Archivo de la etiqueta: transformaciones lineales

Álgebra Lineal I: Transformaciones multilineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Con esta entrada empieza el cuarto y último bloque del curso de Lineal I. En este último bloque hablaremos de determinantes de matrices, de eigenvectores, eigenvalores y de polinomios característicos. Además, probaremos el teorema espectral para matrices simétricas reales. Nuestro cimiento teórico para definir a los determinantes y probar sus propiedades fácilmente serán las transformaciones multilineales, que generalizan a las formas bilineales de las que ya hemos hablado.

Antes de empezar, vale la pena recapitular lo que hemos aprendido en los bloques anteriores:

  • Bloque 1: Primero, hablamos de vectores y matrices con entradas reales, y sus operaciones básicas. Luego, vimos que nos ayudan a plantear y resolver sistemas de ecuaciones lineales. Aquí hablamos de varias equivalencias de matrices invertibles. Al final de este bloque, definimos espacios vectoriales en general. En ellos hablamos de conjuntos generadores, independientes y bases. Mediante el lema de Steinitz definimos y probamos propiedades de espacios de dimensión finita.
  • Bloque 2: Vimos la teoría básica de transformaciones lineales. Hablamos de imágenes y kernels de transformaciones. Vimos cómo se comportan con independientes y bases. Luego hablamos de cómo representar transformaciones lineales entre espacios de dimensión finita usando matrices, y en particular cómo hacer cambios de base.
  • Bloque 3: Este bloque fue más «geométrico». Primero, vimos formas lineales y la teoría de dualidad y la aplicamos para ver que todo subespacio es intersección de hiperplanos. Luego, definimos formas bilineales y cuadráticas. De ahí salió la noción de producto interior, que nos permite «hacer geometría» en espacios vectoriales. Hablamos de desigualdades vectoriales, de bases ortogonales, para qué sirven y cómo encontrarlas.

La intuición que obtuvimos de formas bilineales nos ayudará a entender formas multilineales. Pero antes de entrar en este tema, que es un poco técnico, veamos un ejemplo que nos ayudará a entender lo que nos espera en este bloque.

Elevando una matriz a la 100

Considera la matriz $$A=\begin{pmatrix}-4&-10\\3&7\end{pmatrix}.$$ Imagina que para alguna aplicación queremos elevarla a la $100$. Esto probablemente lo puedas hacer a mano, y mejor aún, a computadora. Pero en aplicaciones en la vida real, puede que hacer los cálculos matriciales sea mucho incluso para una computadora. ¿Habrá una forma de que sea más fácil hacer $A^{100}$?

Resulta que para este caso en particular, sí. Considera las matrices $$B=\begin{pmatrix}3 & 5\\ 1& 2\end{pmatrix}$$ y $$D=\begin{pmatrix}1&0\\0&2\end{pmatrix}.$$ La matriz $B$ es invertible, con inversa $$B^{-1}=\begin{pmatrix}2&-5 \\-1&3\end{pmatrix},$$ como puedes verificar. Además, la matriz $A$ se puede «factorizar» así: $$A=B^{-1}DB.$$

Esto es muy útil para nuestros fines. Nota que
\begin{align*}
A^2&=(B^{-1}DB)(B^{-1}DB)\\
&=B^{-1}D^2B,
\end{align*}

y que de hecho inductivamente $A^n=B^{-1}D^n B$ para cualquier entero positivo $n$.

Por otro lado, como la matriz $D$ es diagonal, sus potencias son muy sencillas, de hecho, se puede probar inductivamente que $D^n=\begin{pmatrix}1&0\\0&2^{n}\end{pmatrix}$ para cualquier entero positivo $n$. De esta forma, podemos hacer $A^n$ con tan solo dos multiplicaciones de matrices:
\begin{align*}
A^n&=B^{-1}D^nB\\
&=\begin{pmatrix}2&-5 \\ -1&3\end{pmatrix}\begin{pmatrix}1&0\\ 0&2^{n}\end{pmatrix}\begin{pmatrix}3 & 5\\ 1& 2\end{pmatrix}\\
&=\begin{pmatrix}2&-5 \\ -1&3\end{pmatrix}\begin{pmatrix}3&5 \\ 2^n&2^{n+1}\end{pmatrix}\\
&=\begin{pmatrix}6-5\cdot 2^n& 10-5\cdot 2^{n+1}\\ -3+3\cdot 2^n & -5+3\cdot 2^{n+1}\end{pmatrix}
\end{align*}

Así, el problema que queremos resolver es sencillo ahora. Basta tomar $n=100$ para obtener $$A^{100}=\begin{pmatrix}6-5\cdot 2^{100} & 10-5\cdot 2^{101}\\ -3+3\cdot 2^{100} & -5+3\cdot 2^{101}\end{pmatrix}.$$

Si podemos escribir una matriz $A$ como $B^{-1}DB$ con $B$ invertible y $D$ diagonal, decimos que es diagonalizable. La conclusión anterior es que una matriz diagonalizable se puede elevar fácilmente a potencias.

Todo esto está muy bien pero, ¿de dónde salen las matrices $B$ y $D$? ¿toda matriz es diagonalizable? ¿qué otras ventajas tiene diagonalizar una matriz? Este tipo de preguntas son las que estudiaremos en este bloque.

Diagonalizar matrices de 2×2

El determinante de una matriz $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ en $M_2(\mathbb{R})$, como quizás hayas visto antes, está dado por $ad-bc$. Resulta que una forma sistemática para encontrar matrices $B$ y $D$ como las del ejemplo de arriba es la siguiente:

  • Tomar una matriz $A$.
  • Considerar el polinomio $P(\lambda)=\det(\lambda I – A)$. A este polinomio se le conoce como el polinomio característico de $A$.
  • Encontrar las raíces $\lambda_1$ y $\lambda_2$ de $P(\lambda)$. A estos valores se les llama los eigenvalores de $A$.
  • Encontrar vectores $v_1$ y $v_2$ no cero tales que $(A-\lambda_1I) v_1 =0$ y $(A-\lambda_2 I)v_2 = 0$. Estos simplemente son sistemas lineales homogéneos, que ya sabemos resolver con reducción gaussiana. A estos vectores se les llama eigenvectores de $A$.
  • Usar a $\lambda_1$ y $\lambda_2$ como las entradas de la matriz diagonal $D$.
  • Usar a $v_1$ y $v_2$ como columnas de la matriz $B^{-1}$. Encontrar la inversa de $B^{-1}$ para encontrar a $B$.

¿Cómo se hace en dimensiones más altas? ¿Siempre podemos seguir este proceso esto? ¿Hay algunos tipos de matrices para los que siempre funcione? Estas son otras preguntas que responderemos en el transcurso de estas semanas.

Mientras tanto, veamos qué sucede si aplicamos este método para la matriz $A=\begin{pmatrix}-4&-10\\3&7\end{pmatrix}$ del ejemplo. Tenemos que el determinante de $\lambda I-A = \begin{pmatrix}\lambda+4&10\\-3&\lambda – 7\end{pmatrix}$ es el polinomio \begin{align*}P(\lambda)&= (\lambda+4)(\lambda-7)+30\\ &=\lambda^2-3\lambda-28+30\\ &=\lambda^2-3\lambda+2,\end{align*} cuyas raíces son $1$ y $2$. De aquí construimos $$D=\begin{pmatrix}1&0\\0&2\end{pmatrix}.$$

Busquemos los eigenvectores. Por un lado, si queremos que suceda que $Av=v$ para un vector $v=(x,y)$, necesitamos que $$(-4x-10y, 3x+7y)=(x,y),$$ y una de las soluciones es $(x,y)=(2,-1)$. Por otro lado, si queremos que suceda que $Av=2v$ para un vector $v=(x,y)$, necesitamos que $$(-4x-10y,3x+7y)=(2x,2y),$$ y una de las soluciones es $(x,y)=(-5,3)$. De aquí construimos $$B^{-1}=\begin{pmatrix}2&-5 \\-1&3\end{pmatrix},$$ y podemos hacer reducción gaussiana para encontrar $B$. Observa que obtenemos exactamente las mismas matrices que propusimos en el ejemplo.

