Archivo de la etiqueta: simetría

Álgebra Lineal I: Aplicaciones del teorema espectral, bases ortogonales y más propiedades de transformaciones lineales

Introducción

Hoy es la última clase del curso. Ha sido un semestre difícil para todas y todos. El quedarnos en casa, obligados a buscar alternativas digitales que sean de fácil acceso para la mayoría de las personas, aprender a realizar toda nuestra rutina diaria en un mismo espacio; sin dudarlo, un semestre lleno de retos que de una u otra manera, haciendo prueba y error, hemos aprendido a sobrellevar.

El día de hoy terminaremos con el tema de teoría espectral. Veremos algunos problemas donde usaremos las técnicas de búsqueda de eigenvalores y eigenvectores, así como aplicaciones de uno de los teoremas más importante: el Teorema Espectral.

Matrices simétricas, matrices diagonalizables

En entradas anteriores hemos discutido sobre qué condiciones me garantizan que una matriz A es diagonalizable. No volveremos a repetir cuál es la definición de matriz diagonalizable ya que en múltiples ocasiones lo hicimos.

Sabemos que una matriz simétrica en M_n(\mathbb{R}) siempre es diagonalizable, gracias al teorema espectral, pero el siguiente problema nos ilustra que si cambiamos de campo F, no tenemos la garantía de que las matrices simétricas en M_n(F) también lo sean.

Problema. Demuestra que la matriz simétrica con coeficientes complejos

A=\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}

no es diagonalizable.

Solución. Por la primera proposición de la clase “Eigenvalores y eigenvectores de transformaciones y matrices”, si A fuese diagonalizable, es decir, que existe una matriz invertible P y una diagonal D tal que A=P^{-1}DP, entonces A y D tienen los mismos eigenvalores. Entonces, encontremos los eigenvalores de A: buscamos \lambda \in \mathbb{C} tal que \text{det}(\lambda I-A)=0,

    \begin{align*}\text{det}(\lambda I-A)&=\begin{vmatrix} \lambda -1 & i \\ i & \lambda +1 \end{vmatrix} \\&=(\lambda-1)(\lambda+1)-i^2=\lambda^2 -1+1 \\&=\lambda^2=0.\end{align*}

Por lo tanto, el eigenvalor con multiplicidad 2 de A (y también el eigenvalor de D) es \lambda =0. Si D es de la forma

D=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},

es fácil ver (y calcular) que sus eigenvalores son a y b, pero por lo anterior, podemos concluir que a=b=0, y por lo tanto D es la matriz cero. Si fuese así, A=P^{-1}DP=0, contradiciendo la definición de A.

\square

Problema. Sea A una matriz simétrica con entradas reales y supongamos que A^k=I para algún entero positivo k. Prueba que A^2=I.

Solución. Dado que A es simétrica y con entradas reales, todos sus eigenvalores son reales. Más aún son k-raíces de la unidad, entonces deben ser \pm 1. Esto implica que todos los eigenvalores de A^2 son iguales a 1. Dado que A^2 también es simétrica, es diagonalizable y, dado que sus eigenvalores son iguales a 1, por lo tanto A^2=I.

\square

Más propiedades de transformaciones lineales y bases ortogonales

En otras clases como Cálculo, Análisis, hablamos de funciones continuas, discontinuas, acotadas, divergentes; mientras que en este curso nos hemos enfocado únicamente en la propiedad de linealidad de las transformaciones. Si bien no es interés de este curso, podemos adelantar que, bajo ciertas condiciones del espacio V, podemos tener una equivalencia entre continuidad y acotamiento de una transformación.

Decimos que la norma de una transformación está definida como

\norm{T}=\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}.

Por ende, decimos que una transformación es acotada si su norma es acotada, \norm{T}<\infty.

