Veamos primero que $I(T)$ es un subespacio de $F[X]$. Para ello, tomemos polinomios $P(x)$, $Q(x)$ en $I(T)$, y un escalar $\alpha\in F$. Una de las proposiciones de la entrada pasada nos permite abrir la expresión $(P+\alpha Q)(T)$ como $P(T)+\alpha Q(T)=0+\alpha\cdot 0 = 0$, de modo que $P+\alpha Q$ está en $I(T)$ y por lo tanto $I(T)$ es un subespacio de $F[X]$.

Por otro lado si $P\in I(T)$ y $Q\in F[X]$ entonces

\begin{align*}
(PQ)(T)= P(T)\circ Q(T)=0\circ Q(T)=0.
\end{align*}

Lo que discutimos antes de enunciar el teorema nos dice que $I(T)\neq\{0\}$. Tomemos entonces $P\in I(T)$ un polinomio no cero de grado mínimo. Podemos suponer sin perdida de generalidad que $P$ es mónico, de no serlo, podemos dividir a $P$ por su coeficiente principal sin cambiar el grado.

La ecuación previa nos indica que todos los múltiplos polinomiales de $P$ también están en $I(T)$. Veamos que todo elemento de $I(T)$ es de hecho un múltiplo de $P$. Si $S\in I(T)$, usamos el algoritmo de la división polinomial para escribir $S=QP+R$ con $Q,R\in F[X]$. Aquí hay dos casos: que $R$ sea el polinomio cero, o bien que no lo sea y entonces $\deg R <\deg P$. Nota que $R=S-QP\in I(T)$ dado que $I(T)$ es un subespacio de $F[X]$ y $S,QP\in I(T)$. Si $R\neq 0$, entonces como $\deg R<\deg P$ llegamos a una contradicción de la minimalidad del grado de $P$. Luego $R=0$ y por tanto $S=QP$. Entonces $I(T)$ es precisamente el conjunto de todos los múltiplos de $P$ y así podemos tomar $\mu_T=P$.

Para verificar la unicidad de $\mu_T$, si otro polinomio $S$ tuviera las mismas propiedades, entonces $S$ dividiría a $\mu_T$ y $\mu_T$ dividiría a $S$. Sin embargo, como ambos son mónicos se sigue que deben ser iguales: en efecto, si $\mu_T=S\cdot Q$ y $S=\mu_T \cdot R$ entonces $\deg Q=\deg R=0$, porlo tanto son constantes, y como el coeficiente principal de ambos es $1$, se sigue que ambos son la constante $1$ y así $\mu_T=S$. Esto completa la demostración.

$\square$

Definición. Al polinomio $\mu_T$ se le conoce como el polinomio mínimo de $T$.

Primeras propiedades y ejemplos

Debido a su importancia, recalcamos las propiedades esenciales del polinomio mínimo $\mu_T$:

  • Es mónico.
  • Cumple $\mu_T(T)=0$.
  • Para cualquier otro polinomio $P\in F[X]$, sucede que $P(T)=0$ si y sólo si $\mu_T$ divide a $P$.

Toda la teoría que hemos trabajado hasta ahora se traduce directamente a matrices usando exactamente los mismos argumentos. Lo enunciamos de todas maneras: si $A\in M_n(F)$ es una matriz cuadrada, entonces existe un único polinomio $\mu_A\in F[X]$ con las siguientes propiedades:

  • Es mónico.
  • Cumple $\mu_A(A)=O_n$.
  • Si $P\in F[X]$, entonces $P(A)=O_n$ si y sólo si $\mu_A$ divide a $P$.

Como jerga, a veces diremos que un polinomio «anula $T$» si $P(T)=0$. En este sentido los polinomios que anulan a $T$ son precisamente los múltiplos de $\mu_T$.

Vimos antes de enunciar el teorema que podemos encontrar un polinomio $P$ no cero de grado menor o igual a $n^2$ tal que $P(T)=0$. Como $\mu_T$ divide a $P$ se sigue que $\deg \mu_T\leq n^2$. Esta cota resulta ser débil, y de hecho un objeto que hemos estudiado previamente nos ayudará a mejorarla: el polinomio característico. Este también va a anular a $T$ y con ello obtendremos una mejor cota: $\deg \mu_T\leq n$.

Ejemplo 1. Si $A=O_n$, entonces $\mu_A=X$. En efecto, $\mu_A(A)=0$ y además es el polinomio de menor grado que cumple esto, pues ningún polinomio constante y no cero anula a $O_n$ (¿por qué?). Nota como además $I(A)$ es precisamente el conjunto de polinomios sin término constante.

$\triangle$

Ejemplo 2. Considera la matriz $A\in M_2(\mathbb{R})$ dada por

\begin{align*}
A= \begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Nos proponemos calcular $\mu_A$. Nota que $A$ satisface $A^2=-I_2$. Por tanto el polinomio $P(X)=X^2+1$ cumple $P(A)=0$. Así, $\mu_A$ tiene que dividir a este polinomio ¡pero este es irreducible sobre los números reales! En efecto, si existiese un factor propio de $P$ sobre $\mathbb{R}$, tendríamos que la ecuación $X^2=-1$ tiene solución, y sabemos que este no es el caso. Entonces $\mu_A$ tiene que ser $X^2+1$.

$\triangle$

Ejemplo 3. Sean $d_1,\dots, d_n\in F$ escalares y $A$ una matriz diagonal tal que $[a_{ii}]=d_i$. Los elementos pueden no ser distintos entre sí, así que escogemos una colección máxima $d_{i_1},\dots, d_{i_k}$ de elementos distintos. Para cualquier polinomio $P$, tenemos que $P(A)$ es simplemente la matriz diagonal con entradas $P(d_i)$ (esto porque el producto $A^n$ tiene como entradas a $d_i^n$). Entonces para que $P(A)=0$ se tiene que cumplir que $P(d_i)=0$, y para que esto pase es suficiente que $P(d_{i_k})=0$. Eso quiere decir que $P$ tiene al menos a los $d_{i_k}$ como raíces, y entonces $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ divide a $P$.

Nota como esto es suficiente: encontramos un polinomio mónico, $(X-d_{i_1})(X-d_{i_2})\cdots (X-d_{i_k})$ que divide a cualquier $P$ tal que $P(A)=0$. Así

\begin{align*}
\mu_A(X)=(X-d_{i_1})\cdots (X-d_{i_k}).
\end{align*}

$\triangle$

Cambio de campos

En uno de los ejemplos argumentamos que el polinomio mínimo era $X^2+1$ porque este es irreducible sobre $\mathbb{R}$. Pero, ¿qué pasaría si cambiáramos nuestro campo a $\mathbb{C}$? La situación puede ser incluso más delicada: a una matriz con entradas racionales la podemos considerar como una instancia particular de una matriz con entradas reales, que a su vez podemos considerar como una matriz compleja. ¿Hay tres polinomios mínimos distintos? El siguiente teorema nos da una respuesta tranquilizante.

Teorema. Sean $F_1\subset F_2$ dos campos y $A\in M_n(F_1)$ una matriz, entonces el polinomio mínimo de $A$ vista como elemento de $M_n(F_1)$ y el polinomio mínimo de $A$ vista como elemento de $M_n(F_2)$ son iguales.

Demostración. Sea $\mu_1$ el polinomio de $A\in M_n(F_1)$ y $\mu_2$ el polinomio mínimo de $A\in M_n(F_2)$. Puesto que $F_1[X]\subset F_2[X]$, se tiene que $\mu_1\in F_2[X]$ y además $\mu_1(A)=0$ por definición. Luego $\mu_2$ necesariamente divide a $\mu_1$. Sean $d_1=\deg \mu_1$ y $d_2=\deg \mu_2$, basta verificar que $d_2\geq d_1$ y para que esto se cumpla basta con encontrar $P\in F_1[X]$ de grado a lo más $d_2$ tal que $P(A)=0$ (entonces $\mu_1$ dividiría a este polinomio y se sigue la desigualdad).

Desarrollando que $\mu_2(A)=0$ en todas sus letras (o mejor dicho, en todos sus coeficientes) se tiene

\begin{align*}
a_0 I_n+ a_1 A+\dots + a_{d_2} A^{d_2}=O_n.
\end{align*}

Esto es equivalente a tener $n^2$ ecuaciones homogéneas en las variables $a_0,\dots, a_{d_2}$. Como $A$ tiene entradas en $F_1$ los coeficientes de estas ecuaciones todos pertenecen a $F_1$. Tenemos un sistema de ecuaciones con coeficientes en $F_1$ que tiene una solución no trivial en $F_2$: tiene automáticamente una solución no trivial en $F_1$ por un ejercicio de la entrada de Álgebra Lineal I de resolver sistemas de ecuaciones usando determinantes. Esto nos da el polinomio buscado.