Nos gustaría poder hacer esto mismo en dimensiones más altas y entender cuándo y por qué funciona. Para ello, lo primero que necesitamos hacer es entender muy bien el concepto de determinante y aprender a manejar hábilmente sus propiedades principales.

Hay varias formas de definir determinante y quizás ya hayas visto algunas en cursos anteriores. En este curso definiremos determinante mediante transformaciones multilineales. Es un poco más abstracto, pero ayuda a que sea más fácil probar técnicas para trabajar con determinantes y entender por qué funcionan.

Transformaciones multilineales

En el bloque anterior ya hablamos de formas bilineales. Como recordatorio, tomábamos un espacio vectorial real $V$ y una forma bilineal era una función $b:V\times V\to \mathbb{R}$ tal que cada que fijábamos una entrada, la función era lineal en la otra. La palabra «forma» la usábamos porque la imagen caía en el campo.

Generalizaremos esta idea para más entradas, y para cuando la imagen cae en cualquier espacio vectorial. Trabajaremos en espacios vectoriales sobre un campo $F$, que puedes pensar que es $\mathbb{R}$ o $\mathbb{C}$.

Definición. Sean $V_1,\ldots, V_d$ y $W$ espacios vectoriales sobre $F$. Una función $f:V_1\times \ldots \times V_d\to W$ es multilineal si cada que fijamos una $i$ y para cada $j\neq i$ fijamos vectores $v_j$ en $V_j$, la transformación $$V_i\to W$$ dada por $$v_i\mapsto f(v_1,v_2,\ldots,v_d)$$ es lineal.

Aclaración. De nuevo, es muy importante no confundir una transformación multilineal con una transformación lineal del espacio vectorial $V_1\times \ldots \times V_d$ a $W$.

Ejemplo 1. Consideremos $\mathbb{R}^3=\mathbb{R}\times \mathbb{R} \times \mathbb{R}$ y consideramos la transformación $T:\mathbb{R}^3\to \mathbb{R}$ dada por $T(x,y,z)=xyz.$ Afirmamos que esta es una transformación multilineal.

Si fijamos $y$ y $z$, tenemos que mostrar que la transformación $x\mapsto xyz$ es lineal, lo cual es cierto pues para $x_1,x_2$ reales y $r$ real se cumple que
\begin{align*}
T(x_1+rx_2,y,z)&=(x_1+rx_2)yz\\
&=x_1yz + rx_2yz\\
&=T(x_1,y,z)+rT(x_2,y,z).
\end{align*}

De manera similar se prueba para las otras entradas.

Sin embargo, $T$ no es una transformación lineal. Por ejemplo, no saca escalares ya que $T(1,1,1)=1\cdot 1\cdot 1=1$ y $$T(2,2,2)=8\neq 2 = 2T(1,1,1).$$

$\square$

Las transformaciones multilineales son muy generales, y ayudan a crear algo que se llama el producto tensorial. Sin embargo, para los fines que necesitamos ahora, no hace falta tanta generalidad. Sólo nos enfocaremos en las transformaciones multilineales cuando $V_1=V_2=\ldots=V_d$, es decir, en transformaciones $f:V^d\to W$.

Definición. Para $d$ un entero positivo y $V$, $W$ espacios vectoriales, una transformación $d$-lineal es una transformación multilineal de $V^d$ a $W$.

Ejemplo 2. Si $V$ es un espacio vectorial real y $W=\mathbb{R}$, entonces toda forma bilineal $b:V\times V\to \mathbb{R}$ es una transformación $2$-lineal.

Ejemplo 3. Tomemos $V=\mathbb{R}^3$ y $d=4$. Tomemos las siguientes formas lineales en $V$:
\begin{align*}
l_1(x,y,z)&=x+y+z\\
l_2(x,y,z)&=3x-2y+z\\
l_3(x,y,z)&=y\\
l_4(x,y,z)&=x+z.
\end{align*}

Consideremos la transformación $T:V^4\to \mathbb{R}$ dada por $$T(v_1,v_2,v_3,v_4)=l_1(v_1)l_2(v_2)l_3(v_3)l_4(v_4),$$ por ejemplo, si $v_1=(1,0,0)$, $v_2=(0,1,0)$, $v_3=(0,1,1)$ y $v_4=(1,1,1)$, tenemos que

\begin{align*}
l_1(v_1)&=l_1(1,0,0)=1+0+0=1\\
l_2(v_2)&=l_2(0,1,0)=0-2+0=-2\\
l_3(v_3)&=l_3(0,1,1)=1\\
l_4(v_4)&=l_4(1,1,1)=1+1=2,
\end{align*}

y por lo tanto $$T(v_1,v_2,v_3,v_4)=(1)(-2)(1)(2)=-4.$$

Tenemos que $T$ es $4$-lineal pues para cada $i$, al fijar las tres entradas $v_j$ con $j\neq i$ tenemos que $T(v_1,v_2,v_3,v_4)$ es de la forma $cl_i(v_i)$ con $c$ un escalar. Como $l_i$ es una forma lineal, $cl_i$ también.

$\triangle$

Nos interesan un tipo todavía más restringido de transformaciones multilineales. Para definirlas, tenemos que hacer una pequeña desviación hacia el tema de permutaciones.

Permutaciones y signos

Tomemos un entero positivo y usemos $[n]$ para hablar del conjunto de los enteros de $1$ a $n$, es decir, $[n]:=\{1,2,\ldots,n\}$.

Definicion. Una permutación de $[n]$ es una función biyectiva $\sigma: [n]\to [n]$.

En otras palabras, una permutación básicamente «revuelve los elementos» de $[n]$. Usualmente expresamos a la permutación con la notación $$\begin{pmatrix} 1 & 2 & \ldots & n\\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{pmatrix}$$

Ejemplo 1. La función $\sigma:[3]\to [3]$ tal que $\sigma(1)=2$, $\sigma(2)=3$ y $\sigma(3)=1$ es una permutación que manda al conjunto ordenado $(1,2,3)$ al conjunto ordenado $(2,3,1)$. La expresamos como $$\begin{pmatrix} 1& 2 & 3\\ 2 & 3 & 1\end{pmatrix}.$$

$\triangle$

Como las permutaciones son funciones, entonces podemos componerlas. Para evitar complicar la notación, no pondremos el signo de composición $\circ$, sino simplemente permutaciones adyacentes. La composición usualmente no es conmutativa.

