1.11. SUMA Y SUMA DIRECTA DE SUBESPACIOS: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

La suma entre espacios vectoriales se construye con la suma de vectores, sin embargo, al ser subespacios, lo que resulta de esta operación, dónde vive y cómo se comporta es algo que que debe analizarse de forma particular.

La suma directa, una vez que aprendemos a distinguirla y manejarla, nos permite expresar a nuestro espacio vectorial en términos de algunos de sus subespacios. De este modo es más clara la estructura que tienen todos los elementos del espacio.

SUMA DE SUBESPACIOS

Definición: Sean $V$ un $K$ – espacio vetorial y $U,W$ subespacios de $V$. La suma de $U$ y $W$ es $U+W=\{u+w|u\in U, w\in W\}$ (donde $+$ es la suma del espacio $V$).

Nota: La generalización para $U_1,U_2,…,U_m$ ($m$ subespacios de $V$) es:
$U_1+U_2+…+U_m=\{u_1+u_2+…+u_m|u_1\in U_1,u_2\in U_2,…,u_m\in U_m\}$

Propiedades

Justificación. Veamos que $U+W$ contiene a $\theta_V$ y conserva suma y producto por escalar.

Como $U,W\leqslant V$, entonces $\theta_V\in U,W$.
Así, $\theta_V =\theta_V+\theta_V\in U+W$
$\therefore \theta_V\in U+W$

Como $U,W\subseteq V$, entonces $u_1,u_2,w_1,w_2\in V$, así que $$(u_1+w_1)+\lambda (u_2+w_2)=(u_1+w_1)+(\lambda u_2 + \lambda_2 w_2)=(u_1+\lambda u_2)+(w_1+\lambda w_2 ) $$ y como $U,W\leqslant V$, entonces tanto $U$ como $W$ conservan suma y producto por escalar así que $u_1+\lambda u_2 \in U$ y $w_1+\lambda w_2 \in W$.
Por lo cual, $(u_1+w_1)+\lambda(u_2+w_2)=(u_1+\lambda u_2)+(w_1+\lambda w_2 ) \in U+W$
$\therefore (u_1+w_1)+\lambda(u_2+w_2)\in U+W$

Justificación. Recordando que $\theta_V\in U,W$ (porque $U,V\leqslant V$) tenemos que $\forall u\in U(u=u+\theta_V\in U+W)$ y $\forall w\in W(w=\theta_V+w\in U+W)$

Justificación. Sea $\tilde{V}\leqslant V$ tal que $U,W\subseteq \tilde{V}$
Sea $u+w\in U+W$ con $u\in U$ y $w\in W$.
Entonces $u\in U\subseteq \tilde{V}$ y $w\in W\subseteq \tilde{V}$.
De donde $u,w\in\tilde{V}$ y como $\tilde{V}\leqslant V$, entonces $\tilde{V}$ es cerrado bajo suma. Así, $u+w\in\tilde{V}$.
$\therefore U+W\subseteq\tilde{V}$

Teorema: Sean $V$ un $K$ – espacio vectorial y $U,W$ subespacios de $V$. Entonces $dim_K(U+W)=dim_KU+dim_KW-dim_K(U\cap W)$

Demostración: Sea $\beta=\{v_1,v_2,…,v_m\}$ una base de $U\cap W$ con $dim_K U\cap W=m$.
Podemos completar a una base de $U$ y a una base de $W$:

Sea $A=\{v_1,v_2,…,v_m,u_1,u_2,…,u_r\}$ una base de $U$.
Sea $\Gamma =\{v_1,v_2,…,v_m,w_1,w_2,…,w_s\}$ una base de $W$.

donde $dim_K U=m+r$ y $dim_K W =m+s$.

Veamos que $\Delta =A\cup\Gamma =\{v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s\}$ es base de $U+W$ con $m+r+s$ elementos.

Tenemos que $A$ es base de $U$, por lo que $A\subseteq U$.
Tenemos que $\Gamma$ es base de $W$, por lo que $\Delta\subseteq W$.
Así, $\Delta =A\cup\Gamma \subseteq U\cup W$. Y como $U,W\subseteq U+W$, entonces $U\cup W\subseteq U+W$.
Por lo tanto $\Delta\subseteq U+W$ y como $U+W\leqslant V$ concluimos que $\langle\Delta\rangle\subseteq U+W.$

Ahora bien, sea $u+w\in U+W$ con $u\in U$ y $w\in W$.
Entonces $u\in U=\langle A\rangle\subseteq\langle A\cup\Gamma\rangle =\langle\Delta\rangle$ y $w\in W=\langle\Gamma\rangle\subseteq\langle A\cup\Gamma\rangle =\langle\Delta\rangle$.
De donde $u,w\in\langle\Delta\rangle$ y como $\langle\Delta\rangle\leqslant V$, entonces $u+w\in\langle\Delta\rangle$.
Por lo tanto, $U+W\subseteq\langle\Delta\rangle$.

$\therefore\langle\Delta\rangle =U+W$

Veamos que la lista $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ es l.i. Como consecuencia de ello se tendrá que $\Delta$ es linealmente independiente y $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ son distintos y por lo tanto son $m+r+s$ elementos.