$\square$

Mínimos puntuales

Ahora hablaremos (principalmente a través de problemas resueltos) de otro objeto muy parecido al polinomio mínimo: el polinomio mínimo puntual. Este es, esencialmente un «polinomio mínimo en un punto». Más específicamente si $T:V\to V$ es lineal con polinomio mínimo $\mu_T$ y $x\in V$ definimos

\begin{align*}
I_x=\lbrace P\in F[X]\mid P(T)(x)=0\rbrace.
\end{align*}

Nota que la suma y diferencia de dos elementos en $I_x$ también está en $I_x$.

Problema 1. Demuestra que existe un único polinomio mónico $\mu_x\in F[X]$ tal que $I_x$ es el conjunto de múltiplos de $\mu_x$ en $F[X]$. Más aún, demuestra que $\mu_x$ divide a $\mu_T$.

Solución. El caso $x=0$ se queda como ejercicio. Asumamos entonces que $x\neq 0$. Nota que $\mu_T\in I_x$ puesto que $\mu_T(T)=0$. Sea $\mu_x$ el polinomio mónico de menor grado en $I_x$. Demostraremos que $I_x=\mu_x\cdot F[X]$.

Primero si $P\in \mu_x \cdot F[X]$ entonces por definición $P=\mu_x Q$ para algún $Q\in F[X]$ y entonces

\begin{align*}
P(T)(x)=Q(T)(\mu_x(T)(x))=Q(T)(0)=0.
\end{align*}

Así $P\in I_x$, y queda demostrado que $\mu_x \cdot F[X]\subset I_x$.

Conversamente, si $P\in I_x$ podemos usar el algoritmo de la división para llegar a una expresión de la forma $P=Q\mu_x+R$ para algunos polinomios $Q,R$ con $\deg R<\deg \mu_x$. Supongamos que $R\neq 0$. Similarmente a como procedimos antes, se cumple que $R= P-Q\mu_x\in I_x$ dado que $I_x$ es cerrado bajo sumas y diferencias. Dividiendo por el coeficiente principal de $R$, podemos asumir que $R$ es mónico. Entonces $R$ es un polinomio mónico de grado estrictamente menor que el grado de $\mu_x$, una contradicción a nuestra suposición: $\mu_x$ es el polinomio de grado menor con esta propiedad. Luego $R=0$ y $\mu_x$ divide a $P$.

Así queda probado que si $P\in I_x$ entonces $P\in \mu_x\cdot F[X]$, lo que concluye la primera parte del problema. Para la segunda, vimos que $\mu_T\in I_x$ y por tanto $\mu_x$ divide a $\mu_T$.

$\square$

Problema 2. Sea $V_x$ el subespacio generado por $x, T(x), T^2(x), \dots$. Demuestra que $V_x$ es un subespacio de $V$ de dimensión $\deg \mu_x$, estable bajo $T$.

Solución. Es claro que $V_x$ es un subespacio de $V$. Además, dado que $T$ manda a generadores en generadores, también es estable bajo $T$. Sea $d=\deg\mu_x$. Demostraremos que $x, T(x),\dots, T^{d-1}(x)$ forman una base de $V_x$, lo que concluiría el ejercicio.

Veamos que son linealmente independientes. Si $$a_0x+a_1T(x)+a_2T^2(x)+\dots+a_{d-1}T^{d-1}(x)=0$$ para algunos escalares $a_i$ no todos cero, entonces el polinomio

\begin{align*}
P=a_0+a_1X+\dots+a_{d-1}X^{d-1}
\end{align*}

es un elemento de $I_x$, pues $P(T)(x)=0$. Luego $\mu_x$ necesariamente divide a $P$, pero esto es imposible puesto que el grado de $P$ es $d-1$, estrictamente menor que el grado de $\mu_x$. Luego los $a_i$ deben ser todos nulos, lo que muestra que $x,T(x),T^2(x),\dots,T^{d-1}(x)$ es una colección linealmente independiente.

Sea $W$ el espacio generado por $x,T(x),\dots, T^{d-1}(x)$. Afirmamos que $W$ es invariante bajo $T$. Es claro que $T(x)\in W$, similarmente $T(T(x))=T^2(x)\in W$ y así sucesivamente. El único elemento «sospechoso» es $T^{d-1}(x)$, para el cual basta verificar que $T(T^{d-1}(x))=T^d(x)\in W$. Dado que $\mu_x(T)(x)=0$ y $\mu_x$ es mónico de grado $d$, existen escalares $b_i$ (más precisamente, los coeficientes de $\mu_x$) no todos cero tales que

\begin{align*}
T^{d}(x)+b_{d-1}T^{d-1}(x)+\dots+b_0 x=0.
\end{align*}

Esto nos muestra que podemos expresar a $T^d(x)$ en términos de $x, T(x),\dots, T^{d-1}(x)$ y por tanto $T^d(x)$ pertenece a $W$.

Ahora, dado que $W$ es estable bajo $T$ y contiene a $x$, se cumple que $T^{k}(x)\in W$ para todo $k\geq 0$. En particular $V_x\leq W$. Luego $V_x=W$ (la otra contención es clara) y $x,T(x),\dots, T^{d-1}(x)$ genera a $W$, o sea a $V_x$.

Mostramos entonces que $x,T(x),\dots, T^{d-1}(x)$ es una base para $V_x$ y así $\dim V_x=d$.

$\square$

Unos ejercicios para terminar

Presentamos unos últimos ejercicios para calcular polinomios mínimos.

Problema 1. Calcula el polinomio mínimo de $A$ donde

\begin{align*}
A= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}.
\end{align*}

Solución. A estas alturas no tenemos muchas herramientas que usar. Comenzamos con calcular $A^2$:

\begin{align*}
A^2= \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}= \begin{pmatrix} 1 & 0 & 0\\ 0 &1 & 0 \\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Entonces en particular $A^2=I_3$. Así, el polinomio mínimo $\mu_A$ tiene que dividir a $X^2-1$. Este último se factoriza como $(X-1)(X+1)$, pero es claro que $A$ no satisface ni $A-I_3=0$ ni $A+I_3=0$. Entonces $\mu_A$ no puede dividir propiamente a $X^2-1$, y por tanto tienen que ser iguales.

$\triangle$

Problema 2. Calcula el polinomio mínimo de la matriz $A$ con

\begin{align*}
A=\begin{pmatrix}
1 & 2\\
0 & 1
\end{pmatrix}.
\end{align*}

Solución. Nota como

\begin{align*}
A-I_2=\begin{pmatrix} 0 & 2\\ 0 & 0\end{pmatrix}
\end{align*}

y es fácil verificar que el cuadrado de la matriz de la derecha es cero. Así $(A-I_2)^2=0$, o sea, el polinomio $P(X)=(X-1)^2$ anula a $A$. Similarmente al problema anterior, $\mu_A$ tiene que dividir a $P$, pero $P$ sólo tiene un factor: $X-1$. Dado que $A$ no satisface $A-I_2=0$ se tiene que $\mu_A$ no puede dividir propiamente a $P$, y entonces tienen que ser iguales. Luego $\mu_A=(X-1)^2=X^2-2X+1$.

$\triangle$

Más adelante…

En las entradas subsecuentes repasaremos los eigenvalores y eigenvectores de una matriz, y (como mencionamos) ligaremos el polinomio característico de una matriz con su polinomio mínimo para entender mejor a ambos.

Tarea moral

Aquí unos ejercicios para practicar lo que vimos.

  1. Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n$?
  2. Encuentra una matriz $A$ cuyo polinomio mínimo sea $X^2-1$. Para cada $n$, ¿puedes encontrar una matriz cuyo polinomio mínimo sea $X^n-1$?
  3. Encuentra el polinomio de la matriz $A$ en $M_n(F)$ cuyas entradas son todas $1$.
  4. Si $T:M_n(\mathbb{R})\to M_n(\mathbb{R})$ es la transformación que manda a cada matriz en su transpuesta, encuentra el polinomio mínimo de $T$.
  5. Sea $V$ un espacio vectorial y $x,y$ vectores linealmente independientes. Sea $T:V\to V$ una transformación lineal. ¿Cómo son los polinomios $P$ tales que $P(T)$ se anula en todo el subespacio generado por $x$ y $y$? ¿Cómo se relacionan con los polinomios mínimos puntuales de $T$ para $x$ y $y$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Aplicar polinomios a transformaciones lineales y matrices

Por Julio Sampietro

Introducción

Varios de los resultados fundamentales de Álgebra Lineal se obtienen al combinar las idea de transformaciones lineales con la de polinomios. El objetivo de esta entrada es introducir el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad. Si bien esta idea es simple, más adelante veremos aplicaciones importantes y con un gran alcance. Uno de los resultados cruciales que surge de esta idea es el conocido teorema de Cayley-Hamilton.

