Archivo de la etiqueta: transformación

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales. De entrada, las definiciones para cada uno de estos conceptos parecerán simplemente un juego algebraico. Sin embargo, poco a poco descubriremos que pidiendo a las transformaciones lineales cierta propiedad con respecto a su adjunta, podemos recuperar muchas propiedades geométricas bonitas que satisfacen.

Un ejemplo de esto serán las transformaciones ortogonales. Estas serán las transformaciones que, a grandes rasgos, no cambian la norma. Daremos un teorema de clasificación para este tipo de transformaciones: veremos que sólo son reflexiones o rotaciones en ciertos ejes. Después estudiaremos las transformaciones simétricas y veremos un resultado fantástico: el teorema espectral. Este teorema nos garantizará que toda transformación simétrica en $\mathbb{R}$ puede ser diagonalizada, y de hecho a través de una transformación ortogonal.

El párrafo anterior nos dice que las transformaciones ortogonales y las simétricas serán «fáciles de entender» en algún sentido. Esto parece limitado a unas familias muy particulares de transformaciones. Sin embargo, cerraremos la unidad con un teorema muy importante: el teorema de descomposición polar. Gracias a él lograremos entender lo que hace cualquier transformación lineal. Tenemos un camino muy interesante por recorrer. Comencemos entonces con la idea de la adjunta de una transformación lineal.

La adjunta de una transformación lineal

Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Tomemos una transformación lineal $T:V \to V$. Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle$ es una forma lineal. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

Esta asignación de este vector $T^\ast$ es lineal, ya que al vector $ry_1+y_2$ para $r$ escalar y $y_1,y_2$ en $V$ se le asigna la forma lineal $x\mapsto \langle T(x),ry_1+y_2\rangle=r\langle(T(x),y_1\rangle + \langle (T(x),y_2)$, que se puede verificar que le corresponde en la representación de Riesz el vector $rT^\ast(y_1)+T^\ast(y_2)$.

De esta manera, podemos correctamente enunciar la siguiente definición.

Definición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la asignación $T\mapsto T^*$ es una transformación auto-inversa sobre $V$.

La matriz de la transformación adjunta

Tenemos que $T^{**}=T$. Esto debería recordarnos a la transposición de matrices. En efecto, en cierto sentido podemos pensar a la transformación $T^\ast$ algo así como la transpuesta de la transformación (por lo menos en el caso real, para espacios sobre $\mathbb{C}$ será algo ligeramente distinto).

La siguiente proposición nos ayudará a reforzar esta intuición.

Proposición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$ y $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)={}^t\text{Mat}_{\mathcal{B}}(T).$$

En palabras, bajo una base ortonormal, la adjunta de una transformación tiene como matriz a la transpuesta de la transformación original.

Solución. Sea $A=\text{Mat}_{\mathcal{B}}(T)$ y $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$. Para cada $i\in\{1,\ldots,n\}$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$$ y de que la base $\mathcal{B}$ es ortonormal, se tiene que $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_{kj}\langle e_i,e_k \rangle = b_{ij}.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$ para cada $i,j$ en $\{1,\ldots, n\}$, que precisamente significa que $B= {}^tA$.

$\square$

Ejemplos de encontrar una adjunción

La proposición de la sección anterior nos da una manera práctica de encontrar la adjunción para transformaciones lineales.

Ejemplo. Encontraremos la transformación adjunta a la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T((x,y))=(y-x,y+2x)$. Por la proposición de la sección anterior, basta expresar a $T$ en una base ortonormal y transponer. Usemos la base canónica de $\mathbb{R}^2$. En esta base, la matriz que representa a $T$ es $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$. Por ello, la matriz que representa a $T^\ast$ es la transpuesta, es decir $\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$. De este modo, concluimos que $T^\ast((x,y)) = (-x+2y,x+y)$.

Podemos verificar que en efecto esta transformación satisface la definición de adjunción. Por un lado,

$$\langle T((a,b)), (c,d) \rangle = (b-a,b+2a)\cdot (c,d)= bc-ac+bd+2ad,$$

y por otro

$$ \langle (a,b), T((c,d)) \rangle = (a,b) \cdot (-c+2d,c+d) = -ac +2ad + bc +bd.$$

Ambas expresiones en efecto son iguales.

$\triangle$

Problema. Demuestra que una transformación lineal $T$ en un espacio euclideano de dimensión finita y la adjunta $T^\ast$ de $T$ tienen el mismo determinante.

Solución. El determinante de una transformación es igual al determinante de cualquiera de las matrices que la represente. Así, si $A$ es la forma matricial de $T$ bajo una base ortonormal, se tiene que $\det(A)=\det(T)$. Por la proposición de la sección anterior, $^tA$ es la forma matricial de $T^\ast$ en esa misma base, de modo que $\det({}^tA)=\det(T^\ast)$. Pero una matriz y su transpuesta tienen el mismo determinante, de modo que $$\det(T^\ast)=\det({}^tA)=\det(A)=\det(T).$$

$\square$

Más adelante…

La noción de transformación adjunta es nuestra primera noción fundamental para poder definir más adelante transformaciones que cumplen propiedades geométricas especiales. Con ella, en la siguiente entrada hablaremos de transformaciones simétricas, antisimétricas y normales.