Ejemplo 2. Tomemos la permutación $\sigma_1:[4]\to [4]$ representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}$$ y la permutación $\sigma_2:[4]\to [4]$ representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}.$$

¿Qué hace la función $\sigma_1 \sigma_2$? Es una función de $[4]$ a $[4]$ y cumple lo siguiente:
\begin{align*}
\sigma_1(\sigma_2(1))&=\sigma_1(4)=4,\\
\sigma_1(\sigma_2(2))&=\sigma_1(2)=2,\\
\sigma_1(\sigma_2(3))&=\sigma_1(3)=1,\\
\sigma_1(\sigma_2(4))&=\sigma_1(1)=3,
\end{align*}

es decir, la composición es la permutación representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 4 & 2 & 1 & 3\end{pmatrix}.$$

Por otro lado, la función $\sigma_2\sigma_1$ hace algo un poco diferente. También es una función de $[4]$ a $[4]$ y cumple lo siguiente:
\begin{align*}
\sigma_2(\sigma_1(1))&=\sigma_2(3)=3,\\
\sigma_2(\sigma_1(2))&=\sigma_2(2)=2,\\
\sigma_2(\sigma_1(3))&=\sigma_2(1)=4,\\
\sigma_2(\sigma_1(4))&=\sigma_2(4)=1,
\end{align*}

así que es la permutación representada por $$\begin{pmatrix}1& 2 & 3 & 4 \\ 3 & 2 & 4 & 1\end{pmatrix}.$$

$\triangle$

Al conjunto de permutaciones de $[n]$ le llamamos $S_n$. Tomemos una permutación $\sigma$ en $S_n$. Para dos elementos $i<j$ en $[n]$, decimos que $\sigma$ los invierte si $\sigma(i)>\sigma(j)$.

Definición. Sea $\sigma$ un elemento de $S_n$. Decimos que el signo de $\sigma$ es $1$ si invierte una cantidad par de parejas, y es $-1$ si invierte una cantidad impar de parejas. Al signo de $\sigma$ lo denotamos $\text{sign}(\sigma)$.

Ejemplo 3. La permutación $$\begin{pmatrix}1& 2 & 3 & 4 & 5\\ 5 & 2 & 1 & 4 & 3\end{pmatrix}$$ invierte a la pareja $(1,2)$ pues $\sigma(1)=5>2=\sigma(2)$. Todas las parejas que invierte son $(1,2)$, $(1,3)$, $(1,4)$, $(1,5)$, $(2,3)$, $(4,5)$. Estas son $6$ parejas, que son una cantidad par, así que la permutación tiene signo $1$.

La permutación identidad en $S_n$ no invierte ninguna pareja, así que tiene signo $1$.

$\triangle$

En la siguiente entrada combinaremos estas nociones de permutaciones y de transformaciones multilineales para hablar de antisimetría y alternancia. Por el momento, reflexiona en lo siguiente: si $\sigma$ es una permutación en $S_n$ y $f:V^n\to W$ es una transformación $n$-lineal, entonces la transformación $\sigma f:V^n \to W$ definida por $$(\sigma f)(x_1,x_2,\ldots,x_n) = f(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)})$$ también es una transformación $n$-lineal.

Más adelante…

En esta primera entrada de la cuarta unidad hemos visto cómo la intuición que obtuvimos cuando estudiamos formas bilineales, nos ha ayudado a entender el concepto de formas multilineales. En las siguientes entradas del blog, abordaremos el concepto de determinante y aprenderemos cómo se usa.

Para la definición de determinante y para demostrar algunas de sus propiedades , usaremos lo que aprendimos en esta entrada sobre las transformaciones multilineales. Veremos que es una herramienta del álgebra lineal bastante útil y entender detalladamente cómo funciona será fundamental para abordar uno de los teoremas más importantes del curso: el teorema espectral.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Toma $T:V^d\to W$ una transformación $d$-lineal. Muestra que si de entre $x_1,\ldots,x_d$ elementos de $V$ alguno de ellos es el vector $0$, entonces $T(x_1,\ldots,x_d)=0$.
  • Muestra que la transformación del ejemplo de transformaciones multilineales también es lineal en la segunda y tercera entradas.
  • Supón que $l_1,\ldots,l_d$ son formas lineales de $V$ al campo $F$. Muestra que $f:V^d\to F$ dada por $$f(x_1,\ldots,x_d)=l_1(x_1)\ldots l_d(x_d)$$ es una transformación $d$-lineal.
  • Encuentra una transformación lineal $T:\mathbb{R}^3\to \mathbb{R}$ que no sea una transformación multilineal.
  • Muestra que la composición de dos permutaciones siempre es una permutación.
  • Muestra que para dos permutaciones $\sigma_1$ y $\sigma_2$ se tiene que $$\text{sign}(\sigma_1\sigma_2)=\text{sign}(\sigma_1)\text{sign}(\sigma_2).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Introducción a espacio dual

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada empezamos la tercera unidad del curso de Álgebra Lineal I. Los conceptos fundamentales de esta nueva unidad son el de espacio dual y el de formas bilineales.

Hagamos un pequeño recordatorio, que será útil para entender los temas que vendrán. Ya definimos qué es un espacio vectorial y qué son las transformaciones lineales.

Para los espacios vectoriales, hablamos de subespacios, de conjuntos generadores, independientes y bases. A partir de ellos definimos qué quiere decir que un espacio sea de dimensión finita y, en ese caso, dijimos cómo definir la dimensión. Un lema fundamental para hacer esto fue el lema del intercambio de Steinitz.

Dijimos que las transformaciones lineales son funciones «bonitas» entre espacios vectoriales que «abren sumas» y «sacan escalares». Dimos como ejemplos a las proyecciones y las simetrías. Vimos lo que le hacen a generadores, linealmente independientes y bases. También, vimos que podemos expresarlas a través de matrices.

Un tipo de matrices de trasformaciones lineales muy importante son las matrices de cambios de base, que permiten conocer las coordenadas de vectores en distintas bases y pasar matrices de transformaciones lineales entre distintas bases. Finalmente, hablamos del rango para matrices y transformaciones lineales.

Es muy bueno entender estos temas lo mejor posible antes de continuar. Aunque no te queden 100% claras todas las demostraciones, por lo menos intenta sí conocer las hipótesis y los enunciados de los resultados principales.

Los temas que vendrán están basados en los capítulos 6 y 10 del libro de Titu Andreescu.

Dualidad y espacio dual

Antes de continuar, el siguiente ejemplo te debe de quedar clarísimo. Dice que hay una forma de hacer un espacio vectorial cuyos elementos son transformaciones lineales. Así es, cada vector de este espacio es una transformación lineal. Esto no debería de ser tan raro pues ya estudiamos algunos espacios vectoriales de funciones.

De ser necesario, verifica que en efecto se satisfacen los axiomas de espacio vectorial, para entender todavía mejor el ejemplo.

Ejemplo 1. Si $V$ y $W$ son espacios vectoriales sobre un mismo campo $F$, entonces el conjunto de transformaciones lineales de $V$ a $W$ es un espacio vectorial con las operaciones de suma de funciones y multiplicación por escalar.

Recordemos que la suma de funciones manda a las funciones $S:V\to W$ y $T:V\to W$ a la función $S+T:V\to W$ para la cual $$(S+T)(v)=S(v)+T(v)$$ y que la multiplicación por escalar manda al escalar $c\in F$ y a la función $T:V\to W$ a la función $cT:V\to W$ para la cual $$(cT)(v)=cT(v).$$

La razón por la cual este es un espacio vectorial es que es un subconjunto del espacio vectorial de todas las funciones de $V$ a $W$, y además es cerrado bajo sumas y multiplicaciones por escalar, de modo que es un subespacio.

A este espacio vectorial le llamamos $\text{Hom}(V,W)$.

$\triangle$

En esta unidad vamos a estudiar $\text{Hom}(V,W)$, pero para un caso particular muy concreto: para cuando $W$ es $F$, el campo sobre el cual está $V$. Podemos hacer esto, pues recuerda que podemos pensar al campo $F$ como un espacio vectorial sobre sí mismo.

