Archivo de la etiqueta: relaciones

Teoría de los Conjuntos I: Relaciones de equivalencias

Introducción

En esta entrada hablaremos acerca de un tipo de relaciones a las que llamaremos relaciones de equivalencia. Trataremos ejemplos que son relaciones de equivalencia así como ejemplos que no lo son.

Sobre el concepto

Definición: Sea $R$ una relación en $A$. Decimos que $R$ es una relación de equivalencia si se satisfacen las siguientes condiciones:

  1. Para cualquier $a\in A$, $(a,a)\in R$ (reflexiva),
  2. Si $(a,b)\in R$, entonces $(b,a)\in R$ (simetría),
  3. Si $(a,b)\in R$ y $(b,c)\in R$, entonces $(a,c)\in R$ (transitiva).

Una forma de recordar las propiedades que caracterizan a la definición de relación de equivalencia es pensar en lo siguiente:

  1. Cualquier persona es amiga de si misma (reflexividad),
  2. Si Juan es amigo de Pedro, entonces Pedro es amigo de Juan (simetría),
  3. Si Ana es amiga de Luis y Luis es amigo de Adrián, entonces Ana es amiga de Adrián (transitividad).

Algunos ejemplos

Ejemplo:

Sea $A=\set{a,b}$. $R=\set{(a,a), (b,b), (a,b), (b,a)}$ es relación de equivalencia. En efecto, podemos verificar que $R$ es una relación en $A$ y se verifican las propiedades:

  1. Reflexivilidad:
    Sea $x\in A$, entonces $x=a$ o $x=b$. Luego, como $(a,a)\in R$ y $(b,b)\in R$ se cumple que $R$ es una relación reflexiva.
  2. Simetría:
    Dado que nuestra relación es un conjunto pequeño podemos evaluar que pasa con cada uno de sus elementos:
    -Si $(a,a)\in R$, entonces $(a,a)\in R$ es verdadero,
    -Si $(b,b)\in R$, entonces $(b,b)\in R$ es verdadero,
    -Si $(a,b)\in R$, entonces $(b,a)\in R$ es verdadero,
    -Si $(b,a)\in R$, entonces $(a,b)\in R$ es verdadero.
    Por lo tanto, $R$ es simetrica.
  3. Transitividad:
    Dado que si $(a,b)\in R$ y $(b,a)\in R$ entonces $(a,a)\in R$ se cumple. Del mismo modo se cumple que si $(b,a)\in R$ y $(a,b)\in R$, entonces $(b,b)\in R$.
    Por lo tanto, $R$ es transitiva.

$\square$

Ejemplo:

Sea $X=\emptyset$, la relación vacía es relación de equivalencia. En efecto, podemos verificar las propiedades:

  1. Reflexividad:
    Sea $x\in X$, entonces $(x,x)\in \emptyset$ es verdadero, pues $x\in X=\emptyset$ es falso y la reflexividad se verifica por vacuidad.
  2. Simetría:
    Sea $(x,y)\in \emptyset$, entonces $(y,x)\in \emptyset$ por vacuidad.
  3. Transitividad:
    Sean $(x,y)\in \emptyset$ y $(y,z)\in\emptyset$, entonces $(x,y)\in \emptyset$ por vacuidad.

Por lo tanto, $\emptyset$ es relación de equivalencia en $X=\emptyset$.

$\square$

Relaciones casi de equivalencia

La definición de relación de equivalencia nos pide verificar tres propiedades: reflexividad, simetría y transitividad. Si alguna relación verifica alguna de ellas pero no todas, entonces no será de equivalencia. Veamos los siguientes ejemplos:

Ejemplo: (Simétrica y transitiva pero no reflexiva)

Sea $X$ un conjunto no vacío, la relación vacía en $X$ no es relación de equivalencia. En efecto, podemos verificar que $\emptyset$ es simétrica y transitiva por un argumento por vacuidad, pero $\emptyset$ no es una relación reflexiva.

Dado que si $x\in X$ arbitrario, entonces $(x,x)\in \emptyset$ es falso, pues la relación vacía no tiene elementos, concluimos que $\emptyset$ no es reflexiva.

$\square$

Ejemplo: (Reflexiva, simétrica pero no transitiva)

Sea $X=\set{a,b,c}$ y sea $R=\set{(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a)}$. Tenemos que $R$ no es relación de equivalencia, pues aunque es reflexiva y simétrica no es transitiva.

$R$ no es una relación transitiva pues $(c,a)\in R$ y $(a,b)\in R$, pero $(c,b)\notin R$.

$\square$

Ejemplo: (Reflexiva, transitiva pero no simétrica)

Sea $X=\set{a,b,c}$ y sea $R=\set{(a,a), (b,b), (c,c), (a,b)}$. Tenemos que $R$ no es relación de equivalencia, pues aunque es reflexiva y transitiva no es simétrica.

$R$ no es una relación transitiva pues $(c,a)\in R$ y $(a,b)\in R$, pero $(c,b)\notin R$.

$\square$

Resultados

Teorema: Sean $R_1$ y $R_2$ relaciones de equivalencia en $A$. Demuestra que $R_1\cap R_2$ es relación de equivalencia.

Demostración:

Supongamos que $R_1$ y $R_2$ son relaciones de equivalencia en $A$. Veamos que $R_1\cap R_2$ es una relación de equivalencia en $A$, para ello debemos verificar que $R_1\cap R_2$ es reflexiva, simétrica y transitiva.