Toma en cuenta que las definiciones que hemos dado hasta ahora son para espacios euclideanos, es decir, para el caso real. Cuando hablamos de espacios hermitianos, es decir, del caso complejo, los resultados cambian un poco. La transformación adjunta se define igual. Pero, por ejemplo, si la matriz que representa a una transformación es $A$, entonces la que representará a su adjunta no será la transpuesta, sino más bien la transpuesta conjugada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Encuentra la transformación adjunta para las siguientes tranformaciones lineales:
    • $T:\mathbb{R}^2\to \mathbb{R}^2 $ dada por $T(x,y)=(2y-x,2x+y)$.
    • $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $T(x,y,z)=(x+y+z,y+z,z)$.
    • $T:\mathbb{R}^n \to \mathbb{R}^n$ tal que para la base canónica $e_1,\ldots,e_n$ cumple que $T(e_i)=e_{i+1}$ para $i=1,\ldots,n-1$ y $T(e_n)=0$.
  2. Considera el espacio vectorial $M_n(\mathbb{R})$. En este espacio, la operación transponer es una transformación lineal. ¿Cuál es su transformación adjunta?
  3. Completa los detalles de que $T^\ast$ es en efecto una transformación lineal.
  4. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano y $\lambda$ es un eigenvalor de $T$, entonces $\lambda$ también es un eigenvalor de $T^\ast$. De manera más general, demuestra que $T$ y $T^\ast$ tienen el mismo polinomio característico.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$. ¿Es cierto que para todo polinomio $p$ se cumple que $p(T)^\ast=p(T^\ast)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Transformaciones lineales en bases, conjuntos independientes y generadores

Por Leonardo Ignacio Martínez Sandoval

Introducción

El objetivo de esta entrada es entender qué efecto tienen las transformaciones lineales en bases, en conjuntos linealmente independientes y en conjuntos generadores. En la siguiente lista recordamos brevemente estas nociones:

  • Una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ es una función que «abre sumas» (es decir $T(x+y)=T(x)+T(y)$) y «saca escalares» (es decir $T(cx)=cT(x)$). Recuerda que es necesario que $V$ y $W$ estén sobre el mismo campo, cosa que asumiremos cuando hablemos de transformaciones lineales.
  • Un conjunto de vectores $\{v_1,\ldots, v_n\}$ en $V$ es linealmente independiente si la única combinación lineal de ellos que da $0$ es la trivial, osea en la que todos los coeficientes son $0$.
  • Si cualquier vector de un espacio vectorial $V$ puede escribirse como combinación lineal de un conjunto de vectores $S=\{v_1,\ldots,v_n\}$, entonces decimos que $S$ genera a $V$.
  • Un conjunto de vectores en $V$ es base si es linealmente independiente y genera a $V$.

La idea de esta entrada es entender lo siguiente:

  • ¿Cuándo las imágenes de linealmente independientes/generadores/bases son linealmente independientes/generadores/bases tras aplicar una transformación lineal?
  • ¿Cómo saber si una transformación lineal es inyectiva?
  • ¿Cómo el efecto de transformaciones lineales en bases nos permite determinar exactamente qué le hacen al resto de los vectores?

Exploración

Tomemos espacios vectoriales $V$, $W$ y una transformación lineal $T:V\to W$. Si comenzamos con un conjunto $S=\{v_1,\ldots,v_n\}$ de vectores en $V$ que es linealmente independiente (o generador, o base) en $V$, ¿cuándo sucede que $T(S)=\{T(v_1),\ldots,T(v_n)\}$ es linealmente independiente (o generador, o base, respectivamente) en $W$?

Esto definitivamente no sucede siempre. La tranformación $Z:\mathbb{R}^3\to \mathbb{R}[x]$ que manda a todo vector $(x,y,z)$ al polinomio $0$ es una transformación lineal. Sin embargo, a la base canónica $\{e_1,e_2,e_3\}$ la manda al conjunto $\{0,0,0\}=\{0\}$, que no es un conjunto ni linealmente independiente, ni generador de los polinomios con coeficientes reales.

De esta forma, tenemos que pedirle más a la transformación $T$ para que preserve las propiedades mencionadas.

Intuitivamente, si la imagen de $T$ no cubre a todo $W$, entonces los vectores de la forma $T(v)$ con $v$ en $V$ no deberían de poder generar a $W$. Así, para que $T$ mande generadores a generadores, tiene que pasar que «$T$ pase por todo $W$». Esta noción queda capturada formalmente al pedir que $T$ sea suprayectiva.

Del mismo modo, también intuitivamente si «$T$ manda elementos distintos al mismo elemento», entonces perderemos familias linealmente independientes al aplicarla. Así, para preservar conjuntos linealmente independientes, necesitamos que vectores distintos vayan a valores distintos. En términos formales, necesitamos que $T$ sea inyectiva.