Primeras construcciones

Sea $V$ un espacio vectorial sobre un campo $F$, y sea $T:V\to V$ una transformación lineal. Definimos a la transformación $T^n:V\to V$ para cualquier $n\in \mathbb{N}$ inductivamente a través de

\begin{align*}
T^0=\operatorname{Id}, \hspace{5mm} T^{i+1}= T\circ T^{i},
\end{align*}

donde, recordamos, $\operatorname{Id}$ es la transformación identidad. Intuitivamente, $T^n$ es la «$n$-ésima composición» de $T$. Por ejemplo, $T^3(v)$ no es más que $T(T(T(v)))$ y $T^0(v)$ es simplemente «no usar $T$ para nada», es decir, $\operatorname{Id}(v)=v$. Al componer iteradamente $T$, sigue siendo una transformación lineal de $V$ a $V$, así que $T^n$ es transformación lineal de $V$ a $V$ para todo entero $n\geq 0$.

Ya que hablamos de «potencias» de una transformación lineal, podemos rápidamente hacer sentido de un «polinomio evaluado en una transformación lineal». Si $$P(X)=a_0+a_1X+a_2X^2+\dots + a_n X^n\in F[X]$$ es un polinomio, definimos $P(T):V\to V$ como

\begin{align*}
P(T):= a_0 T^{0}+ a_1 T^1+ a_2 T^2+\dots +a_n T^n.
\end{align*}

Como las transformaciones lineales de $V$ a $V$ son cerradas bajo combinaciones lineales, entonces $P(T)$ también es una transformación lineal de $V$ a $V$.

Ejemplo. Tomemos a la transformación $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=(2x-2y,x+y)$. Tomemos al polinomio $P(x)=x^3-2x+4$. ¿Quién es la transformación $P(T)$? Calculemos primero las «potencias» de $T$:

\begin{align*}
T^0(x,y)&=(x,y)\\
T^1(x,y)&=T(x,y)\\
&=(2x-2y,x+y)\\
T^2(x,y)&=T(T(x,y))\\
&=T(2x-2y,x+y)\\
&=(2(2x-2y)-2(x+y),(2x-2y)+(x+y))\\
&=(2x-6y,3x-y)\\
T^3(x,y)&=T(2x-6y,3x-y)\\
&=(-2x-10y,5x-7y).
\end{align*}

Ahora sí, ya podemos saber qué hace $P(T)$. Tenemos:

\begin{align*}
P(T)(x,y)&=(T^3-2T+4\text{Id})(x,y)\\
&=(-2x-10y,5x-7y)-2(2x-2y,x+y)+4(x,y)\\
&=(-2x-6y,3x-5y).
\end{align*}

$\triangle$

Sumas y productos de polinomios

Las operaciones suma y producto de polinomios se traducen, respectivamente, a suma y composición de las evaluaciones en transformaciones lineales. Esta es una linda propiedad que podemos hacer precisa gracias a la siguiente proposición.

Proposición. Si $P_1, P_2\in F[X]$ son dos polinomios y $T:V\to V$ es una transformación lineal, entonces

  1. $ (P_1+P_2)(T)=P_1(T)+P_2(T)$,
  2. $(P_1P_2)(T)=P_1(T)\circ P_2(T)$.

Te invitamos a demostrar esta proposición. Advertimos que, sin embargo, no se cumplen identidades como $$P(T_1+T_2)=P(T_1)+P(T_2)$$ o bien $$P(T_1\circ T_2)=P(T_1)\circ P(T_2).$$ Un contraejemplo para la primera identidad podría ser tomar$P(X)=X^2$ y $T_1=T_2=\operatorname{Id}$. En este caso

\begin{align*}
P(T_1+T_2)&=(T_1+T_2)^2\\&= 4\operatorname{Id}\\&\neq 2\operatorname{Id}\\&=P(T_1)+P(T_2).
\end{align*}

Dejamos como ejercicio el verificar que la segunda identidad tampoco es cierta en general. Fijando $T$, podemos juntar a todas las transformaciones de la forma $P(T)$ para algún $P$ en la siguiente estructura.

Definición. La $F$-álgebra generada por la transformación $T$ es el conjunto

\begin{align*}
F[T]=\lbrace P(T)\mid P\in F[X]\rbrace.
\end{align*}

Una consecuencia de la proposición anterior (es más, ¡una mera traducción!) es la siguiente.

Proposición. Para cualesquiera $x,y\in F[T]$ y $c\in F$ se cumple que $x+cy\in F[T]$ y $x\circ y\in F[T].$ Es decir, $F[T]$ es un subespacio del espacio de todas las transformaciones lineales de $V$ en $V$ que además es estable bajo composición.

También puedes verificar que $F[T]$ es el subespacio más chico (en el sentido de contención) del espacio de transformaciones lineales en $V$ que contiene a $T$, a $\operatorname{Id}$ y que es cerrado bajo composiciones.

Lo mismo pero con matrices

Desde Álgebra Lineal I sabemos que una transformación lineal se corresponde de manera biunívoca (fijando una base) con una matriz. Nuestra discusión previa se puede adaptar a este vocabulario, y eso es lo que haremos ahora.

Si $A\in M_n(F)$ es una matriz cuadrada de orden $n$ con coeficientes en $F$, podemos entender a $A^n$ simplemente como el $n$-ésimo producto de $A$ consigo misma. Luego si $$P(X)=a_0+a_1X+a_2 X^2+\dots +a_n X^n\in F[X]$$ es un polinomio, definimos

\begin{align*}
P(A):= a_0 I_n +a_1 A+ a_2 A^2+\dots+ a_n A^n.
\end{align*}

Se cumple que $(PQ)(A)=P(A)\cdot Q(A)$ para cualesquiera polinomios $P,Q$ y cualquier matriz $A$. Similarmente el álgebra generada por $A$ se define como

\begin{align*}
F[A]=\lbrace P(A)\mid P\in F[X]\rbrace,
\end{align*}

y es un subespacio de $M_n(F)$ que es cerrado bajo producto de matrices.

Ejemplo. Consideremos la matriz $A=\begin{pmatrix}2&-2\\1&1\end{pmatrix}$. Consideremos el polinomio $P(x)=x^3-2x+4$. ¿Quién es la matriz $P(A)$? Usando la definición, primero nos enfocaremos en encontrar las potencias de $A$. Puedes verificar por tu cuenta que:

\begin{align*}
A^0&=\begin{pmatrix}1&0\\0&1\end{pmatrix}\\
A^1&=\begin{pmatrix}2&-2\\1&1\end{pmatrix}\\
A^2&=\begin{pmatrix}2&-6\\3&-1\end{pmatrix}\\
A^3&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix}
\end{align*}

De esta manera,

\begin{align*}
P(A)&=A^3-2A+4I_2\\
&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix} – 2 \begin{pmatrix}2&-2\\1&1\end{pmatrix} + 4 \begin{pmatrix}1&0\\0&1\end{pmatrix}\\
&=\begin{pmatrix}-2&-6 \\ 3 & -5 \end{pmatrix}.
\end{align*}

$\triangle$

Este ejemplo se parece mucho al ejemplo que hicimos cuando evaluamos un polinomio en una transformación $T$. Esto no es casualidad, y se puede resumir en la siguiente observación.

Observación. Si $A$ es la matriz asociada a $T$ en alguna base, entonces $P(A)$ es la matriz asociada a $P(T)$ en dicha base.

Unos problemas para calentar

A continuación veremos algunos unos cuantos problemas resueltos para que te familiarices con los conceptos que acabamos de ver de manera un poco más teórica.

Problema 1.

  1. Si $A,B\in M_n(F)$ son matrices con $B$ invertible, demuestra que para cualquier $P\in F[X]$ se cumple
    \begin{align*}
    P(BAB^{-1})=BP(A)B^{-1}.
    \end{align*}
  2. Demuestra que si $A,B\in M_n(F)$ son similares, entonces $P(A)$ y $P(B)$ son similares para cualquier $P\in F[X]$.

Solución.

  1. Primero supongamos que $P(X)=X^k$ para alguna $k\geq 1$. Necesitamos demostrar que $\left(BAB^{-1}\right)^{k}= BA^{k}B^{-1}$, y esto lo podemos verificar sencillamente pues
    \begin{align*}
    (BAB^{-1})\cdot (BAB^{-1})\cdots (BAB^{-1})&= BA(B^{-1} B) A \cdots (B^{-1}B)AB^{-1}\\
    &= BA^{k}B^{-1},
    \end{align*}
    donde usamos que $BB^{-1}=I_n$. Más generalmente, si $P(X)=a_0+a_1 X+a_2X^2+\dots +a_n X^n$ entonces
    \begin{align*}
    P(BAB^{-1})&= \sum_{i=0}^{n} a_i (BAB^{-1})^{i}\\
    &= \sum_{i=0}^{n}a_i BA^{i}B^{-1}\\
    &= B\left(\sum_{i=0}^{n} a_i A^{i}\right)B^{-1}\\
    &= BP(A)B^{-1}
    \end{align*}
    que es lo que queríamos demostrar.
  2. Como $A$ y $B$ son similares, existe $C$ invertible tal que $A=CBC^{-1}$. Por el inciso anterior tenemos
    \begin{align*}
    P(A)=P(CBC^{-1})=CP(B)C^{-1}.
    \end{align*}
    Así, $P(A)$ y $P(B)$ son similares.