Afirmación 1: $R_1\cap R_2$ es reflexiva.

Sea $a\in A$, veamos que $(a,a)\in R_1\cap R_2$.
Como $a\in A$ y $R_1$ es relación de equivalencia en $A$, entonces en particular es reflexiva, de modo que $(a,a)\in R_1$.

Luego, como $a\in A$ y $R_2$ es reflexiva por ser relación de equivalencia se cumple que $(a,a)\in R_2$. Por lo tanto, $(a,a)\in R_1$ y $(a,a)\in R_2$, esto es $(a,a)\in R_1\cap R_2$.

Por lo tanto, $R_1\cap R_2$ es reflexiva.

Afirmación 2: $R_1\cap R_2$ es simétrica.

Sea $(a,b)\in R_1\cap R_2$, veamos que $(b,a)\in R_1\cap R_2$.

Como $(a,b)\in R_1\cap R_2$, entonces $(a,b)\in R_1$ y $(a,b)\in R_2$. Luego, $(b,a)\in R_1$ y $(b,a)\in R_2$ por ser $R_1$ y $R_2$ relaciones simétricas respectivamente. Por lo tanto, $(b,a)\in R_1\cap R_2$.

Por lo tanto, $R_1\cap R_2$ es simétrica.

Afirmación 3: $R_1\cap R_2$ es transitiva.

Sean $(a,b), (b,c)\in R_1\cap R_2$, veamos que $(a,c)\in R_1\cap R_2$.

Como $(a,b)\in R_1\cap R_2$, entonces $(a,b)\in R_1$ y $(a,b)\in R_2$. Luego, como $(b,c)\in R_1\cap R_2$ entonces $(b,c)\in R_1$ y $(b,c)\in R_2$.

Así, $(a,b)\in R_1$ y $(b,c)\in R_1$ y por la transitividad de $R_1$ se sigue que $(a,c)\in R_1$.

De forma similar, como $(a,b)\in R_2$ y $(b,c)\in R_2$ se sigue que $(a,c)\in R_2$ por transitividad de $R_2$.

De los argumentos anteriores se tiene que $(a,c)\in R_1\cap R_2$.

Por lo tanto, $R_1\cap R_2$ es transitiva.

Por lo tanto, $R_1\cap R_2$ es relación de equivalencia en $A$.

$\square$

Proposición: Demuestra que si $R$ es una relación sobre un conjunto $X$, cumple con las siguientes propiedades:

  1. $(x,x)\in R$ para todo $x\in X$,
  2. Si $(x,y)\in R$ y $(y,z)\in R$, entonces $(z,x)\in R$.

Entonces $R$ es relación de equivalencia.

Demostración:

Supongamos que $R$ es una relación tal que $(x,x)\in R$ para todo $x\in X$ y si $(x,y)\in R$ y $(y,z)\in R$, entonces $(z,x)\in R$. Veamos que $R$ es relación de equivalencia.

Tenemos que $R$ es reflexiva pues por hipótesis $(x,x)\in R$ para todo $x\in X$. Luego, si $(x,y)\in R$, veamos que $(y,x)\in R$ para probar que $R$ es simétrica. Dado que $(x,y)\in R$ entonces $x,y\in X$ y por reflexividad $(y,y)\in R$. Así, por hipótesis tenemos que $(y,x)\in R$.

Ahora veamos que $R$ es transitiva. Supongamos que $(x,y)\in R$ y $(y,z)\in R$ y mostremos que $(x,z)\in R$. Como $(x,y)\in R$ y $(y,z)\in R$, entonces $(z,x)\in R$ y por simetría de $R$ se tiene que $(x,z)\in R$.

$\square$

Tarea moral

La siguiente lista de ejercicios te será útil para verificar por tu cuenta que ciertas relaciones son de equivalencia:

  1. Demuestra que $Id_A$ es una relación de equivalencia para $A$ un conjunto cualquiera.
  2. Sea $X=\set{a,b,c}$ y sea $R=\set{(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a)}$. Demuestra que $R$ es reflexiva y simétrica.
  3. Sea $X=\set{a,b,c}$ y sea $R=\set{(a,a), (b,b), (c,c), (a,b)}$. Demuestra que $R$ es reflexiva y simétrica.
  4. Construye $R$ una relación tal que $R$ sea reflexiva pero no sea ni simétrica ni transitiva.

Más adelante

En la siguiente sección seguiremos tratando a las relaciones de equivalencia, esta vez hablaremos acerca de sus elementos y como podemos estudiarlos según estén relacionados con otros elementos. Definiremos a un nuevo conjunto llamado clase de equivalencia en el que se encontraran aquellos elementos que estén relacionados con un mismo elemento.

Enlaces

Puedes consultar más contenido de relaciones de equivalencia en el siguiente enlace:

Álgebra Superior I: Relaciones de equivalencia y clases de equivalencia

Teoría de los Conjuntos I: Composición de relaciones

Introducción

En esta sección retomaremos el tema de relaciones que vimos en la entrada anterior. Esta vez definiremos una nueva relación a partir de dos relaciones con ciertas características y una operación a la que llamaremos composición. Veremos si la operación composición tiene propiedades como la conmutatividad o la asociatividad.