A partir de ahora fijaremos el campo $F$. Si quieres, puedes pensarlo como $\mathbb{R}$ o $\mathbb{C}$ pero lo que digamos funcionará para campos arbitrarios.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. El espacio dual $V^\ast$ de $V$ es el conjunto de transformaciones lineales $l:V\to F$ dotado con las operaciones suma dada por $$(l_1+l_2)(v)=l_1(v)+l_2(v)$$ y producto por escalar dado por $$(cl)(v)=c(l(v))$$ para $l_1,l_2, l$ en $V^\ast$, $v$ en $V$ y $c$ en $F$.

A cada elemento de $V^\ast$ le llamamos una forma lineal en $V$. Usamos la palabra «forma» para insistir en que es una transformación que va hacia el campo $F$ sobre el cual está $V$.

Ejemplo 2. Consideremos al espacio vectorial $\mathbb{R}^3$. Está sobre el campo $\mathbb{R}$. Una forma lineal aquí es simplemente una transformación lineal $S_1:\mathbb{R}^3\to \mathbb{R}$, por ejemplo $$S_1(x,y,z)=x+y-z.$$ Otra forma lineal es $S_2:\mathbb{R}^3\to \mathbb{R}$ dada por $$S_2(x,y,z)=y+z-x.$$ Si sumamos ambas formas lineales, obtenemos la forma lineal $S_1+S_2$, la cual cumple $$(S_1+S_2)(x,y,z)=(x+y-z)+(y+z-x)=2y.$$

Estas son sólo dos formas lineales de las que nos interesan. Si queremos construir todo el espacio dual $(\mathbb{R}^3)^\ast$, necesitamos a todas las transformaciones lineales de $\mathbb{R}^3$ a $\mathbb{R}$.

Recordemos que cada transformación lineal $T$ de estas está representada de manera única por una matriz en $M_{1,3}(\mathbb{R})$ de la forma, digamos, $\begin{pmatrix} a & b & c\end{pmatrix}$. Así, toda transformación lineal de $\mathbb{R}^3$ a $\mathbb{R}$ lo que hace es enviar a $(x,y,z)$ a $$\begin{pmatrix} a& b & c \end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=ax+by+cz.$$ Se puede verificar que la suma de matrices y el producto escalar corresponden precisamente con la suma de sus transformaciones lineales asociadas, y su producto escalar.

Dicho de otra forma, $(\mathbb{R}^3)^\ast$ se puede pensar como el espacio vectorial de matrices $M_{1,3}(\mathbb{R})$. Observa que $\mathbb{R}^3$ y $(\mathbb{R}^3)^\ast$ tienen ambos dimensión $3$.

$\triangle$

Ejemplo 3. Consideremos el espacio vectorial $V$ de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$. Una forma lineal es una transformación lineal que a cada vector de $V$ (cada función) lo manda a un real en $\mathbb{R}$. Un ejemplo es la forma lineal $T:V\to \mathbb{R}$ tal que $$T(f)=\int_0^1 f(t)\,dt.$$ Otro ejemplo es la forma lineal $\text{ev}_0:V\to \mathbb{R}$ que manda a cada función a lo que vale en $0$, es decir, $$\text{ev}_0(f)=f(0).$$ Aquí dimos dos formas lineales, pero hay muchas más. De hecho, en este ejemplo no está tan sencillo decir quienes son todos los elementos de $V^\ast$.

$\triangle$

Espacio dual de un espacio de dimensión finita

Sea $V$ un espacio de dimensión finita $n$ y $B=\{e_1,e_2,\ldots,e_n\}$ una base de $V$. Como ya vimos antes, una transformación lineal queda totalmente definida por lo que le hace a los elementos de una base. Más concretamente, si $v=x_1e_1+\ldots+x_ne_n$, entonces lo que hace una forma lineal $l$ en $v$ es $$l(x_1e_1+\ldots+x_ne_n)=x_1a_1+\ldots+x_na_n,$$ en donde $a_i=l(e_i)$ son elementos en $F$.

Hay una manera canónica de combinar a un elemento $l$ de $V^\ast$ y a un elemento $v$ de $V$: evaluando $l$ en $v$. Así, definimos al emparejamiento canónico entre $V$ y $V^\ast$ como la función $$\langle\cdot, \cdot \rangle: V^\ast \times V$$ definida para $l$ en $V^\ast$ y $v$ en $V$ como $$\langle l,v\rangle = l(v).$$

Observa que $\langle\cdot, \cdot \rangle$ es lineal en cada una de sus entradas por separado, es decir para $c$ en $F$, para $l_1,l_2,l$ en $V^\ast$ y para $v_1,v_2,v$ en $V$ se tiene que $$\langle cl_1+l_2,v\rangle = c\langle l_1,v\rangle + \langle l_2,v\rangle$$ y que $$\langle l,cv_1+v_2\rangle = c\langle l,v_1\rangle +\langle l,v_2\rangle.$$ Esto es un ejemplo de una forma bilineal. Estudiaremos estas formas a detalle más adelante.

Vamos a hacer una pequeña pausa. Hasta ahora, para un espacio vectorial $V$ definimos:

  • Su espacio dual $V^\ast$.
  • El emparejamiento canónico entre $V$ y $V^\ast$.

Si a $V^\ast$ le estamos llamando «el dual» es porque esperamos que sea «muy parecido» a $V$. También, en una operación de dualidad nos gustaría que al aplicar dualidad dos veces «regresemos» al espacio original.

Por esta razón, nos gustaría a cada elemento $v$ de $V$ asociarle un elemento de $V^ {\ast \ast} $, el espacio dual del espacio dual. Afortunadamente, hay una forma muy natural de hacerlo. Para cada $v$ en $V$ podemos considerar la forma lineal $\text{ev}_v:V^\ast \to F$ que a cada forma lineal $l$ en $V^\ast$ le asigna $l(v)$.

Ejemplo. Considera el espacio vectorial de matrices $M_{2}(\mathbb{R})$. El espacio dual $M_{2}(\mathbb{R})^\ast$ consiste de todas las transformaciones lineales $T: M_{2}(\mathbb{R}) \to \mathbb{R}$. Un ejemplo de estas transformaciones es la transformación $T$ que a cada matriz la manda a la suma de sus entradas, $T\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+b+c+d$. Otro ejemplo es la transformación $S$ que a cada matriz la manda a su traza, es decir, $S\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+d$.

Consideremos ahora a la matriz $A=\begin{pmatrix} 5 & 2\\ 1 & 1\end{pmatrix}$.

A esta matriz le podemos asociar la transformación $\text{ev}_A:M_{2}(\mathbb{R})^\ast\to F$ tal que a cualquier transformación lineal $L$ de $ M_{2}(\mathbb{R})$ a $\mathbb{R}$ la manda a $L(A)$. Por ejemplo, a las $T$ y $S$ de arriba les hace lo siguiente $$\text{ev}_A(T)=T(A)=5+2+1+1=9$$ y $$\text{ev}_A(S)=S(A)=5+1=6.$$

$\triangle$

La discusión anterior nos permite dar una transformación lineal $\iota: V \to V {\ast \ast}$ tal que a cada $v$ la manda a $\text{ev}_v$, a la cual le llamamos la bidualidad canónica entre $V$ y $V^ {\ast \ast} $. Nota que $$\langle \iota(v), l\rangle=\langle l, v\rangle.$$ Un teorema importante que no probaremos en general, sino sólo para espacios vectoriales de dimensión finita, es el siguiente.

Teorema. Para cualquier espacio vectorial $V$, la bidualidad canónica es inyectiva.

De hecho, para espacios vectoriales de dimensión finita veremos que es inyectiva y suprayectiva, es decir, que es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Formas coordenadas

En esta sección hablaremos de cómo encontrar una base para el espacio dual de un espacio vectorial $V$ de dimensión finita.