$\square$

Problema 2. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix}
\end{align*}

así como el polinomio $P(X)=X^2+2X-1$. Calcula $P(A)$.

Solución. Es cuestión de hacer los cálculos. Vemos que

\begin{align*}
A^2= \begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix}
\end{align*}

y así

\begin{align*}
P(A)&=A^2+2A-I_3\\&=\begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix} + 2\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix}
-3 & 2 & -3\\
-4 & -3 & 20\\
0 & 0 & 23
\end{pmatrix}.
\end{align*}

$\triangle$

Problema 3. Si $A$ es simétrica, demuestra que $P(A)$ es simétrica para cualquier polinomio $P$.

Solución. La demostración se basa en los siguientes hechos:

  1. Si $A=(a_{ij})$ y $B=(b_{ij})$ son matrices simétricas y $c\in F$ es un escalar, entonces $A+cB$ es simétrica, puesto que
    \begin{align*}
    (A+cB)_{ij}= a_{ij}+cb_{ij}= a_{ji}+cb_{ji}= (A+cB)_{ji}.
    \end{align*}
  2. Si $A,B$ son simétricas, su producto es una matriz simétrica. De nuevo, basta con hacer el cálculo
    \begin{align*}
    (AB)_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj}=\sum_{k=1}^{n} b_{jk}a_{ki}= (AB)_{ji} .
    \end{align*}
  3. Usando el inciso anterior, se sigue que si $A$ es simétrica, entonces $A^{k}$ es simétrica para toda $k\geq 1$. Además, $I_n$ es simétrica y por el primer punto tenemos que toda combinación lineal de matrices simétricas es simétrica. En particular $P(A)$ es simétrica.

$\square$

Problema 4. Sea $V$ el espacio vectorial de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ infinitamente diferenciables. Sea $T:V\to V$ dada por $T:f\mapsto f’$. ¿Puedes encontrar un polinomio $P\in \mathbb{R}(X)$ distinto de cero tal que $P(T)=0$?

Solución. No es posible encontrar dicho polinomio. Suponiendo que sí, tendríamos que $P(T)$ es una ecuación diferencial polinomial de orden $n$, es decir, a cada función la evaluamos en una combinación

\begin{align*}
a_0f+a_1f’+a_2f»+\dots + a_n f^{n}
\end{align*}

donde $f^n$ es la $n$-ésima derivada. Si $P(T)$ es idénticamente cero, tenemos que toda función suave $f$ satisface esta ecuación. En particular tenemos que la constante $g(x)=1$ la satisface. Así $g’=g»=\dots=g^{n}=0$ y entonces

\begin{align*}
P(T)(g)= a_0 g+a_1g+\dots +a_ng^{n}=a_0=0.
\end{align*}

Concluimos que $a_0=0$. Luego, si consideramos a la función identidad $h(x)=x$ entonces también se tiene que cumplir la ecuación (recordamos que ya eliminamos el término $a_0$). Así

\begin{align*}
P(T)(h)= a_1h’+a_2h»+\dots +a_nh^{n}= a_1=0,
\end{align*}

donde usamos que $h'(x)=1$ y todas las derivadas de orden superior son cero. Continuando con este proceso (evaluando en $x^2,x^3,\ldots$) llegamos a que todos los coeficientes $a_i$ son cero. Esto quiere decir que el polinomio era nulo en primer lugar.

$\triangle$

Más adelante…

En entradas subsecuentes estudiaremos polinomios de matrices con propiedades especiales, como por ejemplo el polinomio mínimo, que se distinguen por sus deseables propiedades algebraicas. Este es el primer paso hacia el teorema de Cayley-Hamilton.

Tarea moral

Aquí hay unos ejercicios para que practiques lo visto en esta entrada.

  1. Compara el ejemplo que se dio de evaluar un polinomio en una transformación $T$ con el de evaluar un polinomio en una matriz $A$. ¿Por qué se parecen tanto?
  2. Considera $V$ el espacio vectorial de funciones $C^\infty$ en el intervalo $[0,2\pi]$ y $D:V\to V$ a la transformación que manda una función a su derivada, es decir $D(f)=f’$. Encuentra un polinomio $P$ tal que $P(D)(\sin(x)+\cos(x))$ sea la función cero.
  3. Demuestra que si $A$ es una matriz diagonal, $P(A)$ también es diagonal.
  4. Si
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2\\
    0 &-1\end{pmatrix}
    \end{align*}
    y $P(X)=X^3-X^2+X-1$, calcula $P(A)$.
  5. Generaliza el último problema de la entrada como sigue: Si $V$ es un espacio vectorial y $T:V\to V$ es tal que existen elementos $v_i$ con $i\in \mathbb{N}$ que cumplen $T^{i}(v_i)\neq 0$ y $T^{j}(v_i)=0$ para $j>i$, entonces no existe $P$ no nulo tal que $P(T)$ sea cero.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Combinaciones lineales

Por Julio Sampietro

Introducción

En esta entrada presentamos el concepto de combinaciones lineales en espacios vectoriales que será fundamental para nuestro estudio. De cierta manera (que se verá más claramente cuando hablemos de bases en espacios vectoriales arbitrarios) captura un aspecto de la base canónica de $F^n$: Todo vector lo podemos escribir como $x_1 e_1+\dots+x_n e_n$, lo que con nuestro lenguaje será una combinación lineal de los vectores $e_i$.

También hablamos del concepto de espacio generado. De manera intuitiva, el espacio generado por un conjunto de vectores es el mínimo subespacio que los tiene (y que a la vez tiene a todas las combinaciones lineales de ellos). Geométricamente, los espacios generados describen muchos de los objetos conocidos como rectas y planos. De manera algebraica, este concepto nos servirá mucho en lo que sigue del curso.

Definición de combinaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$, y sean $v_1, \dots, v_n$ vectores en $V$. Por definición, $V$ contiene a todos los vectores de la forma $c_1 v_1+\dots +c_n v_n$ con $c_1, \dots, c_n \in F$. La colección de los vectores de este estilo es importante y le damos una definición formal:

Definición. Sean $v_1, \dots, v_n$ vectores en un espacio vectorial $V$ sobre $F$.

  1. Un vector $v$ es una combinación lineal de los vectores $v_1, \dots, v_n$ si existen escalares $c_1,\dots, c_n\in F$ tales que
    \begin{align*}
    v= c_1 v_1 +c_2 v_2+\dots +c_n v_n.
    \end{align*}
  2. El espacio generado (que a veces abreviaremos como el generado) por $v_1, \dots, v_n$ es el subconjunto de $V$ de todas las combinaciones lineales de $v_1,\dots, v_n$, y lo denotamos por $\text{span}(v_1, \dots, v_n)$.

Ejemplo.

  1. La matriz $A=\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ es una combinación lineal de las matrices $B= \begin{pmatrix} 10 & 0 \\ 5 & 0\end{pmatrix}$ y $C=\begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2}\end{pmatrix}$ pues $A=\frac{1}{5} B + 2 C$. Así, $A$ está en el generado por $B$ y $C$.
  2. El generado $\text{span}(v)$ de un único vector en $\mathbb{R}^n$ consta de puras copias re-escaladas de $v$ (también nos referimos a estos vectores como múltiplos escalares de $v$). Usando la interpretación geométrica de vectores en $\mathbb{R}^2$ o $\mathbb{R}^3$, si $v\neq 0$ entonces $\text{span}(v)$ representa una recta por el origen en la dirección de $v$.
  3. Si $e_1=(1,0,0)$ y $e_2=(0,1,0)$, entonces
    \begin{align*}
    x e_1+ y e_2=(x,y,0).
    \end{align*}
    Como $x$ y $y$ fueron arbitrarios, podemos concluir que $\text{span}(e_1,e_2)$ consta de todos los vectores en $\mathbb{R}^3$ cuya tercer entrada es cero. Esto es el plano $xy$. En general, si $v_1, v_2$ son dos vectores no colineales en $\mathbb{R}^3$ entonces su espacio generado es el único plano por el origen que los contiene.
  4. El polinomio $3x^{10}+7$ del espacio vectorial $\mathbb{R}_{10}[x]$ no puede ser escrito como combinación lineal de los polinomios $x^{10}+x^2+1$, $x^7+3x+1$, $7x^3$. Para demostrar esto, debemos probar que no existen reales $a,b,c$ tales que $$3x^{10}+7=a(x^{10}+x^2+1)+b(x^7+3x+1)+7cx^3.$$
    Procedamos por contradicción. Si acaso esto fuera posible, desarrollando el producto de la derecha y observando el coeficiente de $x^{10}$, necesitamos que $a$ sea igual a $3$. Pero entonces a la derecha va a quedar un término $3x^2$ que no se puede cancelar con ninguno otro de los sumandos, sin importar el valor de $b$ o $c$. Igualando términos cuadráticos, tendríamos entonces $0=3x^2$, lo cual es una contradicción.