Definamos la composición

Definición: Sean $r_1$ y $r_2$ relaciones de $A$ en $B$ y de $B$ en $C$ respectivamente. Definimos a la composición de $r_1$ con $r_2$ como el siguiente conjunto:

$r_2\circ r_1=\set{(a,c): \exists b\in B\ tal\ que\ (a,b)\in r_1\ y\ (b,c)\in r_2}$.

Notemos que $r_1$ debe satisfacer que $Im(r_1)\subseteq B$ y $r_2$ es tal que $Dom(r_2)\subseteq B$, debido a que la definición nos pide que exista un puente entre los elementos de $A$ y $C$. El puente que necesitamos que exista para hablar de la composición de relaciones nos lo da el conjunto $B$ ya que algunos de los elementos de $A$ estarán relacionados con elementos de $B$ y los elementos de $B$ están relacionados con algunos de los elementos de $C$.

Aquellos elementos $a$ que satisfagan estar relacionados con algún elemento de $B$, digamos $b$, esto es $ar_1b$ y a su vez $b$ este relacionado con $c$, $br_2c$, serán aquellos que conformen a los elementos de $r_2\circ r_1$ y serán de la forma $a\ r_2\circ r_1\ c$.

Ejemplo:

Sean $X=\set{0,1}$ y $Y=\set{1,2}$ y $Z=\set{1,2,3,4}$ conjuntos. Sean $r_1$ y $r_2$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ definidas como sigue:

$r_1=\set{(0,1), (0,2)}\ y\ r_2=\set{(1,3), (1,4)}$.

Representaremos ambas relaciones de las siguiente formas:

Luego, la composición de $r_2\circ r_1$ resulta ser el siguiente conjunto:

$r_2\circ r_1=\set{(0, 3), (0,4)}$.

Además de notarlo en la imagen anterior, verificamos esto pues para la pareja $(0,3)\in r_2\circ r_1$ existe $1\in Y$ tal que $(0,1)\in r_1$ y $(1,3)\in r_2$. Por su parte, para la pareja $(0,4)\in r_2\circ r_1$ existe $1\in B$ tal que $(0,1)\in r_1$ y $(1,4)\in r_2$.

$\square$

Algunos resultados

A continuación hablaremos acerca de algunos resultados acerca de la composición, la relación inversa y la relación identidad:

Proposición: Si $R$ es una relación en $A$, entonces $R\circ Id_{A}=R$.

Demostración:

Sea $R$ una relación en $A$. Veamos que $R\circ Id_{A}=R$.

$\subseteq$] Sea $(x,z)\in R\circ Id_{A}$, entonces existe $y\in A$ tal que $(x,y)\in Id_{A}$ y $(y,z)\in R$.
Luego, como $(x,y)\in Id_{A}$ se sigue que $x=y$ y así $(y,z)=(x,z)\in R$.

$\supseteq$] Sea $(a,c)\in R$. Como $a,c\in A$, se sigue que $(a,a)\in Id_{A}$. Por lo que existe $a\in A$ tal que $(a,a)\in Id_{A}$ y $(a,c)\in R$. Por lo tanto, $(a,c)\in R\circ Id_{A}$.

Por lo tanto, $R\circ Id_{A}=R$.

$\square$

Proposición: Sea $R$ una relación de $A$ en $B$. Demuestra que $Id_{Im\ R}\subseteq R\circ R^{-1}$.

Demostración:

Sea $(x,y)\in Id_{Im\ R}$, entonces $x,y\in Im\ R$ y son tales que $x=y$. Luego, como $y\in Im\ R$ existe $a\in A$ tal que $(a,y)\in R$, y por definición de relación inversa tenemos que $(y,a)\in R^{-1}$.

Por lo tanto, existe $a\in A$ tal que $(y,a)\in R^{-1}$ y $(a,y)\in R$, esto es $(y,y)\in R\circ R^{-1}$. Así, $Id_{Im\ R}\subseteq R\circ R^{-1}$.

$\square$

Propiedades de la composición

Hemos dicho hasta ahora que la composición es una operación entre dos conjuntos que son relaciones. Por lo que podemos preguntarnos que pasa con la conmutatividad y la asociatividad de la operación. A continuación veremos dos proposiciones que nos dan respuestas a dichas preguntas.

Proposición: Sean $r_1$ y $r_2$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ respectivamente. Muestra que no siempre es posible que $r_1\circ r_2=r_2\circ r_1$.

Demostración:

Consideremos $X=\set{1,2}$, $Y=\set{1,2,3}$ y $Z=\set{1,2,3}$. Sean $r_1=\set{(1,1), (1,2)}$ y $r_2=\set{(1,2),(2,1)}$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ respectivamente.

Por un lado tenemos que

$r_1\circ r_2=\set{(2,1), (2,2)}$

y por otro lado

$r_2\circ r_1=\set{(1,2),(1,1)}$

De modo que $r_1\circ r_2\not=r_2\circ r_1$.

Proposición: Sean $r_1$, $r_2$ y $r_3$ relaciones de $X$ en $Y$, de $Y$ en $W$ y de $W$ en $Z$ respectivamente. Muestra que $(r_3\circ r_2)\circ r_1=r_3\circ (r_2\circ r_1)$.