Problema. Sea V un espacio euclideano y sea T una transformación lineal simétrica en V. Sean \lambda_1,\ldots,\lambda_n los eigenvalores de T. Prueba que

\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}} =\max_{1\leq i\leq n} |\lambda_i|.

Solución. Renumerando a los eigenvalores, podemos decir que \max_i |\lambda_i|=|\lambda_n|. Sea e_1,\ldots,e_n una base ortonormal de V tal que T(e_i)=\lambda_i e_i para todo i. Si x\in V\setminus {0}, podemos escribirlo como x=x_1e_1+\ldots+x_n e_n para algunos reales x_i. Entonces, por linealidad de T,

T(x)=\sum_{i=1}^n \lambda_i x_ie_i.

Dado que |\lambda_i|\leq |\lambda_n| para toda i, tenemos que

\frac{\norm{T(x)}}{\norm{x}}=\sqrt{\frac{\sum_{i=1}^n \lambda_i^2 x_i^2}{\sum_{i=1}^n x_i^2}}\leq |\lambda_n|,

por lo tanto

    \begin{align*} \max_{1\leq i\leq n} |\lambda_i|&=|\lambda_n|=\frac{\norm{T(e_n)}}{\norm{e_n}}\\&\leq \sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}\\ &\leq |\lambda_n|= \max_{1\leq i\leq n} |\lambda_i|. \end{align*}

Obteniendo lo que queremos.

\square

Para finalizar, no olvidemos que una matriz es diagonalizable si y sólo si el espacio tiene una base de eigenvectores, y que está íntimamente relacionado con el teorema espectral.

Problema. Encuentra una base ortogonal consistente con los eigenvectores de la matriz

A=\frac{1}{7}\begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}.

Solución. Para encontrar los eigenvectores, primero encontrar los eigenvalores y, después, para cada eigenvalor, encontrar el/los eigenvectores correspondientes.

Calculemos:

    \begin{align*}0&=\text{det}(\lambda I-A)=\begin{vmatrix} \lambda+2/7 & -6/7 & 3/7 \\ -6/7 & \lambda-3/7 & -2/7 \\ 3/7 & -2/7 & \lambda-6/7 \end{vmatrix} \\&= \lambda^3-\lambda^2-\lambda+1 \\&= (\lambda -1)(\lambda^2 -1),\end{align*}

entonces los eigenvalores de A son 1,-1, (\lambda=1 tiene multiplicidad 2).

Ahora, hay que encontrar los vectores v=(x,y,z) tal que Av=\lambda v, para todo eigenvalor \lambda.

Si \lambda=-1,

(\lambda I-A)v=\frac{1}{7}\begin{pmatrix} -5 & -6 & 3 \\ -6 & -10 & -2 \\ 3 & -2 & -13 \end{pmatrix}v=0,

reduciendo, obtenemos que v=(3\alpha, -2\alpha, \alpha) para todo \alpha\in \mathbb{R}.

Si \lambda=1, resolviendo de la misma manera (\lambda I-A)v=(I-A)v=0, tenemos que v=(\beta,\gamma,-3\beta+2\gamma) para todo \beta,\gamma. Entonces el conjunto de eigenvectores es

B=\{ v_1=(3,-2,1), \quad v_2=(1,0,-3), \quad v_3=(0,1,2) \}.

Es fácil ver que el conjunto B es linealmente independiente, más aún \text{dim}(\mathbb{R}^3)=3=|B|, por lo tanto, B es la base consistente con los eigenvectores de A.

\square

Agradecemos su esfuerzo por llegar hasta el final a pesar de todas las adversidades. Esperamos pronto volver a ser sus profesores/ayudantes. Mucha suerte en la última parcial, es el último esfuerzo. Pero también les deseamos mucho éxito en su proyecto de vida. ¡Gracias!