Resultados principales de transformaciones lineales en bases, generadores y linealmente independientes

El primer resultado es que los requisitos que descubrimos intuitivamente en la sección pasada son suficientes.

Teorema. Sea $T:V\to W$ una transformación lineal y $S=\{v_1,\ldots,v_n\}$ un conjunto de vectores de $V$. Entonces:

  • Si $T$ es inyectiva y $S$ es linealmente independiente, entonces $T(S)$ es linealmente independiente.
  • Cuando $T$ es suprayectiva y $S$ es generador, entonces $T(S)$ es generador.
  • Si $T$ es biyectiva y $S$ es base, entonces $T(S)$ es base.

Demostración. Comencemos suponiendo que $T$ es inyectiva y $S$ es linealmente independiente. Entonces $T(v_1),\ldots,T(v_n)$ son todos distintos. Tomemos una combinación lineal de elementos de $T(S)$ igual a cero, es decir, $$a_1T(v_1)+a_2T(v_2)+\ldots+a_nT(v_n)=0.$$ Debemos mostrar que todos los coeficientes son iguales a cero. Como $T$ es transformación lineal, podemos juntar las sumas y productos escalares como sigue: $$T(a_1v_1+a_2v_2+\ldots+a_nv_n)=0=T(0).$$

Como $T$ es inyectiva, esto implica que $$a_1v_1+a_2v_2+\ldots+a_nv_n=0,$$ pero como $S$ es linealmente independiente, concluimos que $$a_1=\ldots=a_n=0.$$ Así, $T(S)$ es linealmente independiente.

Supongamos ahora que $T$ es suprayectiva y $S$ es generador. Tomemos un $w\in W$. Como $T$ es suprayectiva, existe $v\in V$ tal que $T(v)=w$ y como $S$ es generador, existen $a_1,\ldots,a_n$ tales que $$a_1v_1+\ldots+a_nv_n=v.$$ Aplicando $T$ en ambos lados, abriendo las sumas y sacando escalares obtenemos que $$a_1T(v_1)+\ldots+a_nT(v_n)=T(v)=w.$$ Así, todo elemento de $W$ se puede escribir como combinación lineal de elementos de $T(S)$, como queríamos.

Finalmente, supongamos que $T$ es biyectiva y $S$ es base. Como $T$ es inyectiva y $S$ linealmente independiente, entonces $T(S)$ es linealmente independiente. Como $T$ es suprayectiva y $S$ generador, entonces $T(S)$ es generador. Así, $T(S)$ es base.

$\square$

Una consecuencia fudamental del resultado anterior es que si $V$ y $W$ son espacios de dimensión finita y existe una transformación lineal inyectiva $T:V\to W$, entonces $\dim(V)\leq \dim(W)$. En efecto, si $B$ es base de $V$ y $T$ es inyectiva, entonces $T(B)$ es linealmente independiente en $W$ y sabemos que $W$ tiene a lo más $\dim(W)$ vectores linealmente independientes, así que $\dim(V)=|B|=|T(B)|\leq \dim(W)$. De manera similar, si existe una transformación lineal $T:V\to W$ suprayectiva, entonces $\dim(V)\geq \dim(W)$. Demuestra esto. ¿Qué pasa con las dimensiones si existe una transformación lineal biyectiva entre $V$ y $W$?

¿Cuándo una transformación lineal es inyectiva?

El teorema anterior también sugiere que es importante saber cuándo una transformación lineal es inyectiva, suprayectiva o ambas. Resulta que en el caso de la inyectividad hay un criterio que nos ayuda.

Proposición. Sean $V$ y $W$ espacios vectoriales. Una transformación lineal $T:V\to W$ es inyectiva y si sólo si el único vector $v$ de $V$ tal que $T(v)=0$ es el vector $v=0$. En otras palabras $T$ es inyectiva si y sólo si $\ker(T)=\{0\}$.

Demostración. Sean $V$ y $W$ espacios vectoriales y $T:V\to W$ una transformación lineal. Recordemos que sabemos que $T(0)=0$.

Si $T$ es inyectiva y $T(x)=0$, entonces $T(x)=T(0)$ y por inyectividad $x=0$, de modo que $x$ es el único vector que va a $0$ bajo $T$.

Si el único vector que bajo $T$ va a $0$ es el $0$ y tenemos que $T(x)=T(y)$, entonces usando que $T$ es lineal tenemos que $0=T(y)-T(x)=T(y-x)$. Así, por hipótesis $y-x=0$, es decir, $x=y$. Con esto queda mostrado que $T$ es inyectiva.

$\square$

Transformaciones lineales en bases dan toda la información

Conociendo los valores de una transformación lineal en algunos vectores, es posible determinar el valor de la transformación en otros vectores que son combinación lineal de los primeros. Considera el siguiente ejemplo.