$\triangle$

Problemas prácticos de combinaciones lineales

La definición de que un vector sea combinación de otros es existencial. Para mostrar que sí es combinación lineal, basta encontrar algunos coeficientes. Para mostrar que no es combinación lineal, hay que argumental por qué ninguna de las combinaciones lineales de los vectores es igual al vector buscado.

Problema 1. Muestra que el vector $(1,1,1)$ de $\mathbb{R}^3$ no se puede expresar como combinación lineal de los vectores

\begin{align*}
v_1= (1,0,0), \hspace{2mm} v_2=(0,1,0)\text{ y } v_3=(1,1,0).
\end{align*}

Solución. Una combinación lineal arbitraria de $v_1, v_2, v_3$ es de la forma

\begin{align*}
x_1 v_1 +x_2 v_2 + x_3 v_3 = (x_1 + x_3, x_2 + x_3, 0)
\end{align*}

para $x_1,x_2,x_3$ reales. Así, las combinaciones lineales de $v_1,v_2,v_2$ siempre tienen a $0$ como tercera coordenada. De esta forma, ninguna de ellas puede ser igual a $(1,1,1)$.

$\square$

Más generalmente, consideramos el siguiente problema práctico: dada una familia de vectores $v_1, v_2, \dots, v_k$ en $F^n$ y un vector $v\in F^n$, decide si $v$ es una combinación lineal de $v_1, \dots, v_k$. En otras palabras, si $v\in \text{span}(v_1, \dots, v_k)$.

Para resolver este problema, consideramos la matriz de tamaño $n\times k$ cuyas columnas son $v_1, \dots, v_k$. Decir que $v\in \text{span}(v_1, \dots, v_k)$ es lo mismo que encontrar escalares $x_1, \dots, x_k\in F$ tales que $v= x_1 v_1 +\dots +x_k v_k$. De manera equivalente, si tomamos $X=(x_1,\ldots,x_k)$, queremos la existencia de una solución al sistema $AX=v$.

Esto es muy útil. Como tenemos una manera práctica de decidir si este sistema es consistente (por reducción gaussiana de la matriz aumentada $(A\vert v)$), tenemos una manera práctica de resolver el problema de si un vector es combinación lineal de otros. Por supuesto, esto también nos da una solución concreta al problema, es decir, no sólo decide la existencia de la combinación lineal, sino que además da una cuando existe.

Problema 2. Sean $v_1=(1,0,1,2), v_2=(3,4,2,1)$ y $v_3=(5,8,3,0)$ vectores en el espacio vectorial $\mathbb{R}^4$. ¿Está el vector $v=(1,0,0,0)$ en el generado de $v_1,v_2$ y $v_3$? ¿El vector $w=(4,4,3,3)$?

Solución. Aplicamos el método que describimos en el párrafo anterior. Es decir, tomemos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 3 & 5\\ 0 & 4 & 8\\ 1 & 2 & 3\\ 2 & 1 & 0\end{pmatrix}.
\end{align*}

Queremos ver si el sistema $AX=v$ es consistente. Haciendo reducción gaussiana a mano, o bien usando una calculadora de forma escalonada reducida (por ejemplo, la de eMathHelp), obtenemos que la forma escalonada reducida de la matriz aumentada $(A\vert v)$ es

\begin{align*}
(A\vert v)\sim \begin{pmatrix} 1 & 0 & -1 & 0\\ 0 & 1 &2 & 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 &0\end{pmatrix}.
\end{align*}

Viendo el tercer renglón, notamos que tiene pivote en la última columna. Deducimos que el sistema no es consistente, así que $v\notin \text{span}(v_1, v_2, v_3)$.

Procedemos de manera similar para el vector $w$. Esta vez tenemos

\begin{align*}
(A\vert w)\sim \begin{pmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &0\end{pmatrix},
\end{align*}

lo que muestra que el sistema es consistente (pues ninguna fila tiene su pivote en la última columna), por lo tanto $w\in \text{span}(v_1, v_2, v_3)$. Si queremos encontrar una combinación lineal explícita tenemos que resolver el sistema

\begin{align*}
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2\\ 0 & 0 &0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\\ 0 \\ 0\end{pmatrix}.
\end{align*}

Tenemos que ninguna fila tiene su pivote en la columna $3$, así que $x_3$ es variable libre. Las variables $x_1$ y $x_2$ son pivote. Esto nos da como solución $x_1= x_3+1$ y $x_2=1-2x_3$. Entonces podemos escribir

\begin{align*}
w= (1+x_3) v_1 + (1-2x_3) v_2+ x_3v_3
\end{align*}

y esto es válido para cualquier elección de $x_3$. Podemos, por ejemplo, escoger $x_3=0$ y obtener $w=v_1 + v_2$.

$\triangle$

Por supuesto, en el problema anterior pudimos haber encontrado la expresión $w=v_1+v_2$ explorando el problema o por casualidad. Esto sería suficiente para mostrar que $w$ es combinación lineal. Pero la ventaja del método sistemático que mostramos es que no se corre el riesgo de no encontrar la solución a simple vista. De me manera definitiva nos dice si hay o no hay solución, y cuando sí hay, encuentra una.

Una caracterización del espacio generado

Probamos el siguiente resultado, que explica la importancia del concepto de espacio generado. En particular, la proposición muestra que el espacio generado es un subespacio. Si te parece un poco confusa la demostración, puede ser de ayuda leer antes la observación que le sigue.

Proposición. Sea $V$ un espacio vectorial sobre un campo $F$ y $v_1, v_2, \dots, v_n \in V$. Entonces

  1. $\text{span}(v_1, v_2, \dots, v_n)$ es la intersección de todos los subespacios vectoriales de $V$ que contienen a todos los vectores $v_1, \dots, v_n$.
  2. $\text{span}(v_1, v_2, \dots, v_n)$ es el subespacio más chico (en contención) de $V$ que contiene a $v_1,\dots, v_n$.

Demostración. Como la intersección arbitraria de subespacios es un subespacio, la parte $1$ implica la parte $2$. Probemos entonces la parte $1$.

Primero demostremos que $\text{span}(v_1, v_2,\dots, v_n)$ está contenido en todo subespacio $W$ de $V$ que tiene a $v_1, \dots, v_n$. En otras palabras, tenemos que ver que cualquier subespacio $W$ que tenga a $v_1,\ldots,v_n$ tiene a todas las combinaciones lineales de ellos. Esto se sigue de que $W$, por ser subespacio, es cerrado bajo productos por escalar y bajo sumas. Así, si tomamos escalares $\alpha_1,\ldots,\alpha_n$ tenemos que cada uno de $\alpha_1 v_1, \ldots, \alpha_n v_n$ está en $W$ y por lo tanto la combinación lineal (que es la suma de todos estos), también está en $W$.

La afirmación anterior implica que $\text{span}(v_1, \dots, v_n)$ está contenido en la intersección de todos los espacios que tienen a $v_1,\ldots, v_n$, pues está contenido en cada uno de ellos.

Ahora, queremos ver ‘la otra contención’, es decir, que $\text{span}(v_1,\ldots,v_n)$ contiene a la intersección de todos los espacios que tienen a $v_1,\ldots,v_n$. Para esto veremos primero que $\text{span}(v_1, \dots, v_n)$ es un subespacio vectorial. Sean $x,y\in \text{span}(v_1, \dots, v_n)$ y $c\in F$ un escalar. Como $x$ y $y$ son, por definición, combinaciones lineales de $v_1, \dots, v_n$, podemos escribir $x=a_1 v_1+\dots +a_n v_n$ para algunos escalares $a_i$ y $y=b_1 v_1+\dots + b_n v_n$ para unos escalares $b_i$. Así

\begin{align*}
x+cy= (a_1+cb_1) v_1 + \dots + (a_n +c b_n) v_n
\end{align*}

también es una combinación lineal de $v_1, \dots, v_n$ y por tanto un elemento del espacio generado. Se sigue que $\text{span}(v_1,\dots, v_n)$ es uno de los subespacios que tienen a $v_1, \dots, v_n$. Así, este generado «aparece» en la intersección que hacemos de subespacios que tienen a estos vectores, y como la intersección de una familia de conjuntos está contenida en cada uno de esos conjuntos, concluimos que $\text{span}(v_1, \dots, v_n)$ contiene a dicha inteesección.