Demostración:

Sean $r_1$, $r_2$ y $r_3$ relaciones de $X$ en $Y$, de $Y$ en $W$ y de $W$ en $Z$ respectivamente. Tenemos que

$(x,z)\in (r_3\circ r_2)\circ r_1$ si y sólo si

existe $y\in Y$ tal que $(x,y)\in r_1$ y $(y,z)\in r_3\circ r_2 si y sólo si

$(x,y)\in r_1$ y existe $w\in W$ tal que $(y,w)\in r_2$ y $(w,z)\in r_3$ para algún $y\in Y$ si y sólo si

existe $w\in W$ tal que $(x,w)\in r_2\circ r_1$ y $(w,z)\in r_3$ si sólo si
$(x,z)\in r_3\circ(r_2\circ r_1)$.

Por lo tanto, $(r_3\circ r_2)\circ r_1=r_3\circ (r_2\circ r_1)$.

$\square$

Hemos probado que la composición de relaciones es asociativa y a su vez concluimos que en general no conmuta.

Tarea moral

  1. Demuestra que si $R$ es una relación arbitraria, $R\circ \emptyset=\emptyset=\emptyset\circ R$.
  2. Prueba que si $R$ es una relación en $A$, entonces $R=Id_{A}\circ R$.
  3. Sea $R$ una relación de $A$ en $B$. Demuestra que $Id_{Dom\ R}\subseteq R^{-1}\circ R$.
  4. Sean $A= \set{1,2,3}$, $B=\set{1,2}$ y $C=\set{1,2,3,4}$. Sean $r_1=\set{(1,2), (3,1)}$ y $r_2=\set{(1,4), (2,1), (2,3)}$ relaciones de $A$ en $B$ y de $B$ en $C$ respectivamente. Calcula $r_2\circ r_1$.

Más adelante

Estudiaremos un tipo especial de relaciones, llamadas relaciones de equivalencia, las cuales nos permitirán estudiar con mayor facilidad a un nuevo conjunto pues lo dividiremos en partes que cumplan ciertas características.

Enlaces

En el siguiente enlace podrás encontrar más información referente al tema de composición de funciones:

Teoría de los Conjuntos I: Relaciones

Introducción

En esta nueva entrada vamos a ver el concepto de relación, para definirla es necesario tener fresco el concepto de producto cartesiano. Así mismo, definiremos nuevos conjuntos a partir de una relación, como lo son el dominio, la imagen de una relación, la imagen de un conjunto bajo una relación. Concluiremos esta sección definiendo a la relación inversa.

Relación

Definición: Sean $A$ y $B$ conjuntos, definimos $r$ una relación de $A$ en $B$ si y sólo si $r\subseteq A\times B$.

Si $A=B$ diremos que $r\subseteq A\times A$ es una relación en $A$.

Ejemplo 1:

Sea $A=\set{\emptyset,\set{\emptyset}}$ y $B=\set{\emptyset, \set{\set{\emptyset}}}$ y definimos $r$ como:

$r=\set{(\emptyset, \emptyset), (\emptyset, \set{\set{\emptyset}})}$.

Dado que $A\times B=\set{(\emptyset,\emptyset), (\emptyset, \set{\set{\emptyset}}), (\set{\emptyset}, \emptyset), (\set{\emptyset}, \set{\set{\emptyset}})}$ y $r\subseteq A\times B$ decimos que $r$ es una relación de $A\times B$.

$\square$

Ejemplo 2:

Sea $A=\set{1,2}$ y $B=\set{1,2,3}$. Definimos $R=\set{(1,1), (1,2), (1,3)}$ y decimos que $R$ es una relación.

En efecto, pues $R=\set{(1,1), (1,2), (1,3)}\subseteq A\times B$, donde $A\times B=\set{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)}$.

Si representamos a $R$, podemos verlo como sigue:

Imagen de relación del ejemplo 2

$\square$

Definición: Si $(x,y)\in r$ con $r$ relación, decimos que $x$ está relacionado con $y$ y lo denotaremos como $xRy$.

Si retomamos el ejemplo 1 podemos decir que $\emptyset r\emptyset$ y $\emptyset r\set{\set{\emptyset}}$.

A partir del ejemplo 2 podemos decir que $1R1$, $1R2$ y $1R3$.

Relaciones relevantes

A continuación hablaremos de algunas relaciones que se pueden definir. Dichas relaciones serán de gran utilidad más adelante, por lo que incluso tienen nombre.

  1. Relación vacía
    Si $r=\emptyset$, entonces $r$ será llamada relación vacía. Esto tiene sentido pues $\emptyset\subseteq A\times B$ para cualesquiera $A$ y $B$ conjuntos, debido a que el conjunto vacío está contenido en cualquier conjunto y $A\times B$ es un conjunto.
  2. Relación identidad
    Sea $A$ un conjunto cualquiera, definimos la relación identidad en $A$ como:
    $Id_{A}=\set{(a,a):a\in A}$.
    Notamos que $Id_{A}\subseteq A$ pues para cualquier $(x,y)\in Id_{A}$ se tiene que $x=y$ tal que $x,y\in A$, lo que significa que $(x,y)\in A\times A$.
  3. Relación inclusión
    Sea $X$ un conjunto cualquiera, definimos a la relación inclusión en $\mathcal{P}(X)$ como el siguiente conjunto:
    $\set{(A, B): A,B\in \mathcal{P}(X)\ y\ A\subseteq B}$.
  4. Relación de pertenencia
    Sea $A$ un conjunto, definimos a la relación de pertenencia en $A$ como el siguiente conjunto:
    $\in_{A}=\set{(a,b): a\in A,\ b\in A,\ a\in b}$.
  5. Relación de contención
    Sea $A$ un conjunto, definimos a la relación de pertenencia en $A$ como el siguiente conjunto:
    $\subseteq_{A}=\set{(a,b): a\in A,\ b\in A,\ a\subseteq b}$.