Problema. La transformación lineal $T:M_2(\mathbb{R})\to\mathbb{R}^2$ cumple que $T\begin{pmatrix}
1 & 1\\
0 & 0
\end{pmatrix}=(1,0)$, $T\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}=(0,-1)$, $T\begin{pmatrix}
0 & 0\\
1 & 1
\end{pmatrix}=(-1,0)$ y $T\begin{pmatrix}
1 & 0\\
1 & 0
\end{pmatrix}=(0,1)$. Determina el valor de $T\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}$.

Intenta resolver el problema por tu cuenta antes de ver la solución. Para ello, intenta poner a la matriz $\begin{pmatrix} 3 & 3\\ 3 & 3\end{pmatrix}$ como combinación lineal de las otras matrices y usar que $T$ es lineal.

Solución. Sean $A$, $B$, $C$ y $D$ las matrices de las cuales conocemos cuánto vale $T$ en ellas y $E$ la matriz con puros $3$’s. Queremos determinar el valor de $T(E)$. Notemos que $E=\frac{3}{2}(A+B+C+D)$. Como $T$ es transformación lineal, tenemos que

\begin{align*}
T(E)&=\frac{3}{2}(T(A)+T(B)+T(C)+T(D))\\
&=\frac{3}{2}((1,0)+(0,-1)+(-1,0)+(0,1))\\
&=(0,0).
\end{align*}

$\square$

En este problema lo que sirvió para encontrar el valor de $T(E)$ fue poner a la matriz $E$ como combinación lineal de las matrices $A,B,C,D$. De hecho, para cualquier matriz que sea combinación lineal de las matrices $A,B,C,D$, pudiéramos haber hecho lo mismo.

A partir de esta observación, podemos intuir que al conocer el efecto de transformaciones lineales en bases, podemos saber qué le hacen a cada elemento del espacio vectorial. El siguiente teorema enuncia esto de manera formal y dice un poco más.

Teorema. Sean $V$, $W$ espacios vectoriales, $B=\{v_1,v_2,\ldots,v_n\}$ una base de $V$ y $w_1,w_2,\ldots, w_n$ vectores cualesquiera de $W$. Entonces, existe una y sólo una transformación lineal $T:V\to W$ tal que $$T(v_1)=w_1,\quad T(v_2)=w_2, \quad \ldots, \quad T(v_n)=w_n.$$

Demostración. Probemos primero la parte de existencia. Como $B$ es base, cualquier vector $v$ de $V$ se puede escribir como $$a_1v_1+a_2v_2+\ldots+a_nv_n.$$ Construyamos la función $T:V\to W$ tal que $$T(v)=a_1w_1+a_2w_2+\ldots+a_nw_n.$$

Como para cada $i=1,\ldots,n$ tenemos que la combinación lineal de $v_i$ en términos de $B$ es $v_i=1\cdot v_i$, tenemos que $T(v_i)=1\cdot w_i=w_i$, que es una de las cosas que queremos. La otra que queremos es que $T$ sea lineal. Mostremos esto. Si $$v=a_1v_1+a_2v_2+\ldots+a_nv_n$$ y $$w=b_1v_1+b_2v_2+\ldots+b_nv_n,$$ entonces $$v+w=(a_1+b_1)v_1+
(a_2+b_2)v_2+\ldots+ (a_n+b_n)v_n,$$ y por definición $$T(v+w)=(a_1+b_1)w_1+ (a_2+b_2)w_2+\ldots+ (a_n+b_n)w_n.$$ Notemos que el lado derecho es igual a $T(v)+T(w)$, de modo que $T$ abre sumas. De manera similar se puede mostrar que $T$ saca escalares.

Esbocemos ahora la demostración de la unicidad. Supongamos que $T$ y $T’$ son transformaciones lineales de $V$ a $W$ tales que $T(v_i)=T'(v_i)=w_i$ para toda $i=1,\ldots,n$. Tenemos que mostrar que $T(v)=T'(v)$ para toda $v$. Para ello procedemos como en el problema antes de este teorema: escribimos a $v$ como combinación lineal de elementos de $B$. Esto se puede hacer de una única forma. El valor de $T(v)$ a su vez depende únicamente de $w_1,\ldots,w_n$ y de la los coeficientes en combinación lineal. El de $T'(v)$ también. Por lo tanto son iguales.

$\square$

Una consecuencia del teorema anterior, en la que no es necesario enunciar a las imágenes de la base, es la siguiente.

Corolario. Sean $V$ y $W$ espacios vectoriales, $B$ una base de $V$, y $T$ y $T’$ transformaciones lineales de $V$ a $W$. Si $T(v)=T'(v)$ para toda $v\in B$, entonces $T(v)=T'(v)$ para toda $v\in V$.