Seminario de Resolución de Problemas: Sistemas de ecuaciones lineales

Introducción

Finalmente, en esta serie de entradas, veremos temas selectos de álgebra lineal y su aplicación a la resolución de problemas. Primero, hablaremos de sistemas de ecuaciones lineales. Luego, hablaremos de evaluación de determinantes. Después, veremos teoría de formas cuadráticas y matrices positivas. Finalmente, estudiaremos dos teoremas muy versátiles: el teorema de factorización PJQ y el teorema de Cayley-Hamilton.

Como lo hemos hecho hasta ahora, frecuentemente no daremos las demostraciones para los resultados principales. Además, asumiremos conocimientos básicos de álgebra lineal. También, asumiremos que todos los espacios vectoriales y matrices con los que trabajaremos son sobre los reales o complejos, pero varios resultados se valen más en general.

Para cubrir los temas de álgebra lineal de manera sistemática, te recomendamos seguir un libro como el Essential Linear Algebra de Titu Andreescu, o el Linear Algebra de Friedberg, Insel y Spence. Mucho del material también lo puedes consultar en las notas de curso que tenemos disponibles en el blog.

Sistemas de ecuaciones lineales

Una ecuación lineal en n incógnitas en \mathbb{R} consiste en fijar reales a_1,\ldots,a_n, b y determinar los valores de las variables x_1,\ldots,x_n tales que

    \[a_1x_1+a_2x_2+\ldots+a_nx_n=b.\]

Si a_1,\ldots,a_n no son todos cero, los puntos (x_1,\ldots,x_n) en \mathbb{R}^n que son solución a la ecuación definen un hiperplano en \mathbb{R}^n.

Un sistema de ecuaciones lineales con m ecuaciones y n variables consiste en fijar, para i en \{1,\ldots,m\} y j en \{1,\ldots,n\} a reales a_{ij} y b_i, y determinar los valores de las variables x_1,\ldots,x_n que simultáneamente satisfacen todas las m ecuaciones

    \[\begin{cases}a_{11}x_1+ a_{12}x_2+\ldots + a_{1n}x_n = b_1\\a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\\quad \quad \vdots\\a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.\end{cases}\]

Este sistema de ecuaciones se puede reescribir en términos matriciales de manera muy sencilla. Si A es la matriz de m\times n de entradas [a_{ij}], X es el vector de variables (x_1,\ldots,x_n) y b es el vector de reales b_1,\ldots,b_m, entonces el sistema de ecuaciones anterior se reescribe simplemente como

    \[AX=b.\]

Sistemas de ecuaciones lineales con mucha simetría

En algunos sistemas de ecuaciones hay mucha simetría, y no es necesario introducir técnicas avanzadas de álgebra lineal para resolverlos. Veamos el siguiente ejemplo.

Problema. Resuelve el sistema de ecuaciones

    \[\begin{cases}7a+2b+2c+2d+2e= -2020\\2a+7b+2c+2d+2e=-1010\\2a+2b+7c+2d+2e=0\\2a+2b+2c+7d+2e=1010\\2a+2b+2c+2d+7e=2020.\end{cases}\]

Sugerencia pre-solución. Trabaja hacia atrás, suponiendo que el sistema tiene una solución. A partir de ahí, puedes usar las cinco ecuaciones y combinarlas con sumas o restas para obtener información.

Solución. Al sumar las cinco ecuaciones, obtenemos que

    \[15(a+b+c+d+e)=0,\]

de donde 2(a+b+c+d+e)=0. Restando esta igualdad a cada una de las ecuaciones del sistema original, obtenemos que

    \[\begin{cases}5a= -2020\\5b=-1010\\5c=0\\5d=1010\\5e=2020.\end{cases}\]

De aquí, si el sistema tiene alguna solución, debe suceder que

    \begin{align*}a&=\frac{-2020}{5}=-404\\b&=\frac{-2020}{5}=-202\\c&=\frac{-2020}{5}= 0\\d&=\frac{-2020}{5}=202\\e&=\frac{-2020}{5}=404.\end{align*}

Como estamos trabajando hacia atrás, esta es sólo una condición necesaria para la solución. Sin embargo, una verificación sencilla muestra que también es una condición suficiente.