Supongamos que $V$ es de dimensión finita $n$ y sea $B=\{e_1,\ldots,e_n\}$ una base de $V$. A partir de la base $B$ podemos obtener $n$ formas lineales $e_i^\ast:V\to F$ como sigue. Para obtener el valor de $e_i^\ast$ en un vector $v$, expresamos a $v$ en términos de la base $$v=x_1e_1+x_2e_2+\ldots+x_n e_n$$ y definimos $e_i^\ast(v)=x_i$. A $e_i^\ast$ le llamamos la $i$-ésima forma coordenada para la base $B$ de $V$.

Directamente de las definiciones que hemos dado, tenemos que $$v=\sum_{i=1}^n e_i^\ast(v) e_i = \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i.$$

Otra relación importante es que $e_i^\ast(e_j)=0$ si $i\neq j$ y $e_i^\ast(e_j)=1$ si $i=j$. De hecho, muchas veces tomaremos esta como la definición de la base dual.

Ejemplo. Si estamos trabajando en $F^n$ y tomamos la base canónica $e_i$, entonces la forma canónica $e_i^\ast$ manda al vector $(x_1,\ldots,x_n)$ a $x_i$, que es precisamente la $i$-ésima coordenada. De aquí el nombre de formas coordenadas. En efecto, tenemos que $$v=x_1e_1+x_2e_2+\ldots+x_ne_n.$$

$\triangle$

Estamos listos para enunciar el teorema principal de esta entrada introductoria a dualidad lineal.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Más adelante…

Esta primera entrada introduce los conceptos de espacio dual. Estos conceptos son bastante útiles más adelante. Veremos que gracias a ellos, podemos dar una interpretación en términos de transformaciones lineales de la matriz transpuesta. En esta primer entrada también hablamos de formas lineales. Más adelante, veremos como éstas nos llevan de manera natural al concepto de «hiperplanos» en cualquier espacio vectorial. Uno de los resultados clave que demostraremos con la teoría de dualidad es que cualquier subespacio de un espacio vectorial de dimensión finita se puede pensar como intersección de hiperplanos. Gracias a esto encontraremos una fuerte relación entre subespacios y sistemas de ecuaciones lineales.

Antes de poder hacer estas cosas bien, necesitamos desarrollar bases sólidas. Por ello, en la siguiente entrada demostraremos el último teorema enunciado. También, veremos algunas recetas para resolver problemas de bases duales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Revisa por definición que si $V$ y $W$ son espacios vectoriales sobre $F$, entonces $\text{Hom}(V,W)$ es un espacio vectorial sobre $F$.
  • Encuentra más formas lineales en el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$.
  • Justifica por qué $\iota:V\to V^{\ast \ast}$ es una transformación lineal y argumenta por qué $\langle \iota (v),l\rangle = \langle l,v\rangle$.
  • En el espacio de polinomios $\mathbb{R}_n[x]$ con coeficientes reales y grado a lo más $n$, ¿quienes son las formas coordenadas para la base ordenada $(1,x,x^2,\ldots,x^{n-1},x^n)$?, ¿quiénes son las formas coordenadas para la base ordenada $(1,1+x,\ldots,1+\ldots+x^{n-1},1+\ldots+x^n)$?
  • Aplica el último teorema a la base canónica $E_{ij}$ de $M_2(\mathbb{R})$ para encontrar una base de $M_2(\mathbb{R})^\ast$
  • Considera el espacio vectorial $V$ de matrices en $M_2(\mathbb{R})$. ¿Quién es el kernel de la forma lineal en $V$ que a cada matriz la manda a su traza? ¿Quién es el kernel de la forma lineal $\text{ev}_A$ en $V^\ast$, donde $A=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de cambio de base

Por Blanca Radillo

Introducción

En las entradas anteriores platicamos acerca de matrices de cambio de base. Vimos cómo nos ayudan a pasar un vector expresado en una base a otra. También vimos cómo nos ayudan a entender una transformación lineal en bases distintas. En esta entrada, veremos algunos ejemplos para repasar estos conceptos.

Problemas resueltos

Problema 1. Considera las familias de vectores $B=\{v_1,v_2,v_3\}$, $B’=\{w_1,w_2,w_3\}$, donde $$v_1=(0,1,1), \ v_2=(1,0,1), \ v_3=(1,1,0)$$ y $$w_1=(1,1,-1), \ w_2=(1,0,-1), \ w_3=(-1,-1,0).$$

  1. Prueba que $B$ y $B’$ son bases de $\mathbb{R}^3$.
  2. Encuentra la matriz de cambio de base $P$ de $B$ a $B’$ usando la definición de $P$.
  3. Encuentra la matriz de cambio de base $P$ usando la base canónica de $\mathbb{R}^3$ y la última proposición de esta entrada.

Solución. (1) Dado que $\dim \mathbb{R}^3=3$ y estas familias son de tres vectores, basta con demostrar que son vectores linealmente independientes. Una manera de hacerlo es formando la matriz obtenida al colocar a los vectores como renglones y reducirla hasta la matriz identidad $I_3$.

Para $B$, la matriz asociada es $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Haciendo los cálculos de la reducción, obtenemos que

\begin{align*}
&\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}\\
\to&\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}\\
\to &\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}\\
\to &\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \\
\to &\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\end{align*}

Esto implica que los vectores en $B$ son linealmente independientes y, por lo tanto, forman una base $\mathbb{R}^3$.

Para $B’$, la matriz asociada es $$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Reduciendo la matriz, tenemos que

\begin{align*}&\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \\
\to &\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\
\to &\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\end{align*}

Por lo tanto, $B’$ también es una base de $\mathbb{R}^3$.

(2) Recordemos que la matriz de cambio de base $P$ está definida como la matriz $[p_{ij}]$ cuya columna $j$ tiene como entradas a las coordenadas de $w_j$ escrito en términos de la base $B$. Entonces, expresemos

\begin{align*}
(1,1,-1)&=w_1=av_1+bv_2+cv_3=(b+c,a+c,a+b),\\
(1,0,-1)&=w_2=dv_1+ev_2+fv_3=(e+f,d+f,d+e),\\
(-1,-1,0)&=w_3=gv_1+hv_2+kv_3=(h+k,g+k,g+h),
\end{align*}

obteniendo que

\begin{align*}
b+c&=1\\
a+c&=1\\
a+b&=-1\\
e+f&=1\\
d+f&=0\\
d+e&=-1\\
h+k&=-1\\
g+k&=-1\\
g+h&=0.
\end{align*}

Si resolvemos el sistema anterior, concluimos que $a=b=-\frac{1}{2}$, $c=\frac{3}{2}$, $d=-1$, $e=0$, $f=1$, $g=h=0$, $k=-1$. Por lo tanto

$$P=\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & k \end{pmatrix}= \begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1 \end{pmatrix}.$$

(3) Sea $B»=\{e_1,e_2,e_3\}$ la base canónica de $\mathbb{R}^3$. Queremos encontrar la matriz de cambio de base denotada como $\text{Mat}_B (B’)$. Usando la última proposición de la clase del lunes, tenemos que

$$\text{Mat}_B (B’)=\text{Mat}_{B} (B») \cdot \text{Mat}_{B»} (B’)=(\text{Mat}_{B»} (B))^{-1} \cdot \text{Mat}_{B»} (B’).$$

Por definición,

$$\text{Mat}_{B»} (B)=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \ \text{Mat}_{B»} (B’)=\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Para calcular $(\text{Mat}_{B»} (B))^{-1}$, lo haremos como ya lo hemos visto en clases: pegando a la derecha una matriz identidad y aplicando reducción gaussiana:

\begin{align*} &\left( \begin{array}{ccc|ccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right) \\
\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\
\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 & 1 & -1 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -1/2 & 1/2 & 1/2 \\ 0 & 1 & 0 & 1/2 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & 1/2 & -1/2 \end{array} \right).
\end{align*}

Por lo tanto, $$(\text{Mat}_{B»}(B))^{-1}=\begin{pmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix}.$$

Finalmente, usando la proposición, tenemos que

$$P=\text{Mat}_B (B’)=\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}\cdot\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

$$=\begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1 \end{pmatrix}. $$

Esto coincide con el cálculo que hicimos previamente.