Dominio de una relación

Ya que hemos definido el concepto de relación, a continuación definiremos al dominio de una relación:

Definición: Sea $r$ una relación de $A$ en $B$, definimos el dominio de la relación como:

$dom(r)=\set{x\in A:\exists y\in B\ tal\ que\ (x,y)\in r}$.

Ejemplo:

Sean $A=B=\set{1,2}$, definimos $R=\set{(1,2), (1,1), (2,2)}\subseteq A\times B$. Tenemos que:

$dom(R)=\set{1,2}$

pues para $1\in A$ existe $1,2\in B$ tales que $(1,1),(1,2)\in R$ y para $2\in A$ existe $2\in B$ tal que $(2,2)\in R$.

$\square$

Imagen de una relación

A continuación vamos a definir la imagen de una relación:

Definición: Sea $r$ una relación de $A$ en $B$, definimos la imagen de la relación $r$ como:

$im(r)=\set{y\in B:\exists x\in B\ tal\ que\ (x,y)\in r}$.

Ejemplo:

Sean $A=B=\set{1,2}$, definimos $R=\set{(1,2), (1,1), (2,2)}\subseteq A\times B$. Tenemos que:

$im(R)=\set{1,2}$

pues para $1\in B$ existe $1\in A$ tal que $(1,1)\in R$ y para $2\in B$ existe $1,2\in A$ tal que $(1,2), (2,2)\in R$.

$\square$

Imagen de un conjunto bajo una relación

Definición: Sea $R$ una relación de $A$ en $B$. Sea $C\subseteq A$, definimos a la imagen de $C$ bajo $R$ como el siguiente conjunto:

$R(C)=\set{y\in B: \exists x\in C (xRy)}$.

Ejemplo:

Sean $A=\set{1,2}$ y $B=\set{1,2,3,4}$ conjuntos. Sea $r=\set{(1,1), (1,3), (2,1), (2,2), (2,4)}$ una relación de $A$ en $B$ y sea $C=\set{1}\subseteq A$, tenemos que

$R(C)=\set{y\in {1,2,3,4}:\exists x\in{1}(xRy)}= \set{1,3}$.

$\square$

Relación inversa

Definición: Sean $A$ y $B$ conjuntos. Sea $r$ una relación de $A$ en $B$, definimos la relación inversa de $r$ de $B$ en $A$ como:

$r^{-1}=\set{(b,a): (a,b)\in r}$.

Notemos que la relación inversa intercambia el orden de las entradas de las parejas ordenadas que son elementos de la relación $r$.

Ejemplo:

Sea $A=\set{\emptyset}$ y $B=\set{\emptyset, \set{\emptyset}}$ y definimos $r$ como:

$r=\set{(\emptyset, \emptyset), (\emptyset,\set{\emptyset})}$

tenemos que

$r^{-1}=\set{(\emptyset, \emptyset), (\set{\emptyset}, \emptyset)}$.

En efecto, pues como $(\emptyset, \emptyset)\in r$ tendremos que $(\emptyset, emptyset)\in r^{-1}$ y como $(\set{\emptyset}, \emptyset)\in r$ tendremos que $(\emptyset, \set{\emptyset})\in r^{-1}$.

$\square$

Proposición: Sea $R$ una relación, demuestra que $(R^{-1})^{-1}=R$.

Demostración:

Sea $R$ una relación, tenemos que

\begin{align*}
(R^{-1})^{-1}&=\set{(x,y): (y,x)\in R^{-1}}\\
&= \set{(x,y): (x,y)\in R}\\
&= R.
\end{align*}

$\square$

Tarea moral

La siguiente lista de ejercicios te permitira reforzar los conceptos de relación, dominio e imagen.

  1. Si $r$ es la relación vacía, encuentra el dominio y la imagen de $r$.
  2. Si $R$ es la relación identidad de $A$, encuentra el dominio y la imagen de $R$.
  3. Sea $R=\set{(1,2), (3,4)}$ relación de $A=\set{1,2,3}$ en $B=\set{1,2,3,4}$. Encuentra el dominio y la imagen de $R$. Además escribe al conjunto $R^{-1}$.
  4. Si $R$ es la relación identidad de $A$, describe a $R^{-1}$.

Más adelante

En la siguiente sección continuaremos con el tema de relaciones, trataremos la composición de relaciones.

Enlaces

En los siguientes enlaces podrás encontrar contenido relacionado a relaciones:

Álgebra Superior I: Relaciones en conjuntos: dominio, codominio y composición

Álgebra Superior I: Tipos de relaciones en conjuntos

Álgebra Superior I: Funciones inyectivas, suprayectivas y biyectivas

Introducción

En la entrada anterior, hemos revisado la definición de las funciones matemáticas. Siguiendo con este tema, ahora vamos a estudiar tres tipos de funciones: las inyectivas, suprayectivas y finalmente las inyectivas. Hemos hablado anteriormente de las primeras dos, ahora estudiaremos algunas equivalencias de las definiciones vistas en un principio y algunos resultados interesantes.