\square

Sistemas de ecuaciones de n x n y regla de Cramer

Si tenemos un sistema de n variables y n incógnitas, entonces es de la forma

    \[AX=b\]

con una matriz A cuadrada de n\times n. Dos resultados importantes para sistemas de este tipo son el teorema de existencia y unicidad, y las fórmulas de Cramer.

Teorema (existencia y unicidad de soluciones). Si A es una matriz cuadrada invertible de n\times n y b es un vector de n entradas, entonces el sistema lineal de ecuaciones

    \[AX=b\]

tiene una solución única y está dada por X=A^{-1}b.

El teorema anterior requiere saber determinar si una matriz es invertible o no. Hay varias formas de hacer esto:

  • Una matriz cuadrada es invertible si y sólo si su determinante no es cero. Más adelante hablaremos de varias técnicas para evaluar determinantes.
  • Una matriz cuadrada es invertible si y sólo si al aplicar reducción gaussiana, se llega a la identidad.
  • También ,para mostrar que una matriz es invertible, se puede mostrar que cumple alguna de las equivalencias de invertibilidad.

Problema. Demuestra que el sistema lineal de ecuaciones

    \[\begin{cases}147a+85b+210c+483d+133e= 7\\91a+245b+226c+273d+154e=77\\-119a+903b+217c+220d+168e=777\\189a+154b-210c-203d-108e=7777\\229a+224b+266c-133d+98e=77777.\end{cases}\]

tiene una solución única.

Sugerencia pre-solución. Reduce el problema a mostrar que cierta matriz es invertible. Para ello, usa alguno de los métodos mencionados. Luego, para simplificar mucho el problema, necesitarás un argumento de aritmética modular. Para elegir en qué módulo trabajar, busca un patrón en las entradas de la matriz.

Solución. Primero, notemos que el problema es equivalente a demostrar que la matriz

    \[A=\begin{pmatrix}147 & 85 & 210 & 483 & 133\\91 & 245 & 226 & 273 & 154\\-119 & 903 & 217 & 220 & 168\\189 & 154 & -210 & -203 & -108 \\229 & 224 & 266 & -133 & 98\end{pmatrix}\]

es invertible. Mostraremos que su determinante no es 0. Pero no calcularemos todo el determinante, pues esto es complicado.

Notemos que como A es una matriz de entradas enteras, entonces su determinante (que es suma de productos de entradas), también es entero. Además, como trabajar en aritmética modular respeta sumas y productos, para encontrar el residuo de \det(A) al dividirse entre 7 se puede primero reducir las entradas de A módulo 7, y luego hacer la cuenta de determinante.

Al reducir las entradas módulo 7, tenemos la matriz

    \[B=\begin{pmatrix}0 & 1 & 0 & 0 & 0 \\0&0 & 2 & 0 & 0\\0 & 0 & 0 & 3 & 0\\0&0 & 0 & 0 & 4 \\5& 0 & 0 & 0 & 0\end{pmatrix}.\]

El determinante de la matriz B es -(1\cdot 2 \cdot 3 \cdot 4 \cdot 5)=-120. Así,

    \begin{align*}\det(A) & \equiv \det(B)\\&=-120\\&\equiv 6 \pmod 7.\end{align*}

Concluimos que \det(A) es un entero que no es divisible entre 7, por lo cual no puede ser cero. Así, A es invertible.

\square

Por supuesto, en cualquier otro módulo podemos hacer la equivalencia y simplificar las cuentas. Pero 7 es particularmente útil para el problema anterior pues se simplifican casi todas las entradas, y además funciona para dar un residuo no cero.

Ahora veremos otra herramienta importante para resolver problemas de ecuaciones lineales: las fórmulas de Cramer.