Más adelante…

Las propiedades que demostramos en esta entrada se usan con tanta frecuencia que muchas veces se aplican sin siquiera detenerse a argumentar por qué son válidas. Por esta razón, es importante que te familiarices con ellas. Otra ventaja de conocerlas a profundidad es que muchas veces ayudan a dar demostraciones sencillas o elegantes para algunos problemas. Finalmente, los hechos que aquí mostramos los usaremos prácticamente sin demostración en las siguientes entradas, en donde desarrollaremos la teoría de la forma matricial de transformaciones lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra qué le hace al vector $(7,3)$ una transformación lineal $T:\mathbb{R}^2\to \mathbb{R}$ tal que $T(2,1)=20$ y $T(7,2)=5$.
  • Determina si las matrices $A,B,C,D$ del problema de la entrada son una base para $M_2(\mathbb{R})$. Si no son una base, ¿cuál es la dimensión del subespacio que generan?
  • En el último teorema se afirma que la función que construimos saca escalares. Muestra esto.
  • De ese mismo teorema, escribe los detalles de que dicha función es única.
  • Demuestra el corolario enunciado en la entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas pasadas ya platicamos de espacios vectoriales y de subespacios. También desarrollamos teoría de dimensión para espacios vectoriales de dimensión finita. Para ello, hablamos de conjuntos generadores, de independientes y de bases. Esto nos ayuda a entender a los espacios vectoriales «uno por uno». Lo que queremos entender ahora es cómo interactúan los espacios vectoriales entre sí. Para ello, hablaremos de transformaciones lineales entre espacios vectoriales.

Ya platicamos un poco de transformaciones lineales cuando estudiamos $F^n$ a detalle. En esa parte del curso, vimos cómo cualquier matriz en $M_{m,n}(F)$ se podía ver como una transformación lineal de $F^n$ a $F^m$ y viceversa. Retomaremos varias de estas ideas, pues son fundamentales para esta unidad y las siguientes.

La idea de esta entrada es:

  • Dar la intuición y definición de transformaciones lineales en general.
  • Probar propiedades básicas de las transformaciones lineales.
  • Dar varios ejemplos de transformaciones lineales.
  • Dar las definiciones de kernel (o núcleo) y de imagen para una transformación lineal.
  • Ver un ejemplo que abarque ambas definiciones.
  • Finalmente, probar que el kernel y la imagen son subespacios vectoriales.

A grandes rasgos, las transformaciones lineales se pueden pensar como «funciones bonitas» entre espacios vectoriales que «preservan las operaciones de suma y multiplicación por escalar».

Definición de transformaciones lineales

Definición. Para $V$ y $W$ espacios vectoriales sobre un campo $F$, una transformación lineal entre $V$ y $W$ es una función $T:V\to W$ tal que:

  • Para todo $v_1$ y $v_2$ en $V$ se tiene que $T(v_1+v_2)=T(v_1)+T(v_2)$. Esto informalmente se le conoce como que «$T$ abre sumas».
  • Para todo $v$ en $V$ y $c$ en el campo $F$ se tiene que $T(cv)=cT(v)$. A esto se le conoce como que «$T$ saca escalares».

En la primer condición la suma de la izquierda (dentro del paréntesis) es «la suma de $V$» y la suma de la derecha es «la suma de $W$». De manera similar, en la segunda condición el producto por escalar de la izquierda (dentro del paréntesis) es el de $V$ y el de la derecha es el de $W$.

En lo que resta de esta entrada, supondremos que los espacios vectoriales son sobre un mismo campo $F$.

Ejemplos de tranformaciones lineales

Ejemplo 1. La función $T:\mathbb{R}^2 \to \mathbb{R}$ dada por $T(x,y)=x+y+1$ no es una transformación lineal. De hecho falla en ambas condiciones. Falla en abrir sumas pues, por ejemplo, $T(1,1)=3$, $T(2,2)=5$, pero $(1,1)+(2,2)=(3,3)$ y $$T(3,3)=7\neq 5 = T(1,1)+T(2,2.)$$ También falla en sacar escalares pues, por ejemplo $$T(4,2)=7\neq 8 = 2T(2,1).$$

$\triangle$

Ejemplo 2. La función $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $T(x,y,z)=(2x,2y,2z)$ es una transformación lineal.

Para convencernos de que esto es cierto, notemos que si $v=(x,y,z)$ entonces la transformación está dada por $T(v)=2v$. Ahora, tomemos dos vectores $v_1$ y $v_2$ en $V$, y un real $c$. Tenemos por la asociatividad y conmutatividad de multiplicar por escalares en $\mathbb{R}^3$ que: \begin{align*}T(v_1+v_2)&=2(v_1+v_2)\\&=2v_1+2v_2\\&=T(v_1)+T(v_2),\end{align*} y que $$T(cv_1)=2(cv_1)=c(2v_1)=cT(v_1).$$ Esto muestra que $T$ es transformación lineal.

$\triangle$

Ejemplo 3. De hecho, para cualquier espacio vectorial $V$ sobre el campo $F$ y $c$ un escalar de $F$, la función $T:V\to V$ dada por $T(v)=cv$ es una transformación lineal. El argumento es similar.

$\triangle$

Recuerda que $F_n[x]$ es el espacio vectorial de polinomios con coeficientes en $F$ y grado a lo más $n$. Recuerda también que hemos visto muchos tipos de espacios vectoriales, los $F^n$, los de polinomios, los de matrices, etc. Entre cualesquiera de ellos se pueden tener transformaciones lineales. La única condición es que sean espacios vectoriales sobre el mismo campo $F$.

