1.10. BASE DE ESPACIOS VECTORIALES: obtención a partir de un conjunto linealmente independiente o generador

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

De cualquier subconjunto finito de nuestro espacio, podemos obtener un generador o un l.i. y cuando lo obtengamos, bastará con centrarnos en la cardinalidad para reducir, o bien, completar, y obtener una base.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita.
a) Todo conjunto generador finito se puede reducir a una base.
b) Todo conjunto linealmente independiente se puede completar a una base.

Demostración:

a) En la demostración de la proposición que se encuentra en la entrada anterior tomamos un conjunto generador finito $S$ de un espacio vectorial arbitrario y recursivamente tomamos subconjuntos propios de $S$ hasta que uno de esos subconjuntos fuera base. Usando el mismo método, reducimos cualquier conjunto generador de $V$ para obtener una base.

b) Sea $S\subseteq V$ un conjunto l.i.
Ya sabemos que $S$ es finito por ser un subconjunto l.i. de $V$ de dimensión finita (observación en la entrada anterior).

Caso 1. Si $\langle S \rangle = V$, entonces $S$ es base de $V$ por definición.

Caso 2. Si $\langle S \rangle \subsetneq V$, entonces existe $v_1\in V$ tal que $v_1\notin \langle S \rangle$. Por lo tanto, $\langle S \rangle \cup \{ v_1 \}$ es l.i.

Subaso 1. Si $\langle \langle S \rangle \cup \{ v_1 \} \rangle = V$, entonces $S$ es base de $V$ por deifinición.

Subcaso 2. Si $\langle \langle S \rangle \cup \{ v_1 \} \rangle \subseteq V$, entonces existe $v_2\in V$ tal que $v_2\notin \langle \langle S \rangle \cup \{ v_1 \} \rangle$ Por lo tanto, $\langle \langle S \rangle \cup \{ v_1 \} \cup \{ v_2 \} \rangle$ es l.i.

Este proceso no es infinito porque los suconjuntos l.i de $V$ deben ser finitos.

Sea $m$ el número de elementos de $V$ que tuvimos que «aumentar» a $\langle S \rangle$ en los subcasos del caso 2, entonces $\langle \langle S \rangle \cup \{ v_1 \} \cup \{ v_2 \} \cup … \{ v_m \} \rangle$ es base de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial tal que $dim_K(V)=n$.
a) Cualquier conjunto generador con $n$ elementos es una base de $V$.
b) Cualquier conjunto linealmente independiente con $n$ elementos es una base de $V$.

Demostración: Por definición de base tenemos que toda base $B$ de $V$ cumple que $|B|=dim_K(V)=n$. Es decir, toda base de $V$ tiene $n$ elementos.

a) Sea $S\subseteq V$ generador con $n$ elementos.
Por el teorema anterior podemos reducir $S$ a una base.
Pero reducir $S$ a un conjunto de $n$ elementos implica que se conserva íntegro.
Por lo tanto $S$ es base.

b) Sea $S\subseteq V$ linealmente independiente.
Por el teorema anterior podemos completarlo a una base.
Pero completar $S$ a un conjunto de $n$ elementos implica que se conserva íntegro.
Por lo tanto $S$ es base.

Ejemplo

Sea $K=\mathbb{R}, V=\mathcal{M}_{2\times 2}(\mathbb{R})$.
Sea $W=\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle$

Por construcción, $W$ es el subespacio generado por $X=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$
Encontremos un subconjunto de $X$ que sea base de $W$.

Observemos que $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $X$ es l.d. y como $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, entonces $W=\langle X\rangle = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\rangle$

Veamos que $B=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$ es l.i.

Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}+\lambda_2\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

De donde $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\lambda_1, \lambda_1+\lambda_2, \lambda_3, \lambda_2+\lambda_3=0$.
Por lo tanto, $\lambda_1=\lambda_2=\lambda_3=0$.

Como $\langle B\rangle=W$ y $B$ es l.i., entonces $B$ es base y obtenemos que $dim_\mathbb{R}W=|B|=3$

Teorema: Sean $V$ un $K$ – espacio vectorial de dimensión finita y $W$ un subespacio de $V$. Entonces se cumple lo siguiente:

a) $W$ es de dimensión finita
b) Toda base de $W$ se puede completar a una base de $V$
c) $dim_KW\leq dim_KV$
d) Si $dim_KW=dim_KV$, entonces $W=V$

Demostración: Analicemos cada inciso por separado:

a) Sup. por reducción al absurdo que $W$ no es de dimensión finita.
Entonces existe $B$ base de $W$ de cardinalidad infinita.
Así, $B$ es un subconjunto de $V$ que es l.i.
Por el teorema anterior tenemos que podemos completar a $B$ para obtener una base de $V$, lo cual es una contradicción, pues existiría un abse de $V$ de cardinalidad infinita (pero por hipótesis, $V$ es de cardinalidad finita).
Por lo tanto, $W$ es de dimensión finita.

b) Sea $B$ una base de $W$.
Entonces $B$ es un subconjunto l.i. en $V$ y por el teorema anterior podemos completar $B$ a una base de $V$.

c) Sea $B$ una base de $W$.
Por el inciso anterior tenemos que podemos completar $B$ para obtener una base de $V$, es decir, $B\cup A$ es base de $V$ con $A\subseteq V$
Si $B\cup A=B$, entonces $dim_KW=|B|=dim_KV$.
Si $B\cup A\not= B$, $dim_KW=|B|\lneq|B\cup A|=dim_KV$
Por lo tanto, $dim_KW\leq\dim_KV$

d) Sup. $dim_KW=\dim_KV=n$
Sea $B$ una base de $W$.
Entonces $B$ es un l.i. en $V$ con $n$ elementos.
Por el corolario anterior tenemos que $B$ es base de $V$.
De donde $B$ es base de $V$.
Y así, $W=\langle B\rangle =V$.
Por lo tanto, $W=V$

Tarea Moral

Más adelante…

Veremos un nuevo concepto: Suma y suma directa de subespacios vectoriales.
¿Qué es? ¿Qué estructura tiene? ¿Dónde vive? ¿Qué relación tiene la suma de dos subespacios con sus uniones?

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.