Inyectividad entre funciones

Las definiciones que daremos al estar hablando de inyectividad y supreyactividad de funciones serán las mismas que dimos al hablar de los tipos de relaciones. Primero empezaremos hablando de la inyectividad.

Cuando estemos hablando de funciones, diremos que una función inyectiva es aquella que manda a elementos distintos en el dominio a elementos distintos en el contradominio.

Definición. Diremos que una función $f: X \rightarrow Y$ es inyectiva, si $f$ es una relación inyectiva. Es decir para cada elemento $y \in Im[f]$, existe un único $x$ tal que $(x,y) \in f$

Nota que esta es la definición de inyectividad que dimos anteriormente. El hecho de que $f$ sea una función, nos permitirá tener otra forma de ver la inyectividad, para darte cuenta de ello, observa la siguiente proposición:

Proposición. Sea $f: X \rightarrow Y$ una función. Entonces son equivalentes:

  1. $f$ es inyectiva.
  2. Para cualesquiera tres elementos $x,w \in X$ y $y \in Im[f]$ sucede que si $f(x) = y \land f(w) = y$ entonces $x=w$.

Demostración.

$1) \Rightarrow 2)$. Recordemos que una equivalencia de la inyectividad en relaciones es que si $(x,y) \in f$ y $(w,y) \in R$ entonces $x=w$. Usaremos esta equivalencia para nuestra demostración. Ahora nota que si $f(x)=y$ y $f(w)=y$ entonces $(x,f(x)) \in f$ y $(w,f(w)) \in f$. Como $f$ es inyectiva entonces $x=w$.

$2) \Rightarrow 1)$.Sean $(x,y) \in f$ y $(w,y) \in f$. Para demostrar el inciso, bastará demsotrar que $x=w$, para ello note que como $f$ es una función entonces $(x,y) = (x,f(x))$ y $(w,y) =(w,f(w))$. Ahora notemos que $f(x)=f(w)$, por hipótesis, esto significa que $x=w$.

$\square$

.

Esta última equivalencia deja más claro que una función inyectiva es aquella que envía a elementos distintos en el dominio a elementos distintos en el contradominio.

Ejemplos de funciones inyectivas son:

  • La función $f:\mathbb{Z} \rightarrow \mathbb{Z}$ donde $f(x)=x+1$, esto es debido a que si $f(x)=f(w)$ entonces $x+1=w+1$, lo que implicaría que $x=w$.
  • La función $f:\{1,2,3\} \rightarrow \{a,b,c,d,e\}$ dada por: $f=\{(1,e),(2,b),(3,c)\}$.
  • La función identidad entre cualquier conjunto $X$, dada por $f: X \Rightarrow X $ donde $f(x)=x$.

Suprayectividad entre funciones

Siguiendo con la lista de conceptos a revisar hoy, nos encontramos nuevamente con la suprayectividad, el concepto en donde todo el contradominio de la función coincide con su imagen:

Definición. diremos que una función $f:X \rightarrow Y$ es suprayectiva si $f$ es una relación suprayectiva. Es decir, si para cada $y \in Y$, existe un $x \in X$ tal que $f(x)=y$

Esta última definición es una derivación de una equivalencia que mostramos con anterioridad. Puesto que decir que para cada $y \in Y$, existe un $x \in X$ tal que $f(x)=y$, es equivalente a decir que para cada elemento $y \in Y$, existe un elemento $x \in X$ tal que $(x,y) \in f$, basta con notar que $f(x)=y$ produce la equivalencia deseada.

Algunos ejemplos de funciones suprayectivas son:

  • La función identidad $f: X \rightarrow X$. Para ello, nota que para cada $y \in X$, sucede que $(y,f(y)) \in f$, por lo que es suprayectiva, pues $f(y)=y$.
  • Sea $X =\{0\}$, entonces la función $f: \mathbb{Z} \rightarrow X$ dada por $f(n)=0$ es una función suprayectiva.
  • La función proyección $f: \mathbb{Z}^2 \rightarrow \mathbb{Z}$ dada por $f((x,y)) = x$ es suprayectiva.

Funciones biyectivas

El último concepto que revisaremos será el de funciones biyectivas. Estas funciones serán importantes porque en pocas palabras podrán «trasladar» un conjunto a otro. Definiremos a estas funciones como aquellas que son inyectivas y suprayectivas al mismo tiempo.

Definición. Sea $f: X \rightarrow Y$ una función. Diremos que $f$ es biyectiva si es inyectiva y suprayectiva.

Si una función es inyectiva, entonces manda distintos elementos del dominio a distintos elementos del contradominio. Mientras que si es suprayectiva, entonces todo el contradominio tiene su correspondencia. Así que si una función es biyectiva, entonces todo elemento del contradominio vendrá de uno y solamente un elemento del dominio. Esto significa que una función biyectiva «transforma» un conjunto en otro. A cada elemento del dominio lo vuelve uno del contradominio.

Por ejemplo, considera la función $f: X \rightarrow Y$ donde $X=\{1,2,3\}$ y $Y=\{a,b,c\}$ donde $f = \{(1,a),(2,b),(3,c)\}$. Nota que la función va de un conjunto $X$ y «traduce» cada uno de sus elementos a un elemento del conjunto $Y$. Esta es una forma en que las biyecciones nos dan información de cómo «traducir» un conjunto en otro.

Ahora considera la función $f: \mathbb{Z} \rightarrow \mathbb{Z}$ dada por $f(n)=n+1$. Esta es una función biyectiva. Y «traduce» cada número a su sucesor.