Ejemplo 4. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $x^2+(a-b)x+ab$ no es una transformación lineal. Esto lo podemos verificar viendo que falla la parte de sacar escalares. Por un lado $$2(T(1,1))=2(x^2+1)=2x^2+2,$$ mientras que por otro lado $$T(2,2)=x^2+4,$$ así que $2(T(1,1))\neq T(2,2)$, de modo que $T$ no saca escalares.

$\triangle$

En cambio, si tomamos la función que manda al vector $(a,b)$ al polinomio $ax^2+(a-b)x+a+b$, puedes verificar por tu cuenta que sí es una transformación lineal.

Ejemplo 5. La función $T:M_{2,3}(\mathbb{R})\to \mathbb{R}^3$ que manda a la matriz $$M=\begin{pmatrix}
a & b & c\\
d & e & f
\end{pmatrix}$$ al vector $$T(M):= (a-d, b-e, c-f)$$ es una transfomación lineal.

Veamos que $T$ abre sumas. Tomemos dos matrices $M_1=\begin{pmatrix}
a_1 & b_1 & c_1\\
d_1 & e_1 & f_1
\end{pmatrix}$ y $M_2=\begin{pmatrix}
a_2 & b_2 & c_2\\
d_2 & e_2 & f_2
\end{pmatrix}.$ Por un lado \begin{align*}T(M_1)&=(a_1-d_1,b_1-e_1,c_1-f_1)\\T(M_2)&=(a_2-d_2,b_2-e_2,c_2-f_2),\end{align*} de modo que sumando los vectores y reacomodando tenemos que $$T(M_1)+T(M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$

Por otro lado, si primero sumamos las matrices, obtenemos la matriz $$M_1+M_2=\begin{pmatrix}
a_1+a_2 & b_1+b_2 & c_1+c_2\\
d_1+d_2 & e_1+e_2 & f_1+f_2
\end{pmatrix}.$$

Así, $$T(M_1+M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$ Esto muestra que $T(M_1+M_2)=T(M_1)+T(M_2)$, es decir, que $T$ abre sumas. Con un argumento parecido se puede mostrar que saca escalares.

$\triangle$

Ejemplo 6. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $T(a,b)=(a+b)x^2+(a-b)x+b$ es una transformación lineal.

$\triangle$

Recuerda que $C[0,1]$ es el espacio vectorial de funciones $f:[0,1]\to \mathbb{R}$ continuas.

Ejemplo 7. La función $T:C[0,1]\to \mathbb{R}$ que manda a la función $f$ al real $$T(f):=\int_0^1 f(x)\, dx$$ es una transformación lineal. En efecto, para dos funciones $f$ y $g$ continuas en el $[0,1]$ y un real $c$ se tiene por definición de suma de funciones, de multiplicación por escalar y de propiedades de la integral que \begin{align*}\int_0^1 (f+g)(x)\, dx&=\int_0^1 f(x)+g(x)\, dx\\&=\int_0^1 f(x) \, dx+\int_0^1 g(x)\, dx\end{align*} y que \begin{align*}\int_0^1 (cf)(x)\, dx &= \int_0^1 cf(x)\, dx \\&=c \int_0^1 f(x)\, dx.\end{align*}

En otras palabras, $T(f+g)=T(f)+T(g)$ y $T(cf)=cT(f)$.

$\triangle$

Propiedades básicas de transformaciones lineales

La definición de «transformación lineal» pide dos cosas por separado: abrir sumar y sacar escalares. Es bueno tenerlas por separado para referirnos a ellas individualmente. Sin embargo, la siguiente proposición nos ayuda a probar de manera más práctica que $T$ es una transformación lineal.

Proposición (verificación abreviada). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo $F$. $T:V\to W$ es una transformación lineal si y sólo si para todo $v_1,v_2$ en $V$ y $c$ en $F$ se tiene que $$T(cv_1+v_2)=cT(v_1)+T(v_2).$$

Demostración. En efecto, si $T$ es transformación lineal, entonces $T(cv_1)=cT(v_1)$ porque $T$ saca escalares y así \begin{align*}T(cv_1+v_2)&=T(cv_1)+T(v_2)\\&=cT(v_1)+T(v_2).\end{align*} Por otro lado, si se cumple $T(cv_1+v_2)=cT(v_1)+T(v_2)$ para todos $v_1$ y $v_2$ vectores en $V$ y $c$ escalar en $F$, entonces con $v_2=0$ recuperamos que $T$ saca escalares y con $c=1$ recuperamos que $T$ abre sumas.

$\square$

Las transformaciones lineales mandan al cero de un espacio vectorial al cero del otro.

Proposición (cero va a cero). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(0)=0$.