Argumentemos ahora la segunda parte de la proposición. Se usa el mismo argumento que arriba. Si $W$ es cualquier subespacio que contiene a $v_1, \dots, v_n$, entonces «aparece» en la intersección y por tanto $\text{span}(v_1, \dots, v_n)$ está contenido en $W$. Es decir, es más chico (en contención) que cualquier otro subespacio que contenga a estos vectores.

$\square$

Observación. Ya que la demostración previa puede resultar un poco confusa, presentamos una versión un poco más relajada de la idea que se usó. Sea $\lbrace W_i\mid i\in I\rbrace$ la familia de todos los subespacios de $V$ que contienen a $v_1, \dots, v_n$.

En el primer párrafo, probamos que

\begin{align*}
\text{span}(v_1,\dots, v_n)\subseteq W_i
\end{align*}

para todo $i\in I$. Luego $\text{span}(v_1, \dots, v_n)\subseteq \bigcap_{i\in I} W_i$.

En el segundo párrafo, probamos que $Span(v_1,\dots, v_n)$ es un subespacio que contiene a $v_1, \dots, v_n$. Es decir, entra en nuestra familia $\lbrace W_i\mid i\in I\rbrace$, es uno de los $W_i$, digamos $W_j$. Entonces

\begin{align*}
\text{span}(v_1, \dots, v_n)= W_j \supseteq \bigcap_{i\in I} W_i.
\end{align*}

En ese momento ya tenemos la primer igualdad: $\text{span}(v_1,\ldots,v_n)=\bigcap_{i\in I} W_i.$

Ahora, la segunda conclusión de la proposición se sigue de esto con una observación más: Si $W’$ es un subespacio que contiene a $v_1, \dots, v_n$ entonces también entra en nuestra familia de los $W_i$’s, es decir es $W_{p}$ para algún $p\in I$. Ahora usando el inciso $1$, tenemos que

\begin{align*}
\text{span}(v_1, \dots, v_n)= \bigcap_{i\in I} W_i \subseteq W_p=W’.
\end{align*}

Esto concluye la demostración.

Más adelante…

El concepto de combinación lineal es la piedra angular para definir varios otros conceptos importantes en espacios vectoriales. Es un primer paso para definir a los conjuntos de vectores generadores y a los conjuntos de vectores linealmente independientes. Una vez que hayamos desarrollado ambos conceptos, podremos hablar de bases de un espacio vectorial, y con ello hablar de la dimensión de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Se puede expresar al vector $(1,3,0,5)$ como combinación lineal de $(0,1,0,3)$, $(0,-1,2,0)$ y $(2, 0,-1,-6)$? Si sí, encuentra una o más combinaciones lineales que den el vector $(1,3,0,5)$
  2. ¿Se puede expresar al polinomio $1+x^2 +3x^3 -x^4 +x^5$ como combinación lineal de los siguientes polinomios
    \begin{align*}
    x^2-3x^4,\\
    1+x^2-x^5,\\
    2x+x^4,\\
    2+x^2,\\
    5x+5x^2-x^5?
    \end{align*}
  3. Sea $P$ un plano en $\mathbb{R}^3$ por el origen y $L$ una recta de $\mathbb{R}^3$ por el origen y con dirección dada por un vector $v\neq 0$. Demuestra que la intersección de $L$ con $P$ es una recta si y sólo si existen dos vectores en $P$ tal que su suma sea $v$.
  4. Encuentra el conjunto generado por los vectores del espacio vectorial indicado
    • Las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}$ y $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$ del espacio $M_{2}$.
    • Los vectores $(1,-1,0)$ y $(1,0,-1)$ del espacio $\mathbb{R}^3$.
    • Los polinomios $1$, $x$, $x^2$ y $x^3$ del espacio $\mathbb{R}[x]$.
  5. Sea $V$ un espacio vectorial. Si $v_1, \dots, v_n, x$ son vectores en un espacio vectorial $V$, ¿será cierto siempre que $\text{span}(v_1, \dots, v_n)\subseteq \text{span}(v_1, \dots, v_n, x)$? De ser así, ¿esta contención siempre es estricta? Demuestra tu respuesta o da un contraejemplo.
  6. Sean $v_1,\ldots, v_n$ y $x$ vectores en un espacio vectorial $V$. Supongamos que $v_n$ está en $\text{span}(v_1,\ldots,v_{n-1},x)$. Muestra que $$\text{span}(v_1,\ldots,v_{n-1},x)=\text{span}(v_1,\ldots,v_{n-1},v_n).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de espacios, subespacios y sumas directas

Por Julio Sampietro

Introducción

En esta entrada resolvemos más problemas para reforzar y aclarar los conceptos vistos anteriormente. Específicamente, resolvemos problemas acerca de espacios vectoriales, subespacios vectoriales y sumas directas.

Problemas resueltos

Problema 1. Muestra que el conjunto de las funciones continuas $f:[0,1]\to \mathbb{R}$ tales que $f\left(\frac{1}{2}\right)=0$ con las operaciones usuales es un espacio vectorial.

Solución: Primero observamos que nuestras operaciones están bien definidas: sabemos que la suma de funciones continuas es continua y si $f$ es continua y $\lambda\in \mathbb{R}$ es un escalar, entonces $\lambda f$ es continua. Más aún, si $f\left(\frac{1}{2}\right)=0$ y $g\left(\frac{1}{2}\right)=0$, entonces $(f+g) \left( \frac{1}{2}\right) =f\left( \frac{1}{2}\right) + g\left( \frac{1}{2}\right)=0+0=0$ y $\lambda f\left(\frac{1}{2}\right)=\lambda \cdot 0 =0$. En otras palabras, estos argumentos muestran que el conjunto es cerrado bajo las operaciones propuestas.

Ahora veamos que se cumplen los axiomas de espacio vectorial. Recuerda que para mostrar la igualdad de dos funciones, basta con mostrar que son iguales al evaluarlas en cada uno de los elementos de su dominio. En las siguientes demostraciones, $x$ es un real arbitrario en $[0,1]$

  1. Si $f,g,h$ son parte de nuestro conjunto, entonces
    \begin{align*}
    \left(f+(g+h)\right)(x)&= f(x)+(g+h)(x)\\ &= f(x)+g(x)+h(x) \\ &= (f+g)(x) +h(x)\\ &= ((f+g)+h)(x).
    \end{align*}
    Aquí estamos usando la asociatividad de la suma en $\mathbb{R}$
  2. Si $f,g$ son como en las condiciones, dado que la suma en números reales es conmutativa, $(f+g)(x)= f(x)+g(x)= g(x)+f(x)=(g+f)(x)$.
  3. La función constante $0$ es un neutro para la suma. Sí está en el conjunto pues la función $0$ en cualquier número (en particular en $\frac{1}{2}$) tiene evaluación $0$.
  4. Dada $f$ continua que se anula en $\frac{1}{2}$, $-f$ también es continua y se anula en $\frac{1}{2}$ y $f+(-f)= (-f)+f=0$.
  5. Si $a,b\in \mathbb{R}$ entonces $a(bf)(x)= a(bf(x))= (ab)f(x)$, por la asociatividad del producto en $\mathbb{R}$.
  6. Es claro que la constante $1$ satisface que $1\cdot f=f$, pues $1$ es una identidad para el producto en $\mathbb{R}$.
  7. $(a+b)f(x)= af(x)+bf(x)$, por la distributividad de la suma en $\mathbb{R}$
  8. $a\cdot (f+g)(x) = a\cdot (f(x)+g(x))= a\cdot f(x)+a\cdot g(x)$, también por la distributividad de la suma en $\mathbb{R}$.

Observa como las propiedades se heredan de las propiedades de los números reales: En cada punto usamos que las operaciones se definen puntualmente, luego aplicamos las propiedades para los números reales, y luego concluimos el resultado (como por ejemplo, en la prueba de la conmutatividad).

$\square$

Problema 2. Muestra que ninguno de los siguientes es un subespacio vectorial de $\mathbb{R}^3$.

  1. El conjunto $U$ de los vectores $x=(x_1, x_2, x_3)$ tales que $x_1^2+x_2^2+x_3^2=1$.
  2. El conjunto $V$ de todos los vectores en $\mathbb{R}^3$ con números enteros por coordenadas.
  3. El conjunto $W$ de todos los vectores en $\mathbb{R}^3$ que tienen al menos una coordenada igual a cero.

Solución:

  1. Notamos que el conjunto $U$ no es cerrado bajo sumas: En efecto, el vector $(1,0,0)\in U$, pues $1^2+0^2+0^2=1$, así como $(-1,0,0)\in U$, pues $(-1)^2+0^2+0^2=1$. Sin embargo su suma es $(0,0,0)$, que no es un elemento de $U$.
  2. Mientras que $V$ si es cerrado bajo sumas, no es cerrado bajo producto por escalares. Por ejemplo, $(2,8,1)\in V$, sin embargo $\frac{1}{2} (2,8,1)= \left(1,4,\frac{1}{2}\right)\notin V$, pues la última coordenada no es un número entero.
  3. El conjunto si es cerrado bajo producto por escalares, pero no bajo sumas: Tomando $(1,1,0)$ y $(0,0,1)$ en $W$, tenemos que $(1,1,0)+(0,0,1)=(1,1,1)\notin W$.