$\square$

Problema 2. Considera la matriz $$A=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$$

y sea $T:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ la transformación lineal asociada, es decir $T(X)=AX$ para todo $X\in\mathbb{R}^3$. Considera los vectores

$$v_1=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ v_2=\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ v_3=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

  1. Prueba que $v_1,v_2,v_3$ forman una base de $\mathbb{R}^3$ y calcula la matriz de $T$ con respecto a esta base.
  2. Encuentra la matriz de cambio de base de la base canónica a la base $\{v_1,v_2,v_3\}$.
  3. Calcula $A^n$ para todo entero positivo $n$.

Antes de ver la solución a este problema este problema, observa que sería muy difícil decir quién es $A^{100}$ «a mano» si procedes directamente. Se tendrían que hacer muchas multiplicaciones matriciales, que son difíciles. Ten en mente esto cuando leas la solución de la parte 3.

Solución. (1) Dado que la dimensión de $\mathbb{R}^3$ es 3 y $\{v_1,v_2,v_3\}$ son tres vectores, basta con demostrar que éstos son linealmente independientes para probar que forman una base. Sean $a,b,c\in\mathbb{R}$ tales que $av_1+bv_2+cv_3=0$, entonces

\begin{align*}
&a+b+c=0, \ a-c=0, \ -a-b=\\
\Rightarrow &a=c, -a=b, a-a+a=0 \\
\Rightarrow &a=0, c=0, b=0.
\end{align*}

Entonces, son linealmente independientes y, por lo tanto, forman una base de $\mathbb{R}^3$.

Nota: Otra manera de demostrarlo es considerar la matriz formada por los vectores $v_1,v_2,v_3$ como sus columnas, reducirla y llegar a que la matriz reducida es la matriz identidad.

Ahora, para calcular la matriz de $T$ con respecto a la nueva base, expresaremos $T(v_1),T(v_2), T(v_3)$ en términos de $v_1,v_2,v_3$. Entonces tenemos que

$$T(v_1)=Av_1=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=v_1,$$

$$T(v_2)=Av_2=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}=2v_2,$$

$$T(v_3)=Av_3=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=\begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}=3v_3.$$

Por lo tanto, la matriz que buscamos es $$B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

(2) Lo haremos de la misma manera que en el inciso (2) del problema anterior, que consiste en escribir a los $v_1,v_2,v_3$ en la base canónica, pero ésto es obvio ya que están escritos de esa manera, por lo tanto $$P=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

(3) Sabemos que la matriz de $T$ con respecto a $v_1,v_2,v_3$ (que nombramos en el inciso (1) como $B$) es igual a $P^{-1}AP$, gracias al último corolario de la sección «Matrices de cambio de base y transformaciones lineales» de la entrada anterior. Entonces $$P^{-1}AP=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Es fácil ver (pero lo pueden demostrar por inducción en $n$) que $$(P^{-1}AP)^n=(P^{-1}AP)(P^{-1}AP)\dots (P^{-1}AP)=P^{-1}A^n P.$$

Esto implica que $P^{-1}A^n P=B^n$, es decir $$P^{-1}A^n P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.$$

Multiplicando por $P$ a la izquierda y por $P^{-1}$ a la derecha, obtenemos que $$A^n=P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}P^{-1} .$$

Para ello, nos falta calcular la inversa de $P$, y eso lo haremos como siempre lo hemos hecho: reduciendo la matriz. Entonces

\begin{align*} &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\
\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right). \end{align*}

Como consecuencia, tenemos que $$P^{-1}=\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}.$$

Por lo tanto,

\begin{align*}
A^n &=P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} P^{-1}\\
&=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}
\end{align*}

$$A^n= \begin{pmatrix} 1-2^n+3^n & 1-2^n & 1-2^{n+1}+3^n \\ 1-3^n & 1 & 1-3^n \\ 2^n-1 & 2^n-1 & 2^{n+1}-1 \end{pmatrix}.$$

$\square$

El ejercicio anterior deja una moraleja importante de álgebra lineal: si tenemos una matriz $A$ y logramos encontrar una matriz diagonal $B$ similar a ella, entonces será fácil encontrar $A^n$. Para finalizar esta sesión, tenemos el siguiente problema.

Problema 3. Prueba que las matrices $$A=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ \text{y} \ B=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$ son similares.

Solución. Para resolverlo usaremos el corolario de la entrada anterior. Al escribirlo en este contexto, dice lo siguiente:

Corolario. Sea $T:\mathbb{R}^4\rightarrow \mathbb{R}^4$ una transformación lineal. Sean $B’$ y $B»$ bases de $\mathbb{R}^4$ y $P$ la matriz de cambio de base de $B’$ a $B»$. Entonces $\text{Mat}_{B»}(T)=P^{-1} \text{Mat}_{B’}(T) P.$

Si podemos encontrar una transformación $T$ y bases $B’$ y $B»$ tales que $\text{Mat}_{B’}(T)=A$ y $\text{Mat}_{B»} (T)=B$, podemos calcular la matriz de cambio de base $P$, y satisface que $B=P^{-1}AP$, implicando que $A$ y $B$ sean matrices similares. Entonces, el problema se reduce a encontrar la transformación, las bases y calcular $P$.

Dado que $\text{Mat}_{B’}(T)=A$, si $B’$ es la base canónica, es claro que la transformación $T$ satisface que $T(X)=AX$ para todo $X\in\mathbb{R}^4$.

Ahora, encontremos $B»$. Sea $B»=\{ v_1,v_2,v_3,v_4 \}$ con

$$v_1=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}, v_2=\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}, v_3=\begin{pmatrix} x_3 \\ y_3 \\ z_3 \\ w_3 \end{pmatrix}, v_4=\begin{pmatrix} x_4 \\ y_4 \\ z_4 \\ w_4 \end{pmatrix}.$$

Dado que $\text{Mat}_{B»}(T)=B$, entonces satisface

$$T(v_1)=Av_1=v_1, \ T(v_2)=Av_2=2v_1+v_2,$$

$$T(v_3)=Av_3=3v_1+2v_2+v_3, \ T(v_4)=Av_4=4v_1+3v_2+2v_3+v_4.$$

Resolviendo lo anterior, obtenemos que

$$Av_1=\begin{pmatrix} x_1+y_1 \\ y_1+z_1 \\ z_1+w_1 \\ w_1 \end{pmatrix}=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix} \ \Rightarrow \ v_1=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

$$Av_2=\begin{pmatrix} x_2+y_2 \\ y_2+z_2 \\ z_2+w_2 \\ w_2 \end{pmatrix}=\begin{pmatrix} x_2+2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix} \ \Rightarrow \ v_2=\begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix},$$

$$Av_3=\begin{pmatrix} x_3+y_3 \\ y_3+z_3 \\ z_3+w_3 \\ w_3 \end{pmatrix}=\begin{pmatrix} x_3+5 \\ y_3+4 \\ z_3 \\ w_3 \end{pmatrix} \ \Rightarrow \ v_3=\begin{pmatrix} 1 \\ 5 \\ 4 \\ 0 \end{pmatrix},$$

y por último

$$Av_4=\begin{pmatrix} x_4+y_4 \\ y_4+z_4 \\ z_4+w_4 \\ w_4 \end{pmatrix}=\begin{pmatrix} x_4+9 \\ y_4+16 \\ z_4+8 \\ w_4 \end{pmatrix} \ \Rightarrow \ v_4=\begin{pmatrix} 1 \\ 9 \\ 16 \\ 8 \end{pmatrix}$$

Aquí estamos usando que los sistemas de ecuaciones que se obtienen tienen como variables libres a $x_1,x_2,x_3,x_4$, las cuales las estamos tomando todas ellas iguales a $1$.