Demostración. El truco es encontrar $T(0+0)$ de dos formas distintas. Por un lado, como $0+0=0$, tenemos que $T(0+0)=T(0)$. Por otro lado, como $T$ abre sumas, tenemos que $T(0+0)=T(0)+T(0)$. Así, tenemos que $$T(0)+T(0)=T(0).$$ Restando $T(0)$ de ambos lados obtenemos $T(0)=0$.

$\square$

De hecho, hay otra forma de probar la proposición anterior usando que $T$ saca escalares: $T(0)=T(0\cdot 0)=0T(0)=0$. Piensa en por qué cada una de estas igualdades se vale y por qué adentro del paréntesis que hay dos ceros, uno de ellos es vector y el otro escalar.

Las transformaciones lineales también «respetan» inversos aditivos.

Proposición (inversos aditivos van a inversos aditivos). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(-v)=-T(v)$.

La demostración es sencilla y la puedes pensar por tu cuenta.

El haber enunciado estas proposiciones nos puede ayudar para decir, de golpe, que algunas funciones no son transformaciones lineales: si una función falla en tener alguna de las propiedades anteriores, entonces no es transformación lineal.

Ejemplo 1. Sea $V$ el espacio vectorial $\mathbb{R}^2$ y $W$ el espacio vectorial de matrices de $2\times 2$ con entradas complejas, pero visto como espacio vectorial sobre $\mathbb{R}$ (sólo se permite usar reales para la multiplicación escalar).

La transformación $T:V\to W$ que manda al vector real $(a,b)$ a la matriz de entradas complejas $T(a,b)=\begin{pmatrix}
a+ib & a-ib \\
a-ib & 1+abi\end{pmatrix}$ no es una transformación lineal pues manda al $(0,0)$ a la matriz $\begin{pmatrix}
0 & 0 \\
0 & 1\end{pmatrix},$ la cual no es la matriz $0$.

$\triangle$

Sin embargo, una pequeña advertencia. Es posible que $T$ sí mande el $0$ al $0$, pero que de cualquier forma no sea una transformación lineal, debido a que falle por otras razones.

Ejemplo 2. La transformación $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(x+y+z,xy+yz+zx,xyz)$$ cumple que $T(0,0,0)=(0,0,0)$, pero no es una transformación lineal pues no saca escalares. Por ejemplo, $$T(3,3,3)=(9,27,27)\neq 3(3,3,1)= 3T(1,1,1).$$

$\triangle$

Kernel e imagen de una transformación lineal

Tomemos $T:V\to W$ una transformación lineal. Hay dos conjuntos muy importantes relacionados con $T$.

El kernel (o núcleo) de $T$ es el conjunto de vectores en $V$ que se van al vector $0$ de $W$ cuando les aplicamos $T$. En símbolos, $$\ker(T)=\{v\in V: T(v)=0\}.$$

La imagen de $T$ son los vectores en $W$ que se pueden escribir de la forma $T(v)$ para algún $v$ en $V$, es decir, es la imagen en el sentido clásico de teoría de conjuntos o de cálculo. En símbolos, $$\Ima(T)=\{T(v): v\in V\}.$$

Haciendo énfasis de nuevo: $\ker(T)$ es un subconjunto de vectores de $V$ e $\Ima(T)$ es un subconjunto de vectores de $W$. Veamos un ejemplo que nos ayudará a repasar varios de los conceptos clave de esta entrada.

Problema. Consideremos la transformación $T:M_2(\mathbb{R})\to M_{2,3}(\mathbb{R})$ dada por $$T\begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}a & b \\ c & d \end{pmatrix} \begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}.$$

Muestra que $T$ es una transformación lineal y determina $\ker(T)$ e $\Ima(T)$.

Intenta resolver este problema por tu cuenta antes de seguir.

Solución. Sean $A$ y $B$ matrices de $2\times 2$ con entradas reales y $r$ un real. Nombremos $C=\begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}$. Por propiedades de producto de matrices, tenemos que \begin{align*}T(rA+B)&=(rA+B)C \\ &=r(AC)+BC\\ &=rT(A)+T(B),\end{align*} así que por la proposición de verificación abreviada, tenemos que $T$ es una transformación lineal.

Ahora, tomemos una matriz $A=\begin{pmatrix}
a & b \\
c & d \end{pmatrix}$ y notemos al hacer la multiplicación de manera explícita, obtenemos que $T(A)$ es la matriz $$\begin{pmatrix}
a+b & a+b & a+b\\
c+d & c+d & c+d \end{pmatrix}.$$

Determinemos quién es $\Ima(T)$. Para que una matriz $M:=\begin{pmatrix}
e & f & g\\
h & i & j \end{pmatrix}$ esté en la imagen de $T$, se tiene que cumplir que $e=f=g$ y que $h=i=j$.