Otro ejemplo sería la función $f: \mathbb{R} \rightarrow \mathbb{R}$ dada por $f(x)=2x$. Nota que lo que hace esta función es «alejar» puntos del origen. Mientras que $f(0)=0$, a todos los números positivos los «aleja» más del origen del lado derecho, y a los número negativos los «aleja» del origen por la izquierda. Así que esta función biyectiva se podría pensar como una liga que pegamos a la mitad y jalamos por ambos lados hasta que cada lado mida el doble de lo que medía antes. Esta es una forma en que pasamos de una liga normal a una liga estirada, si cada punto de la recta real, fuera un pedazo de la liga, entonces «traducimos» ese punto estirando la liga.

Con estos ejemplos, vimos como una función biyectiva es una traductora de puntos, mandando cada punto del dominio a uno del contradominio, y cada punto del dominio tiene su propia traducción en el contradominio sin que otro punto del dominio comparta su traducción.

Así es como hemos revisado los tres tipos de funciones principales que usarás en muchas áreas de las matemáticas. La inyectividad nos dice que a cada elemento de la imagen de una función solo le corresponde una del dominio. La supreyactividad nos dice que la imagen de una función es igual al contradominio de la función. Mientras que la biyectividad nos habla de traducciones, o formas de ver un conjunto reflejado en otro conjunto.

Tarea moral

  1. Da un ejemplo de una función inyectiva pero no suprayectiva.
  2. Sea $X$ un conjunto y $Y$ un subconjunto de $X$. La función inclusión está dada por $f: Y \rightarrow X$ donde $f(y)=y$.
    1. Demuestra que la función inclusión es inyectiva.
    2. Da condiciones necesarias para que la función inclusión sea biyectiva.
  3. Considera la función $f: \mathbb{Z} \rightarrow \mathbb{Z}$ dada por $f(n) = an +b$. ¿Para qué valores $a,b$ la función es biyectiva?
  4. Demuestra que una función $f: X \rightarrow Y$ es biyectiva si y solo si para cualquier subconjunto $A \subset X$ sucede que $f[X \setminus A] = Y \setminus f[A] $.

Más adelante…

En la siguiente entrada daremos el paso de hablar de una función a más de una función, y esto lo haremos componiendo funciones. En un principio se pueden pensar las composiciones como mandar un elemento de un conjunto a otro conjunto mediante una función y después mandar este elemento a otro conjunto mediante otra función. Verás que será útil las composiciones cuando estemos hablando de distintas funciones entre conjutnos.

Entradas relacionadas

Álgebra Superior I: Introducción a funciones

Introducción

En esta entrada empezaremos a estudiar un tipo de relación muy específica, que son las funciones. Este concepto es fundamental en casi todas las áreas de las matemáticas, y aprender su uso será fundamental a partir de ahora.

La importancia de las funciones

Antes de empezar a hablar de las funciones, es importante que desde ahora entiendas que el concepto de la función es un concepto casi omnipresente en la tarea de estudiar las matemáticas. Para tener idea de la profundidad de esto, observa los siguientes ejemplos:

  • La base del cálculo son las funciones en una variable.
  • La base del cálculo en varias variables son las funciones de distintas variables.
  • En análisis se estudian las funciones entre espacios numéricos.
  • En probabilidad, se trabaja con las funciones entre espacios de probabilidad.
  • Las secuencias numéricas son funciones.
  • En álgebra moderna, el concepto de grupo es un tipo de función.
  • En topología muchas veces se estudian familias de funciones.

Los ejemplos podrían seguir y seguir, y es que nosotros al estudiar las matemáticas, es muy importante entender que la mayor parte de estudiarla será el analizar funciones.

La primera noción que daremos de lo que son las funciones son unas máquinas que reciben una entrada y devuelven una salida.

Un ejemplo de esto es una función que toma de entrada cualquier número entero y devuelve el número multiplicado por dos. Para traducir cómo escribiremos esto, recordemos que al principio hemos dicho que las funciones van a ser relaciones, entonces la forma en que definirimos esta función será con una pareja ordenada $(x,y)$. Como tenemos la idea de que las funciones son máquinas que reciben una entrada y arrojan una salida, entonces diremos que $x$ es la variable de entrada y $y$ la de salida. De manera que podemos representar a la función que toma cualquier número entero y devuelve el número multiplicado por dos, es de la siguiente manera: $$f = \{(x,y) \in \mathbb{Z}^2: y = 2x\} $$ En donde al mencionar que $y=2x$, estamos diciendo que la salida es dos veces la entrada.

Algunos de los elementos que pertenecen a la función son $$\{(0,0),(1,2),(-1,-2),(5,10),(-7,-14), \dots\}.$$

Cuando hablemos de funciones habrán dos cosas importantes que tendrá que cumplir la relación:

  • Deberemos de usar todo el dominio para crear la relación. Esto quiere decir que si estamos hablando de una función entre números enteros, entonces no importa de qué número entero estemos hablando, siempre podrá tener su correspondencia según la función. En nuestro ejemplo, nota que dijimos que la función toma «cualquier número entero», no estamos diciendo que solo toma algunos números enteros.
  • Cada elemento del dominio tendrá uno y solo un correspondiente del contradominio. Esto quiere decir que si $(x,y)$ pertenecen a la función, entonces no existe otra pareja distinta $(x,w)$ en la función. En nuestro ejemplo, nota que las parejas son de la forma $(x,2x)$, y esto implica que cada elemento del dominio solo aparece una vez, si no fuera así, habría dos elementos $(x,2x),(x,w)$ en la función en donde $2x \neq w$, lo cual es imposible, puesto que los elementos del contradominio son los elementos del dominio multiplicados por $2$, es decir $w = 2x$, generando una contradicción.