Sean $\kappa_1,\kappa_2,…,\kappa_m,\lambda_1,\lambda_2,…,\lambda_r,\mu_1,\mu_2,…,\mu_s\in K$ tales que:
$\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i +\sum_{i=1}^s\mu_iw_i=\theta_V$ $…(1)$

Como $W\leqslant V$, entonces $\sum_{i=1}^s\mu_iw_i\in W$ $…(2)$
Como $U=\langle A\rangle$, entonces $-\sum_{i=1}^m\kappa_iv_i-\sum_{i=1}^r\lambda_iu_i\in U$ $…(3)$

De $(1)$ tenemos que $\sum_{i=1}^s\mu_iw_i=-\sum_{i=1}^m\kappa_iv_i-\sum_{i=1}^r\lambda_iu_i$ y en consecuencia, por $(2)$ y $(3)$, concluimos que $\sum_{i=1}^s\mu_iw_i$ es un elemento que está tanto en $U$ como en $W$.

Así, $\sum_{i=1}^s\mu_iw_i\in U\cap W=\langle\beta\rangle$ y por tanto existen $\gamma_1,\gamma_2,…,\gamma_m\in K$ tales que $\sum_{i=1}^s\mu_iw_i=\sum_{i=1}^m\gamma_iv_i$ $…(4)$

De $(4)$ tenemos que $\sum_{i=1}^s\mu_iw_i-\sum_{i=1}^m\gamma_iv_i=\theta_V$, y como $\Gamma$ es l.i. por ser base, entonces $\forall i\in\{1,2,…,s\}(\mu_i=0_K)$ y $\forall i\in\{1,2,…,m\}(-\gamma_i=0_K)$. Por lo tanto, $\sum_{i=1}^s\mu_iw_i=\theta_V$ $…(5)$

De $(1)$ y $(5)$ tenemos que $\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i +\theta_V=\sum_{i=1}^m\kappa_iv_i +\sum_{i=1}^r\lambda_iu_i+\sum_{i=1}^s\mu_iw_i=\theta_V$. De donde $\sum_{i=1}^m\kappa_iv_i+\sum_{i=1}^r\lambda_iu_i=\theta_V$, y como $A$ es l.i. por ser base, entonces $\forall i\in\{1,2,…,m\}(\kappa_i=0_K)$ y $\forall i\in\{1,2,…,r\}(-\lambda_i=0_K)$ $…(6)$

Hemos probado que $\kappa_1,=\kappa_2=…=\kappa_m=\lambda_1=\lambda_2=…=\lambda_r=\mu_1=\mu_2=…=\mu_s=0_K$.

Así, la lista $v_1,v_2,…,v_m,u_1,u_2,…,u_r,w_1,w_2,…,w_s$ es l.i. y en consecuencia $\Delta$ es un conjunto l.i. con $m+r+s$ elementos.

$\therefore\Delta$ es l.i.

Concluimos que $\Delta$ es base de $U+W$ con $m+r+s$ elementos.

Finalmente sabemos que $dim_KU=m+r$, $dim_KW=m+s$ y $dim_K(U\cap W)=m.$
Además $\Delta$ es base de $U+W$ con $m+r+s$ elementos, entonces $dim_K(U+W)=m+r+s=(m+r)+(m+s)-m.$

Por lo tanto $dim_K(U+W)=dim_KU+dim_KW-dim_K(U\cap W)$

Ejemplos

Justificación. Es claro que $U_1,U_2,U_3\leqslant V$. Veamos el resultado de cada suma entre estos subespacios.
$U_1+U_2=\{(x,0)+(0,y)|x,y\in\mathbb{R}\}=\{(x,y)|x,y\in\mathbb{R}\}=V$
$U_2+U_3=\{(0,y)+(a,a)|y,a\in\mathbb{R}\}=\{(a,a+y)|a,y\in\mathbb{R}\}=\{(a,b)|a,b\in\mathbb{R}\}=V$
$U_3+U_1=\{(a,a)+(x,0)|a,x\in\mathbb{R}\}=\{(a+x,a)|a,x\in\mathbb{R}\}=\{(b,a)|b,a\in\mathbb{R}\}=V$

Verifiquemos para la suma $U_1+U_2$ el teorema previo:

Sabemos que $dim_KV=2$. Además $U_1\cap U_2=\{(0,0)\}$ y así $dim_K(U_1\cap U_2)=dim_K\{(0,0)\}=0$.
Como $\{(1,0)\}$ es base de $U_1$, entonces $dim_KU_1=1$.
Como $\{(0,1)\}$ es base de $U_2$, entonces $dim_KU_2=1$.
Así, $2=dim_KV=dim_K(U_1+U_2)=2=1+1+0=dim_KU_1+dim_KU_2-dim_K(U_1\cap U_2).$

Justificación. Dado que $dim_KV=3$ y $U+W$ es un subespacio de $V$
bastará probar entonces que $dim_K(U+W)=3$.