Teorema (fórmulas de Cramer). Sea A una matriz invertible de n\times n con entradas reales y b=(b_1,\ldots,b_n) un vector de reales. Entonces el sistema lineal de ecuaciones AX=b tiene una única solución X=(x_1,\ldots,x_n) dada por

    \[x_i=\frac{\det A_i}{\det A},\]

en donde A_i es la matriz obtenida al reemplazar la i-ésima columna de A por el vector columna b.

En realidad este método no es tan útil en términos prácticos, pues requiere que se evalúen muchos determinantes, y esto no suele ser sencillo. Sin embargo, las fórmulas de Cramer tienen varias consecuencias teóricas importantes.

Problema. Muestra que una matriz invertible A de n\times n con entradas enteras cumple que su inversa también tiene entradas enteras si y sólo si el determinante de la matriz es 1 ó -1.

Sugerencia pre-solución. Para uno de los lados necesitarás las fórmulas de Cramer, y para el otro necesitarás que el determinante es multiplicativo.

Solución. El determinante de una matriz con entradas enteras es un número entero. Si la inversa de A tiene entradas enteras, entonces su determinante es un entero. Usando que el determinante es multiplicativo, tendríamos que

    \[\det(A)\cdot \det(A^{-1}) = \det (I) = 1.\]

La única forma en la que dos enteros tengan producto 1 es si ambos son 1 o si ambos son -1. Esto muestra una de las implicaciones.

Ahora, supongamos que A tiene determinante \pm 1. Si tenemos una matriz B de columnas C_1,\ldots,C_n, entonces para j en \{1,\ldots,n\} la j-ésima columna de AB es AC_j. De este modo, si D_1,\ldots, D_n son las columnas de A^{-1}, se debe cumplir para cada j en \{1,\ldots,n\} que

    \[AD_j= e_j,\]

en donde e_j es el j-ésimo elemento de la base canónica. Para cada j fija, esto es un sistema de ecuaciones.

Por las fórmulas de Cramer, la i-ésima entrada de C_j, que es la entrada x_{ij} de la matriz A^{-1}, está dada por

    \[x_{ij}=\frac{\det(A_{ij})}{\det(A)}=\pm \det(A_{ij}),\]

donde A_{ij} es la matriz obtenida de colocar al vector e_j en la i-ésima columna de A.

La matriz A_{ij} tiene entradas enteras, así que x_{ij}=\pm \det(A_{ij}) es un número entero. Así, A^{-1} es una matriz de entradas enteras.

\square

Sistemas de ecuaciones de m x n y teorema de Rouché-Capelli

Hasta aquí, sólo hemos hablando de sistemas de ecuaciones que tienen matrices cuadradas asociadas. También, sólo hemos hablado de los casos en los que no hay solución, o bien en los que cuando la hay es única. Los sistemas de ecuaciones lineales en general tienen comportamientos más interesantes. El siguiente resultado caracteriza de manera elegante todo lo que puede pasar.

Teorema (Rouché-Capelli). Sea A una matriz de m\times n con entradas reales, (b_1,\ldots,b_m) un vector de reales y (x_1,\ldots,x_n) un vector de incógnitas. Supongamos que A tiene rango r. Entonces:

  • El sistema AX=b tiene al menos una solución X_0 si y sólo si el rango de la matriz de m\times (n+1) obtenida de colocar el vector b como columna al final de la matriz A también tiene rango r.
  • El conjunto solución del sistema AX=(0,0,\ldots,0) es un subespacio vectorial \mathcal{S} de \mathbb{R}^n de dimensión n-r.
  • Toda solución al sistema AX=b se obtiene de sumar X_0 y un elemento de \mathcal{S}.

Problema. Encuentra todos los polinomios p(x) con coeficientes reales y de grado a lo más 3 tales que p(2)=3 y p(3)=2.

Sugerencia pre-solución. Usa notación efectiva, eligiendo variables para cada uno de los coeficientes de p(x). Luego, enuncia cada hipótesis como una ecuación.