Y viceversa, si $e=f=g$ y $h=i=j$, entonces $M$ está en la imagen de $T$ pues, por ejemplo $$T\begin{pmatrix}
e & 0\\
h & 0 \end{pmatrix}=\begin{pmatrix}
e & e & e\\
h & h & h\end{pmatrix}=M.$$

Esto muestra que $$\Ima (T) = \left\{\begin{pmatrix}
e & e & e\\
h & h & h \end{pmatrix}: e,h \in \mathbb{R}\right\}.$$

Ahora determinemos quién es $\ker(T)$. Para que $A$ esté en el kernel de $T$, necesitamos que todas las entradas de $T(A)$ sean $0$. Para esto es suficiente y necesario que $a+b=0$ y que $c+d=0$, o dicho de otra forma, que $A$ sea de la forma $A=\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}$. Así, concluimos que $$\ker(T)=\left\{\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}: a,c \in \mathbb{R}\right\}.$$

$\square$

Con esto ya terminamos lo que pide el problema. Sin embargo, hagamos una observación clave. En el problema anterior, $\ker(T)$ e $\Ima(T)$ no solamente son subconjuntos de $M_2(\mathbb{R})$ y de $M_{2,3}(\mathbb{R})$ respectivamente, sino que además son subespacios. Esto no es casualidad.

Los kernels e imágenes de transformaciones lineales son subespacios

Teorema. Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $\ker(T)$ es un subespacio de $V$ e $\Ima(T)$ es un subespacio de $W$.

Demostración. Demostraremos primero que $\ker(T)$ es un subespacio de $V$. Para ello basta con tomar $v_1,v_2$ en $\ker(T)$ y $c$ en el campo $F$ y mostrar que $cv_1+v_2$ también está en $\ker(T)$, es decir, que también sucede que $T(cv_1+v_2)=0$. Esto se debe a la siguiente cadena de igualdades, que justificamos abajo \begin{align*}
T(cv_1+v_2)&=T(cv_1)+T(v_2)\\
&=cT(v_1)+T(v_2)\\
&=c\cdot 0 + 0 \\
&= 0.
\end{align*}

La primera igualdad se debe a que $T$ abre sumas. La segunda a que $T$ saca escalares. La tercera a que $v_1$ y $v_2$ están en el kernel de $T$ y por lo tanto sabemos que $T(v_1)=T(v_2)=0$. La última es simplemente hacer la operación. Con esto mostramos que $\ker(T)$ es un subespacio de $V$.

Ahora, veremos que $\Ima(T)$ es un subespacio de $W$. Tomemos $w_1$ y $w_2$ en $\Ima(T)$, y un escalar $c$ en el campo $F$. De nuevo, basta mostrar que $cw_1+w_2$ está en $\Ima(T)$. Como $w_1$ y $w_2$ están en la imagen de $T$, esto quiere decir que existen vectores $v_1$ y $v_2$ en $V$ tales que $T(v_1)=w_1$ y $T(v_2)=w_2$. Notemos que entonces:
\begin{align*}
cw_1+w_2&=cT(v_1)+T(v_2)\\
&=T(cv_1)+T(v_2)\\
&=T(cv_1+v_2).
\end{align*}

La segunda y tercera igualdad vienen de que $T$ saca escalares y abre sumas respectivamente. Esta cadena de igualdades muestra que podemos poner a $cw_1+w_2$ como imagen de alguien en $V$ bajo $T$, es decir, que $cw_1+w_2$ pertenece a $\Ima(T)$. Esto es lo que queríamos mostrar.

$\square$

Más adelante…

En esta entrada definimos los conceptos de transformación lineal, de imagen y de kernel. También vimos que la imagen y kernel de transformaciones lineales son subespacios. Más adelante veremos que $\ker(T)$ e $\Ima(T)$ están de hecho relacionados más profundamente.

Por ahora, nota que en el ejemplo antes del teorema tenemos que $\begin{pmatrix}
1 & 1 & 1\\
0 & 0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 & 0\\
1 & 1 & 1 \end{pmatrix}$ forman una base de $\Ima(T)$ pues son linealmente independientes y todo elemento en la imagen es combinación lineal de estas matrices. Además, nota que de manera similar $\begin{pmatrix}
1 & -1 \\
0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 \\
1 & -1 \end{pmatrix}$ forman una base de $\ker(T)$.

Esto nos dice que $\dim(\Ima(T))=2$ y que $\dim(\ker(T))=2$. Si sumamos ambos, nos da la dimensión de $M_2(\mathbb{R})$. ¿Será casualidad?

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que las transformaciones lineales que se pusieron como ejemplo en efecto abren sumas y sacan escalares.
  • Asegúrate de entender los detalles de la prueba de la proposición de la verificación abreviada. Úsala para mostrar que la función que manda al vector $(a,b,c)$ a la matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$ es una transformación lineal de $\mathbb{R}^3$ a $M_3(\mathbb{R})$.
  • Muestra la proposición de que inversos aditivos van a inversos aditivos.
  • Determina el kernel y la imagen de las transformaciones lineales $T:V\to W$ que se dieron como ejemplo.
  • Para cada kernel e imagen que encuentres, convéncete de que son subespacios. Determina si tienen dimensión finita y, en ese caso, determina la dimensión. Para estos casos, ¿cómo están relacionados $\dim(\Ima(T)),\dim(\ker(T)),\dim(V)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»