Estos vectores son linealmente independientes pues la matriz con ellos como columnas es triangular superior con entradas en la diagonal distintas de cero, de modo que su matriz reducida es la identidad. Como $\mathbb{R}^4$ es de dimensión $4$ y $B»$ es un conjunto de cuatro vectores linealmente independientes, entonces $B»$ es una base. Más aún, $B»$ es una base tal que $\text{Mat}_{B»} (T)=B$, por construcción.

Finalmente, podemos calcular la matriz de cambio de base $P$ de $B’$ a $B»$, pero es fácil ya que $B’$ es la base canónica, entonces $$P=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}.$$

Por propiedades de la matriz de cambio de base, sabemos que $P$ es invertible. Entonces, para terminar la prueba, podemos encontrar $P^{-1}$ y verificar que $B=P^{-1}AP$, o simplemente verificamos que $PB=AP$, y por lo tanto $A$ y $B$ son matrices similares. Lo haremos de la segunda manera. En efecto,

$$PB=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

$$AP=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}.$$

Por lo tanto, $A$ y $B$ son matrices similares.

Nota: si calculas la inversa de $P$, obtienes como resultado que $$P^{-1}=\begin{pmatrix} 1 & -\frac{1}{2} & \frac{3}{8} & -\frac{5}{16} \\ 0 & \frac{1}{2} & -\frac{5}{8} & \frac{11}{16} \\ 0 & 0 & \frac{1}{4} & -\frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}.$$

$\square$

Entradas relacionadas


Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices de cambio de base

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente platicamos de cómo al elegir una base ordenada $B$ de un espacio vectorial $V$ de dimensión finita $n$, podemos expresar a cada uno de sus vectores en términos de «coordenadas», que vienen de los coeficientes de la combinación lineal de elementos de $B$ que da el vector. Así mismo, vimos cómo podemos comenzar con una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ y de ahí obtener una «matriz que la represente». Para ello, necesitamos elegir bases ordenadas $B_V$ y $B_W$ de $V$ y $W$ respectivamente. Tanto las coordenadas, como las matrices que representan a transformaciones lineales, dependen fuertemente de las bases ordenadas elegidas. En esta entrada hablaremos de las matrices de cambio de base, pues nos ayudarán a pasar de unas coordenadas a otras.

Siento más concretos, es posible que en algunas aplicaciones de álgebra lineal tengamos una transformación $T:V\to W$, y que los vectores de $V$ o los de $W$ los tengamos que entender en más de una base. Así, los dos siguientes problemas aparecen frecuentemente:

  • Supongamos que tenemos dos bases (ordenadas) $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases (ordenadas) $B_1$ y $B_2$ de $V$ y dos bases (ordenadas) $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

La herramienta que necesitamos para responder ambos problemas se le conoce como matrices de cambio de base. El objetivo de esta entrada es definir estas matrices, ver algunas propiedades básicas que cumplen y ver cómo nos ayudan a resolver el primero de los problemas de aquí arriba. En una segunda entrada veremos cómo también sirven para resolver el segundo.

Matrices de cambio de base

Definición. Sea $V$ un espacio vectorial de dimensión $n$ sobre el campo $F$. Sean $B=(v_1,\ldots,v_n)$ y $B’=(v_1′, \ldots, v_n’)$ dos bases ordenadas de $V$. La matriz de cambio de base de $B$ a $B’$ es la matriz $P=[p_{ij}]$ en $M_{n}(F)$ cuya columna $j$ tiene como entradas a las coordenadas de $v_j’$ escrito en términos de la base $B$. En otras palabras, las entradas $p_{1j},\ldots,p_{nj}$ de la $j$-ésima columna de $P$ son los únicos elementos de $F$ para los cuales $$v_j’=p_{1j}v_1+\ldots +p_{nj} v_n,$$ para toda $j=1,2,\ldots,n$.

Ejemplo. Considera la base ordenada $B=(1,x,x^2)$ de $\mathbb{R}_2[x]$, el espacio vectorial de polinomios de coeficientes reales grado a lo más $2$. Veremos que $B’=(3x^2,2x,1)$ es también una base de $\mathbb{R}_2[x]$. Encontraremos la matriz de cambio de base de $B$ a $B’$ y la matriz de cambio de base de $B’$ a $B$.

La dimensión de $\mathbb{R}_2[x]$ es $3$ y $B’$ tiene $3$ elementos, así que basta ver que los elementos de $B’$ son linealmente independientes para ver que $B’$ es base. Una combinación lineal $a(3x^2)+b(2x)+c(1)=0$ es equivalente a que $3ax^2+2bx+c=0$, lo cual sucede si y sólo si $a=b=c=0$. Esto muestra que $B’$ es base.

Para encontrar a la matriz de cambio de base de $B$ a $B’$ lo que tenemos que hacer es escribir a los elementos de $B’$ como combinación lineal de los elementos de $B$. Esto lo hacemos de la siguiente manera (recuerda que el orden es importante):

\begin{align*}
3x^2 &= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2\\
2x &= 0\cdot 1+ 2\cdot x + 0 \cdot x^2\\
1 & = 1\cdot 1 + 0 \cdot x + 0 \cdot x^2.
\end{align*}

Como los coeficientes de $3x^2$ en la base ordenada $B$ son $0$, $0$ y $3$, entonces la primer columna de la matriz de cambio de base será $\begin{pmatrix} 0 \\ 0 \\ 3\end{pmatrix}$. Argumentando de manera similar para $2x$ y $1$, tenemos que la matriz de cambio de base de $B$ a $B’$ es $$\begin{pmatrix}
0 & 0 & 1\\
0 & 2 & 0 \\
3 & 0 & 0
\end{pmatrix}.$$

Para encontrar a la matriz de cambio de base de $B’$ a $B$, expresamos a los elementos de $B$ en términos de la base $B’$ como sigue:

\begin{align*}
1 &= 0 \cdot (3x^2) + 0 \cdot (2x) + 1 \cdot 1\\
x &= 0\cdot (3x^2)+ \frac{1}{2} \cdot (2x) + 0 \cdot 1\\
x^2 & = \frac{1}{3} \cdot (3x^2) + 0 \cdot (2x) + 0 \cdot 1.
\end{align*}

En este caso fue sencillo hacerlo, pero en otros problemas frecuentemente esto se hace resolviendo un sistema de ecuaciones.

De esta manera, tenemos que la matriz de cambio de base de $B’$ a $B$ es $$\begin{pmatrix}
0 & 0 & \frac{1}{3}\\
0 & \frac{1}{2} & 0 \\
1 & 0 & 0
\end{pmatrix}.$$

$\triangle$

Cambio de coordenadas usando matrices de cambio de base

Las matrices de cambio de base nos ayudan a responder la primer pregunta que planteamos al inicio de esta entrada. Si conocemos las coordenadas de un vector en una base, podemos usar la matriz de cambio de base para encontrar las coordenadas del vector en otra base.