$\square$

Problema 3. Sea $V$ el conjunto de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ dos veces diferenciables (es decir, que tienen segunda derivada) que cumplen para todo $x\in \mathbb{R}$:

\begin{align*}
f»(x)+x^2 f'(x)-3f(x)=0.
\end{align*}

¿Es $V$ un subespacio de las funciones de $\mathbb{R}$ en $\mathbb{R}$ ?

Solución: En efecto, podemos verificar que $V$ cumple las condiciones de subespacio:

  1. Observamos que la función $f\equiv 0$ es dos veces diferenciable y satisface
    \begin{align*}
    f»(x)+x^2 f'(x)-3f(x)=0+x^2 \cdot 0 -3\cdot 0=0.
    \end{align*}
    Es decir $0\in V$. Esto muestra que $V$ es no vacío.
  2. Sean $f,g\in V$. Sabemos que entonces $f+g$ también es dos veces diferenciable (por ejemplo, de un curso de cálculo). Además
    \begin{align*}
    &(f+g)»(x)+x^2 (f+g)'(x)-3(f+g)(x)\\ & = f»(x)+g»(x)+x^2 f'(x)+x^2 g'(x)-3f(x)-3g(x)\\& = f»(x)+x^2f(x)-3f(x)+ g»(x)+x^2g(x)-3g(x)\\& =0+0=0.
    \end{align*}
    Así $f+g\in V$.
  3. Finalmente sea $f\in V$ y sea $\lambda \in \mathbb{R}$ un escalar. Sabemos que $\lambda f$ es dos veces diferenciable, y además
    \begin{align*}
    &\left(\lambda f\right)»(x)+x^2\left(\lambda f\right)(x)-3(\lambda f)(x)\\ &= \lambda f»(x)+\lambda x^2 f'(x)-\lambda 3f(x)\\ &= \lambda (f»(x)+x^2f'(x)-3f(x))\\ &= \lambda \cdot 0 =0.
    \end{align*}
    Luego $\lambda f\in V$.

$\square$

El ejemplo anterior es crucial para la intuición de tu formación matemática posterior. En él aparece una ecuación diferencial lineal homogénea. La moraleja es que «las soluciones a una ecuación diferencial lineal homogénea son un subespacio vectorial». En este curso no nos enfocaremos en cómo resolver estas ecuaciones, pues esto corresponde a un curso del tema. Sin embargo, lo que aprendas de álgebra lineal te ayudará mucho para cuando llegues a ese punto.

Problema 4. Sea $V$ el espacio de todas las funciones de $\mathbb{R}$ en $\mathbb{R}$ y sea $W$ el subconjunto de $V$ formado por todas las funciones $f$ tales que $f(0)+f(1)=0$.

  1. Verifica que $W$ es un subespacio de $V$.
  2. Encuentra un subespacio $S$ de $W$ tal que $V=W\oplus S$.

Solución:

  1. Verificamos los axiomas de subespacio vectorial:
    1. Tenemos que $0\in W$, pues $0(0)+0(1)=0+0=0$. Entonces $W$ no es vacío.
    2. Si $f,g\in W$ entonces $(f+g)(0)+(f+g)(1)= f(1)+f(0)+g(1)+g(0)=0+0=0$.
    3. Si $f\in W$ y $\lambda \in \mathbb{R}$ entonces $\lambda f(0)+\lambda f(1)= \lambda(f(0)+f(1))=\lambda \cdot 0=0$.
  2. Proponemos $S$ como el subespacio de todas las funciones $h$ tales que $h(x)=ax$ con $a\in \mathbb{R}$. Verifiquemos que $V=W\oplus S$.
    1. Si $F\in W\cap S$ entonces $F(0)+F(1)=0$, es decir $F(0)=-F(1)$, pero como $F(x)=ax$ para algún $a\in \mathbb{R}$ entonces $F(0)=0=F(1)=a$. Luego $F(x)=0\cdot x=0$.
    2. Dada $f\in V$, definimos
      \begin{align*}
      \hat{f}(x)= f(x)-(f(0)+f(1))x.
      \end{align*}
      Observamos que $\hat{f}\in W$, pues
      \begin{align*}
      \hat{f}(0)+\hat{f}(1)= f(0)+f(1)-f(0)-f(1)=0.
      \end{align*}
      Además es claro que
      \begin{align*}
      f(x)&= f(x)-(f(0)+f(1))x+(f(0)+f(1))x\\&= \hat{f}(x)+\left(f(0)+f(1)\right)x
      \end{align*}
      donde el sumando de la derecha es de la forma $a\cdot x$. Así $S+W=V$.

$\triangle$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Sea $A$ un conjunto no vacío. Sea $\mathcal{P}(A)$ el conjunto de todos los subconjuntos de $A$. Definimos las siguientes operaciones:
\begin{align*}
X+Y= X\Delta Y,\hspace{5mm} 1\cdot X=X,\hspace{5mm} 0\cdot X= \emptyset,\end{align*}
dónde $\Delta$ denota la operación de diferencia simétrica. Demuestra que así definido, $\mathcal{P}(A)$ es un espacio vectorial sobre el campo de dos elementos $\mathbb{F}_2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Reducción gaussiana en sistemas lineales AX=b

Por Julio Sampietro

Introducción

Ya usamos el algoritmo de reducción gaussiana para estudiar sistemas de ecuaciones homogéneos. En esta entrada aplicamos lo que hemos aprendido de este método para resolver sistemas de ecuaciones no homogéneos.

Para hacer esto, adaptaremos la técnica para sistemas homogéneos (que en realidad, no es muy diferente) y la usamos para probar un resultado muy importante, llamado el teorema de existencia y unicidad. Damos unos cuantos ejemplos y concluimos con la prometida demostración de la unicidad de la forma escalonada reducida.

Adaptando el vocabulario

Consideramos un sistema lineal $AX=b$ con $A\in M_{m,n}(F)$ y $b\in F^{m}$, con variables $x_1, \dots, x_n$ que son las coordenadas de $X\in F^{n}$. Para resolver el sistema consideramos la matriz aumentada $\left(A\vert b\right)$ obtenida de $A$ al añadir al vector $b$ como columna hasta la derecha.

Ejemplo. Si

\begin{align*}
A= \begin{pmatrix} 0 & 1 & 2\\
-1 & 0 &1 \end{pmatrix} \text{ y } b= \begin{pmatrix} 12 \\ 14 \end{pmatrix}
\end{align*}

entonces

\begin{align*}
\left(A\vert b\right)= \begin{pmatrix} 0 & 1 & 2 & 12\\ -1 & 0 & 1 & 14\end{pmatrix}\end{align*}

$\triangle$

Las operaciones elementales del sistema se traducen entonces en operaciones elementales en la matriz aumentada, por lo que para resolver el sistema podemos primero llevar a la matriz aumentada a su forma escalonada y reducida y después resolver el sistema más sencillo. Esto lo podríamos hacer siempre y cuando al realizar operaciones elementales en la matriz aumentada no se modifique el conjunto de soluciones del sistema. Esto lo garantiza la siguiente proposición.

Proposición. Sea el sistema lineal $AX=b$. Supongamos que la matriz $\left(A’\vert b’\right)$ se obtiene a partir de la matriz $\left( A\vert b\right)$ realizando una sucesión finita de operaciones elementales. Entonces los sistemas $AX=b$ y $A’X=b’$ son equivalentes, es decir, tienen el mismo conjunto de soluciones.

Demostración: Como ya hemos visto anteriormente, realizar operaciones elementales en $\left(A \vert b\right)$ es equivalente a realizar operaciones elementales en las ecuaciones del sistema $AX=b$, pero ya sabemos que estas no alteran el conjunto de soluciones, pues son reversibles (es decir, podemos siempre deshacer los cambios).

$\square$

El teorema de existencia y unicidad

Llegamos ahora a otro resultado clave de nuestro estudio de ecuaciones. Es una caracterización que responde a nuestras preguntas: ¿Hay soluciones? ¿Son únicas? Además, nos puede sugerir cómo encontrarlas.

Teorema. (De existencia y unicidad) Supongamos que la matriz $\left(A\vert b\right)$ ha sido llevada a su forma escalonada reducida $\left(A’\vert b’\right)$ por operaciones elementales.

  1. (Existencia de soluciones) El sistema $AX=b$ es consistente si y sólo si $\left(A’\vert b’\right)$ no tiene ningún pivote (de filas) en su última columna.
  2. (Unicidad de soluciones) Si el sistema es consistente, entonces tiene una única solución si y sólo si $A’$ tiene pivotes (de filas) en cada columna.