Como $\{(1,0,0),(0,1,0)\}$ es base de $U$, entonces $dim_KU=2$
Como $\{(0,1,0),(0,0,1)\}$ es base de $W$, entonces $dim_KW=2$
Como $\{(0,1,0)\}$ es base de $U\cap W$, entonces $dim_K(U\cap W)=1$
Así, \begin{align*}dim_K(U+W)&=dim_KU+dim_KW-dim_K(U\cap W)\\&=2+2-dim_K(U\cap W)=4-1=3,\end{align*} de donde $dim_K(U+W)=3=dim_KV$.

$\therefore U+W=V$.

SUMA DIRECTA

Definición: Sean $V$ un $K$ – espacio vetorial y $U,W$ subespacios de $V$. Decimos que $U+W$ es una suma directa si cada $v\in U+W$ se escribe como $v=u+w$ (con $u\in U,w\in W$) de forma única. En ese caso, escribiremos a $U+W$ como $U\oplus W$.

Nota: La generalización para $U_1,U_2,…,U_m$ ($m$ subespacios de $V$) es:
$U_1+U_2+…+U_m$ es suma directa si cada $v\in U_1+U_2+…+U_m$ se escribe como $v=u_1+u_2+…+u_m$ (con $u_1\in U_1,u_2\in U_2,…,u_m\in U_m\}$) de forma única. Se denotará como $U_1\oplus U_2\oplus …\oplus U_m$.

Ejemplo

Justificación. Es claro que $U,W\leqslant V$.
Sea $(a,b)\in\mathbb{R}^2$.
Entonces $a,b\in\mathbb{R}$.

Tenemos que $$(a,b)=\left( \frac{a+b}{2}+\frac{a-b}{2} ,\frac{a+b}{2}-\frac{a-b}{2}\right)=\left( \frac{a+b}{2} ,\frac{a+b}{2}\right)+\left( \frac{a-b}{2} ,-\frac{a-b}{2}\right)\in U+W,$$
de donde $\mathbb{R}^2\subseteq U+W$. Sabemos que $U+W\subseteq V$ y demostramos que $V\subseteq U+W$
$\therefore U+ W=V$

Veamos ahora que dicha suma es directa, es decir que si $u\in U, w\in W$ son tales que $(a,b)=u+w$, entonces $u,w$ son únicos. Bastará para ello verificar que la descomposición anterior de $(a,b)$ como suma de un elemento en $U$ y uno en $W$ es la única posible.

Sean $u\in U, w\in W$ son tales que $(a,b)=u+w$.
Entonces $u=(x,x)$ para algún $x\in\mathbb{R}$ y $w=(y,-y)$ para algún $y\in\mathbb{R}$, donde $(a,b)=(x,x)+(y,-y)=(x+y,x-y)$.

De aquí se deduce que $a=x+y$ y $b=x-y$. Así, $a+b=2x$ y por lo tanto $x=\frac{a+b}{2}$, mientras que $a-b=2y$ y por lo tanto $y=\frac{a-b}{2}$.

$\therefore U+W$ es suma directa.
$\therefore U\oplus W=V$

Proposición: Sean $V$ un $K$ – espacio vectorial y $U,W$ subespacios de $V$. Entonces $U+W$ es suma directa si y sólo si $U\cap W=\{\theta_V\}$

Demostración: Veamos ambas implicaciones.

$\Rightarrow )$ Supongamos que $U+W$ es suma directa.

Como $U,W\leqslant V$, entonces $\theta_V\in U,W$. Por lo que $\{\theta_V\}\subseteq U\cap W$.

Sea $v\in U\cap W$.
Sabemos que $\theta_V+v,v+\theta_V\in U\oplus W$ y son formas de escribir a $v$.
Como $U+W$ es suma directa, entonces la forma de escribir a $v$ debe ser única.
Por lo tanto, $v=\theta_V$

$\therefore U\cap W=\{\theta_V\}$

$\Leftarrow )$ Supongamos que $U\cap W=\theta_V$

Sea $v\in U+W$ tal que $u_1+w_1=v=u_2+w_2$ con $u_1,u_2\in U$ y $w_1,w_2\in W$

Como $U,W\leqslant V$, entonces $u_1-u_2\in U$ y $w_2-w_1\in W$.
Como $u_1+w_1=u_2+w_2$, entonces $u_1-u_2=w_2-w_1$.
Por lo tanto, $u_1-u_2,w_2-w_1\in U\cap W=\{\theta_V\}$

Así, $u_1-u_2=\theta_V$ lo que implica que $ u_1=u_2$T ambién $w_2-w_1=\theta_V$ lo que implica que $w_2=w_1$.
Es decir, cada elementos en $U+W$ se escribe de forma única.

$\therefore U+W$ es una suma directa.

Tarea Moral

Más adelante…

A partir de la siguiente entrada, analizaremos un tipo de funciones muy especial y útil que va de espacios vectoriales a espacios vectoriales y aunque la definición sólo le pide abrir dos operaciones, esto implica muchas propiedades que otorgan a este tipo de funciones un papel central en el Álgebra lineal.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.