Proposición. Sea $V$ un espacio vectorial de dimensión $n$, $B=(v_1,\ldots,v_n)$, $B’=(v_1′,\ldots,v_n’)$ bases ordenadas de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Supongamos que el vector $v$ de $V$ se escribe en base $B$ como $$v=c_1v_1+c_2v_2+\ldots+c_nv_n$$ y en base $B’$ como $$v=c_1’v_1’+c_2’v_2’+\ldots+c_n’v_n’.$$ Entonces: $$
P
\begin{pmatrix}
c_1′ \\
\vdots \\
c_n’
\end{pmatrix}=\begin{pmatrix}
c_1 \\
\vdots \\
c_n
\end{pmatrix} .$$

En otras palabras, la matriz $P$ de cambio de base de $B$ a $B’$ manda las coordenadas de un vector en base $B’$ a coordenadas en base $B$ al multiplicar por la izquierda. Ojo: para construir $P$ expresamos a $B’$ en términos de $B$, pero lo que hace $P$ es expresar a alguien de coordenadas en $B’$ a coordenadas en $B$.

Demostración. El vector de coordenadas de $v_j’$ escrito en base $B’$ es el vector canónico $e_j$ de $F^n$. Además, $Pe_j$ es la $j$-ésima columna de $P$, que por construcción es el vector de coordenadas de $v_j’$ en la base $B$. Así, el resultado es cierto para los vectores $v_j’$ de la base $B’$. Para cualquier otro vector $v$, basta expresarlo en términos de la base $B’$ y usar la linealidad de asignar el vector de coordenadas y la linealidad de $P$.

$\square$

Problema. Escribe a los vectores $v_1=(4,3,5,2)$, $v_2=(2,2,2,2)$ y $v_3(0,0,0,1)$ de $\mathbb{R}^4$ como combinación lineal de los elementos de la base $B$ de $\mathbb{R}^4$ conformada por los vectores $(1,0,0,0)$, $(1,1,0,0)$, $(1,1,1,0)$ y $(1,1,1,1)$.

Solución. Conocemos las coordenadas de $v_1,v_2,v_3$ en la base canónica $(1,0,0,0)$, $(0,1,0,0)$, $(0,0,1,0)$, $(0,0,0,1)$. De hecho, el vector de coordenadas de $v_1$ es exactamente $v_1$ (esto es algo que sucede pues estamos trabajando en $\mathbb{R}^4$). Lo que nos estan pidiendo son las coordenadas de $v_1,v_2,v_3$ en la base $B$. Nos gustaría usar la proposición anterior. Para ello, necesitamos encontrar la matriz de cambio de base de $B$ a la base canónica. Escribamos entonces a la base canónica en términos de los vectores de $B$:

\begin{align*}
(1,0,0,0)&=1\cdot (1,0,0,0)+0\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,1,0,0)&= -1\cdot (1,0,0,0)+1\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,1,0)&= 0\cdot (1,0,0,0)-1\cdot (1,1,0,0)+1\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,0,1)&= 0\cdot (1,0,0,0)+0\cdot (1,1,0,0)-1\cdot (1,1,1,0)+1\cdot (1,1,1,1)\\
\end{align*}

A estas coordenadas las ponemos como columnas para encontrar la matriz de cambio de base de $B$ a la base canónica:
$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Para encontrar las coordenadas de $v_1, v_2, v_3$ en términos de la base $B$, basta con multiplicar esta matriz a la izquierda para cada uno de ellos:

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
4 \\
3 \\
5 \\
2
\end{pmatrix} = \begin{pmatrix}
1 \\
-2 \\
3\\
2
\end{pmatrix},$$

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
2 \\2 \\ 2 \\ 2
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ 0\\ 2
\end{pmatrix} $$ y

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ -1\\ 1
\end{pmatrix}. $$

En efecto, se puede verificar que estos nuevos vectores dan las combinaciones lineales de la base $B$ que hacen a $v_1$, $v_2$ y $v_3$, por ejemplo, para $v_1$ tenemos: $$(4,5,3,2)=(1,0,0,0)-2(1,1,0,0)+3(1,1,1,0)+2(1,1,1,1).$$

$\triangle$

Matrices de cambio de base como la forma matricial de una transformación lineal

A la matriz de cambio de base de $B$ a $B’$ la denotamos por $\text{Mat}_B(B’)$.

Una observación crucial es que podemos pensar a las matrices de cambio de base en un espacio vectorial $V$ justo como formas matriciales correspondientes a una transformación lineal específica. De hecho, la transformación lineal que le corresponde es muy bonita: es la identidad $\text{id}_V$ que manda a cada vector de $V$ a sí mismo.

De manera más concreta, si $B$ y $B’$ son bases de $V$ y $\text{Mat}_B(B’)$ es la matriz de cambio de base de $B$ a $B’$, entonces $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$ A estas alturas tienes todas las herramientas necesarias para demostrar esto.

¿Qué sucede si ahora tenemos tres bases $B$, $B’$ y $B»$ de $V$ y componemos a la identidad consigo misma? Utilizando los argumentos de la entrada anterior, la matriz correspondiente a la composición es el producto de las matrices de cada transformación. Juntando esto con la observación anterior, tenemos la siguiente propiedad para matrices de cambio de base:

$$\text{Mat}_B(B»)=\text{Mat}_{B}(B’)\cdot \text{Mat}_{B’}(B»).$$

Finalmente, ¿qué sucede si en la igualdad anterior ponemos $B»=B$? Al lado izquierdo tenemos la matriz de cambio de base de $B$ a sí misma, que puedes verificar que es la identidad. Al lado derecho tenemos al producto de la matriz de cambio de base de $B$ a $B’$ con la matriz de cambio de $B’$ a $B$. Esto muestra que las matrices de cambio de base son invertibles.

Resumimos todas estas observaciones en la siguiente proposición:

Proposición. Sean $B$, $B’$ y $B»$ bases del espacio vectorial de dimensión finita $V$.

  • La matriz de cambio de base de $B$ a $B’$ corresponde a la matriz de la transformación identidad de $V$ a $V$, en donde el primer $V$ lo pensamos con la base $B’$ y al segundo con la base $B$.
  • El producto de matrices de cambio de base de $B$ a $B’$ y de $B’$ a $B»$ es la matriz de cambio de base de $B$ a $B»$.
  • La matriz de cambio de base de $B$ a $B’$ es invertible, y su inversa es la de cambio de base de $B’$ a $B$.

En la próxima entrada veremos cómo las matrices de cambio de base también nos ayudan a entender transformaciones lineales bajo distintas bases.

Más adelante…

En esta entrada ya vimos cómo cambian las coordenadas de un vector cuando cambiamos de base. Lo que haremos en la siguiente entrada es estudiar cómo cambia la forma matricial de una transformación lineal cuando cambiamos las bases de su espacio vectorial origen y su espacio vectorial destino.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede en el primer ejemplo si multiplicas ambas matrices de cambio de base que encontramos?
  • En el segundo ejemplo, encuentra la matriz de cambio de base de la base canónica a la matriz $B$
  • Considera las cuatro matrices de $2\times 2$ que puedes formar colocando tres unos y un cero. Muestra que estas cuatro matrices forman una base $B$ de $M_{2,2}(\mathbb{R})$. Determina la matriz de cambio de base de $B$ a la base canónica de $M_{2,2}(\mathbb{R})$. Ojo: Una cosa son los elementos del espacio vectorial y otra cosa van a ser las matrices de cambio de base. Como $M_{2,2}(\mathbb{R})$ es de dimensión $4$, la matriz de cambio de base que tienes que determinar en realidad es de $4\times 4$.
  • Da una demostración de que, en efecto $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$
  • Verifica que la matriz de cambio de base $B$ a sí misma es la identidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»