Demostración:

  1. Supongamos que $\left(A’\vert b’\right)$ tiene un pivote en su última columna. Debemos ver que el sistema $AX=b$ no tiene solución. Para esto, basta ver que el sistema $A’X=b’$ no tiene solución, pues es un sistema equivalente.

    Si el pivote aparece en el $i$-ésimo renglón entonces este es de la forma $(0, \dots, 0, 1)$, pues recordemos que los pivotes son iguales a $1$ en la forma escalonada reducida. Entonces entre las ecuaciones del sistema $A’X=b’$ tenemos una de la forma $0 x_1′ +\dots +0 x_n’=1$, que no tiene solución alguna. Así el sistema $A’X=b’$ no es consistente, y por tanto $AX=b$ tampoco lo es.

    Conversamente, supongamos que $\left(A’ \vert b’\right)$ no tiene un pivote en su última columna. Digamos que $A’$ tiene pivotes en las columnas $j_1<\dots <j_k \leq n$ y sean $x_{j_1}, \dots, x_{j_k}$ las correspondientes variables pivote y todas las demás variables son libres. Dando el valor cero a todas las variables libres obtenemos un sistema en las variables $x_{j_1}, \dots, x_{j_k}$. Este sistema es triangular superior y se puede resolver empezando por la última ecuación, encontrando $x_{j_k}$, luego $x_{j_{k-1}}$ y así sucesivamente. Así encontramos una solución, por lo que el sistema es consistente. Esta solución encontrada también es una solución a $AX=b$, pues es un sistema equivalente.
  2. Como le podemos dar cualquier valor escalar a las variables libres, el argumento del párrafo anterior nos dice que la solución es única si y sólo si no tenemos variables libres, pero esto pasa si y sólo si los pivotes llegan hasta la última columna de $A’$.

$\square$

Ten cuidado. En la primer parte, la condición se verifica con $(A’|b)$. En la segunda parte, la condición se verifica con $A’$.

Encontrando y contando soluciones

Por simplicidad, asumamos que $F=\mathbb{R}$, es decir que nuestro campo de coeficientes del sistema $AX=b$ es el de los números reales. Procedemos como sigue para encontrar el número de soluciones del sistema:

  1. Consideramos la matriz aumentada $\left(A\vert b\right)$.
  2. Llevamos esta matriz a su forma escalonada reducida $\left(A’\vert b’\right)$.
  3. Si esta matriz tiene un renglón de la forma $(0, \dots, 0, 1)$, entonces el sistema es inconsistente.
  4. Si no tiene ningún renglón de esa forma, vemos si todas las columnas de $A’$ tienen al pivote de alguna fila:
    • Si en efecto todas tienen pivote, entonces el sistema tiene una única solución.
    • Si no todas tienen pivote, entonces nuestro sistema tiene una infinidad de soluciones.

En el caso en el que hay una o una infinidad de soluciones, además podemos decir exactamente cómo se ven esas soluciones:

  • Haciendo las variables libres iguales a cero (si es que hay), obtenemos una solución $X’$ al sistema $AX=b$.
  • Usamos reducción gaussiana para encontrar todas las soluciones al sistema homogéneo $AX=0$.
  • Finalmente, usamos el principio de superposición. Todas las soluciones a $AX=b$ son de la forma $X’$ más una solución a $AX=0$.

Problema. Consideremos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 2 & 2\\ 0 & 1 & 1\\ 2 & 4 &4 \end{pmatrix}.
\end{align*}

Dado $b\in \mathbb{R}^3$, encuentra condiciones necesarias y suficientes en términos de las coordenadas de $b$ para que el sistema $AX=b$ sea consistente.

Solución: Dado $b$ con coordenadas $b_1, b_2$ y $b_3$, la matriz aumentada es

\begin{align*}
\left( A\vert b\right) = \begin{pmatrix} 1 & 2 & 2 & b_1 \\ 0 & 1 & 1 & b_2 \\ 2 & 4 & 4 & b_3\end{pmatrix}.
\end{align*}

Para obtener su forma escalonada reducida sustraemos dos veces el primer renglón del tercero y luego dos veces el segundo del primero, obteniendo así:

\begin{align*}
\left( A\vert b\right) \sim \begin{pmatrix} 1 & 0 & 0 &b_1-2b_2\\ 0 & 1 & 1 & b_2\\ 0 & 0 & 0 &b_3-2b_1\end{pmatrix}.
\end{align*}

Por el teorema anterior, el sistema $AX=b$ es consistente si y sólo si esta matriz no tiene pivotes en la última columna, es decir, necesitamos que la entrada de hasta abajo a la derecha sea cero. Así, el sistema es consistente si y sólo si $b_3-2b_1=0$ o, dicho de otra manera, si y sólo si $b_3=2b_1$.

$\triangle$

Unicidad de la forma escalonada reducida

Concluimos esta entrada con una demostración de la unicidad de la forma escalonada reducida, usando que si dos matrices $A$ y $B$ que difieren por una sucesión finita de operaciones elementales entonces los sistemas $AX=0$ y $BX=0$ son equivalentes. La demostración que presentamos (corta y elegante) se debe a Thomas Yuster, publicada en el año 1983.

Teorema. La forma escalonada reducida es única.

Demostración: Procedemos por inducción sobre $n$, el número de columnas de $A\in M_{m,n}(F)$. El resultado es claro para $n=1$, pues solo tenemos una columna cero o una columna con un $1$ hasta arriba. Supongamos pues que el resultado se cumple para $n-1$, y demostremos que se cumple para $n$. Sea $A\in M_{m,n}(F)$ y sea $A’\in M_{m,n-1}(F)$ la matriz que se obtiene al quitarle la $n$-ésima columna.

Supongamos que $B$ y $C$ son ambas matrices distintas en forma escalonada reducida obtenidas de $A$. Dado que una sucesión de operaciones elementales que llevan a $A$ a una forma escalonada reducida también llevan a $A’$ a una forma escalonada reducida (si a una matriz escalonada reducida le cortamos una columna, sigue siendo escalonada reducida), podemos aplicar la hipótesis de inducción y concluir que si $B$ y $C$ son distintas entonces difieren en la columna que quitamos y solo en esa.

Sea $j$ tal que $b_{jn}\neq c_{jn}$ (por nuestra discusión previa, existe esta entrada, ya que asumimos que $B\neq C$). Si $X$ es un vector tal que $BX=0$ entonces $CX=0$, ya que $A,B$ y $C$ son matrices equivalentes. Luego $(B-C)X=0$. Como $B$ y $C$ difieren solo en la última columna, la $j$-ésima ecuación del sistema se lee $(b_{jn}-c_{jn})x_n=0$, pues los coeficientes previos son cero. Así, $x_n=0$ siempre que $BX=0$ o $CX=0$. Se sigue que $x_n$ no es una variable libre para $B$ y $C$, por lo que ambas tienen un pivote en la última columna. Como ambas están en forma escalonada reducida, entonces la última columna tiene necesariamente un $1$ en la entrada de hasta abajo y puros ceros en otras entradas, es decir, $B$ y $C$ tienen la misma última columna, una contradicción a nuestras suposiciones.

Se sigue que entonces $B=C$ y queda probado por contradicción el paso inductivo, lo que prueba el teorema.

$\square$

Más adelante…

El método que describimos en esta entrada es muy flexible y poderoso. Permite resolver sistemas de ecuaciones de la forma $AX=b$ de manera metódica. Esto no quiere decir que ya entendamos todo lo que hay que saber de sistemas lineales. Una vez que hayamos introducido los conceptos de espacio vectorial y subespacio, podremos describir con más precisión cómo son las soluciones a un sistema lineal. Además, más adelante, veremos otras formas en las que se pueden resolver sistemas de ecuaciones usando determinantes. En particular, veremos la regla de Cramer.

Por ahora, nos enfocaremos en una aplicación más de la reducción gaussiana: encontrar inversas de matrices. Veremos esto en la siguiente entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Determina cuántas soluciones tiene el sistema $AX=b$ con
    \begin{align*} A=\begin{pmatrix} 0 & 1 &1\\ 2& -4 & 7\\ 0 & 0 & 1 \end{pmatrix}\text{ y } b=\begin{pmatrix} 1 \\ 6 \\-1\end{pmatrix}\end{align*}
  • Si $A$ tiene estrictamente más renglones que columnas y $b$ es un vector que no tiene ninguna entrada cero, ¿puede el sistema $AX=b$ ser consistente?
  • Si $A$ tiene estrictamente más columnas que renglones, ¿puede el sistema $AX=0$ tener una única solución?
  • Si $A\in M_{m,n}(F)$ es una matriz diagonal, ¿que puedes decir de la consistencia y la unicidad de soluciones del sistema $AX=b$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»