Solución. Tomemos p(x)=ax^3+bx^2+cx+d. La hipótesis implica que

    \[\begin{cases}8a+4b+2c+d=p(2)= 3\\27a+9b+3c+d=p(3)=2.\end{cases}\]

El rango de la matriz

    \[\begin{pmatrix} 8 & 4 & 2 & 1\\ 27 & 9 & 3 & 1\end{pmatrix}\]

es a lo más 2, pues tiene 2 renglones. Pero es al menos 2, pues los dos vectores columna (2,3) y (1,1) son linealmente independientes. Exactamente el mismo argumento muestra que la matriz aumentada

    \[\begin{pmatrix} 8 & 4 & 2 & 1 & 3\\ 27 & 9 & 3 & 1 & 2\end{pmatrix}\]

es de rango 2. Por el primer punto del teorema de Rouché-Capelli, este sistema tiene solución.

Para encontrar esta solución de manera práctica, fijamos reales a y b y notamos que ahora

    \[\begin{cases}2c+d= 3-8a-4b\\3c+d=2-27a-9b\end{cases}\]

es un sistema en 2 variables, y como

    \[\det\begin{pmatrix} 2 & 1\\ 3 & 1\end{pmatrix}=-1,\]

tiene una única solución para c y d. Al hacer las cuentas, o usar fórmulas de Cramer, obtenemos que

    \begin{align*}c&=-1-19a-5b\\d&=5+30a+6b.\end{align*}

Así, concluimos que los polinomios p(x) solución consisten de elegir cualesquiera reales a y b y tomar

    \[p(x)=ax^3+bx^2-(1+19a+5b)x+(5+20a+6b).\]

\square

Por supuesto, para usar este teorema es necesario conocer el rango de la matriz A. En el problema tuvimos la suerte de que eso es sencillo. Hablaremos más adelante de varias técnicas para encontrar el rango de matrices.

Más problemas

Puedes encontrar más problemas de sistemas de ecuaciones lineales en el Capítulo 3 y en la Sección 7.6 del libro Essential Linear Algebra de Titu Andreescu.

Usa la paridad

HeuristicasLos números enteros pueden ser pares o impares, dependiendo de si son divisibles entre dos o no. Más aún, se van alternando uno y uno. Además, es muy sencillo saber cómo es la paridad de la suma de dos números o bien de su producto si sabes la paridad de esos números. Estas ideas pueden parecer muy básicas, pero ayudan en una gran cantidad de problemas y son una introducción a los invariantes.

Cuando en un problema observamos nada más la paridad, estamos cubriendo una gran cantidad de casos nada más analizando pocos. En estos videos vemos cómo se aplica la idea de paridad en varios problemas de tableros, juegos, álgebra y teoría de números.

Ir a los videos…

Aprovechar la simetría

HeuristicasLa simetría, además de ser una propiedad que hace que las cosas se vean bonitas, también es una buena técnica de resolución de problemas. Hay varias formas en las que se puede aprovechar la simetría en un problema. Una es para reducir esfuerzo: ¿para qué repetir un argumento si es el mismo? ¿para qué desarrollar todos los términos si la ecuación es simétrica?

En  otras ocasiones la simetría nos permite sospechar que los casos especiales tienen que ser simétricos. A veces no hay razón para que sea de otra forma. Finalmente, la simetría también está presente en una gran variedad de la información del problema, y hay que inventarla o descubrirla para simplificar cuentas, notación y conjeturas.

Ir a los videos…

Regla del producto, asignaciones y permutaciones

CombinatoriaLa regla del producto es el segundo principio funamental para contar además de la regla de la suma. Nos permite contar cosas en las cuales tenemos que hacer varias elecciones que luego son compatibles. Como dos consecuencias naturales, tenemos a las asignaciones y a las permutaciones.

Ir a los videos…