Estas serán las propiedades que le pediremos a una relación para ser función.

Definición. Sea $f$ una relación entre dos conjuntos $X,Y$. Diremos que $f$ es una función si cumple las siguientes propiedades:

  • $Dom(f) = X$
  • Si $(x,y) \in f$ y $(x,w) \in f$, entonces $y=w$.

Esta última propiedad quiere decir que solo existe una pareja que tenga a $x$ en el lugar de los elementos del dominio.

Como hemos dicho antes, una función será una correspondencia entre elementos de $X$ con elementos de $Y$ de manera que a cada elemento de $X$ le corresponderá uno y únicamente un elemento del contradominio.

Ejemplos de funciones

Algunos ejemplos de funciones son:

  • La función identidad. Esta función de un conjunto $X$ en sí mismo, es el conjunto $$\{(x,y) \in X^2:x=y\}.$$ Y son las parejas de la forma $(x,x)$.
  • Si $X = \{1,2,3\}, Y=\{a,b\}$, entonces $\{(1,a),(2,a),(3,b)\}$ es una función.
  • La función que corresponde a cada persona de la tierra con su cumpleaños, es una función.
  • La función proyección. Supongamos que tenemos dos conjuntos $X,Y$, la proyección es la función entre el producto cartesiano $X \times Y$ y el conjunto $X$ que asocia cada pareja ordenada $(x,y)$ con el primer elemento de la pareja $x$. Esto quiere decir que la función «se olvida» del elemento $y$. De esta forma, $f$ toma elementos del producto $X \times Y$ y su contradominio es el conjunto $X$ que manda cada pareja ordenada a su proyección sobre la primer entrada, esto quiere decir que $f((x,y)) = x$. Así, observa que los elementos de esta función son de la forma $((x,y),x).$ Esta es una función que se utiliza en áreas como la geometría analítica, cuando se tiene el plano cartesiano y se define la proyección de un vector sobre algún eje o incluso sobre la dirección de otro vector.

Un ejemplo de una relación que no es función es la función entre $X = \{1,2,3\}$ y $Y=\{a,b\}$, donde la relación es $\{(1,a),(2,a),(1,b)\}$. Esto es por dos razones: Se utiliza más de una vez el elemento del dominio $1$, aparecen las parejas $(1,a),(1,b)$, pero no es cierto que $a=b$, además nota que no se utiliza el elemento $3$ del dominio, por lo que se rompen las dos condiciones que pedimos para que fuera función.

Más sobre funciones

Al momento de estar hablando de una función $f$ entre dos conjuntos $X$ y $Y$ , es común hacer uso de la notación $f:X \rightarrow Y$ que se lee como «$f$ es una función que va de $X$ a $Y$». Y si $x \in X$, al único elemento $y$ tal que $(x,y) \in f$, lo podremos denotar por $f(x)$ de manera que las parejas serán de la forma $(x,f(x))$.

A continuación definiremos algunos conceptos que usaremos al hablar de funciones.

Definición. Diremos que dos funciones $f: X \rightarrow Y$ y $g: W \rightarrow Z$ son iguales si las relaciones son la misma, es decir si $X=W$ y $Y=Z$ y para cada elemento $x \in X$, $f(x)=g(x)$.

Esto nos quiere decir que si dos funciones son iguales, entonces mandan a todo elemento $x$ al mismo elemento en el contradominio.

Con esto, hemos cubierto la noción de las funciones. Lo importante que recuerdes ahora es que las funciones son un tipo de relación que usan todo el contradominio y que mandan cualquier elemento del dominio a uno y solamente un elemento del contradominio. Verás que conforme avances en distintas ramas de la matemática, serán muy importante saber qué son las funciones.

Tarea moral

  1. Demuestra que la relación «ser menor o igual» en los números enteros no es una función.
  2. Dado cualquier conjunto $X$ no vacío, ¿Cuál es la única función que es relación de equivalencia?
  3. Demuestra que no existe ninguna función $f:X \rightarrow \emptyset$
  4. Sean $f: \mathbb{Z} \rightarrow \mathbb{Z}$ y $g: \mathbb{Z} \rightarrow \mathbb{Z}$. Definamos $f(x) = x ^2$ y $g(x) = (x+1)(x-1)+1$. Demuestra que $f=g$.

Más adelante…

Hasta ahora hemos hablado únicamente de la definición de las funciones y cuándo dos funciones son iguales. En las siguiente entrada platicaremos acerca de las funciones inyectivas, suprayectivas y biyectivas. Que si recuerdas los términos, alguna vez definimos los dos primeros en el contexto de relaciones. Volveremos a explorar estos términos pero ahora desde el punto de vista de las funciones.

Entradas relacionadas

  • Ir a Álgebra Superior I
  • Entrada anterior del curso: Problemas de órdenes parciales y relaciones de equivalencia
  • Siguiente entrada del curso: Funciones inyectivas, suprayectivas y biyectivas