Archivo de la etiqueta: matrices simétricas

Geometría Analítica I: Diagonalización ortogonal de matrices simétricas

Por Paola Lizeth Rojas Salazar

Introducción

Anteriormente, estudiamos los vectores y valores propios de las matrices simétricas, en esta entrada vamos a usar que ya sabemos muchas cosas sobre el comportamiento respecto al producto interior, para hablar sobre la diagonalización ortogonal de matrices simétricas, cuyo procedimiento inicia resolviendo su polinomio característico.

Teoremas importantes

Antes de ver el proceso para la diagonalización ortogonal de matrices simétricas, vamos a enunciar un lema y un teorema que van a justificar la «receta» a seguir para esta diagonalización.

Lema 4.12: Considera una matriz simétrica $A$. Si $\lambda_1, u$ y $\lambda_2, v$, son pares propios de $A$ con $\lambda_1\neq \lambda_2$, entonces $u$ y $v$ son ortogonales.

Demostración

Sabemos que:

\begin{equation} \lambda_1(u\cdot v)=(\lambda_1u)\cdot v= Au\cdot v=u\cdot Av=u\cdot(\lambda_2 v)=\lambda_2(u\cdot v)\end{equation}

Esto implica que $(\lambda_1 – \lambda_2)(u\cdot v)=0$

Y $\lambda_1\neq \lambda_2$, entonces $u\cdot v$=0.

Con lo que hemos terminado la demostración.

Teorema 4.13: Considera una matriz simétrica de $2×2$, $A$. Entonces existe una rotación $B\in O(2)$ tal que $B^TAB$ es diagonal de la siguiente forma:

\begin{equation}\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2\end{pmatrix}\end{equation}

Con $\lambda_1$ y $\lambda_2$, los valores propios de $A$.

Demostración

Por las entradas anteriores, las siguientes implicaciones son ciertas, puedes comprobarlo tú mismo con facilidad.

Como $A$ es simétrica de $2×2$, entonces $A$ tiene valores propios $\lambda_1, \lambda_2 \in \mathbb R$.

Caso 1 $\lambda_1=\lambda_2$

Entonces $A$ es diagonal y puede tomarse a $B$ como la matriz identidad que es rotación en $O(2)$.

Caso 2 $\lambda_1\neq \lambda_2$

Consideramos a $u, v$, los vectores propios correspondientes a $\lambda_1$ y $\lambda_2$. Observa que $u$ es diferente al vector cero.

Sabemos que $u$ y $v$ son ortogonales, entonces $v$ es paralelo a $u^T$ que también es vector propio correspondiente a $\lambda_2$.

Considera $B=\frac{1}{|u|} (u, u^T)$, donde se puede comprobar fácilmente que $B$ es la matriz de una rotación y que cumple que $B^TAB$ es diagonal.

«Receta»

Ingredientes

  1. Una matriz simétrica $A=A^T$ de $2×2$

Procedimiento

  1. Resolver su polinomio característico con $det(A-\lambda I)$.
  2. Encontrar $u\neq 0$ tal que $(A-\lambda_1 I)u=0$.
  3. Declarar $B=\frac{1}{|u|} (u, u^T)$.
  4. La matriz diagonal, con entradas $\lambda_1$ y $\lambda_2$, estará dada por $B^TAB$.

Tarea moral

  1. Termina de escribir la demostración del Teorema 4.13.
  2. Demuestra que, si una matriz $A$ cualquiera, tiene dos valores propios distintos, entonces existe una matriz $B\in Gl(2)$ tal que $B^{-1}AB$ es diagonal.
  3. Encuentra la matriz $B$ de una rotación que diagonalice las siguientes matrices simétricas: Además, calcula $B^TAB$:
    • \begin{equation}A=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\end{equation}
    • \begin{equation}A=\begin{pmatrix} -6 & 12 \\ 12 & 1 \end{pmatrix}\end{equation}
    • \begin{equation}A=\begin{pmatrix} -7 & -6 \\ -6 & 2 \end{pmatrix}\end{equation}

Más adelante…

Avanza a las siguientes entradas, en las que usaremos estos conocimientos para dar dos nuevas formas de clasificación de las curvas.

Álgebra Lineal II: Matrices de formas bilineales

Por Diego Ligani Rodríguez Trejo

Introducción

Al principio de esta unidad, especialmente en la entrada del teorema de Gauss empezamos a hablar de una relación entre formas bilineales y matrices. Aquí formalizaremos esta relación. Veremos cómo se define la matriz asociada a una forma bilineal y cómo podemos traducir operaciones con la forma bilineal en operaciones con su matriz asociada.

Matriz asociada a una forma bilineal y una forma cuadrática

En toda esta entrada, $V$ es un espacio vectorial sobre $\mathbb{R}$ de dimensión finita.

Definición. Sea $ e_1, \cdots , e_n$ una base de $V$ y $b: V \times V \rightarrow \mathbb{R}$ una forma bilineal de $V$. La matriz de $b$ con respecto a la base $e_1,\ldots, e_n$ es la matriz

\begin{align*} A=[a_{ij}] \text{ con } a_{ij}=b(e_i,e_j),\end{align*}

para todo $i,j$ tal que $1 \leq i,j \leq n$.

Para definir la forma matricial de una forma cuadrática tenemos que ser un poco más cuidadosos. Hay más de una forma bilineal que puede generar a una misma forma cuadrática. Sin embargo, por la identidad de polarización tenemos que esta forma bilineal es única si pedimos adicionalmente que sea simétrica. De aquí obtenemos la siguiente definición.

Definición. Sea $e_1, \cdots , e_n$ una base de $V$ y $q$ una forma cuadrática de $V$, la matriz de $q$ con respecto a la base $e_1, \ldots, e_n$ es la matriz de su forma polar en esa misma base.

Problema. Sea $V=\mathbb{R}^3$ y $q$ dada como sigue
\begin{align*} q(x)=x_1x_2+x_2x_3+x_3x_1,\end{align*}

para cada $x=(x_1,x_2,x_3)\in \mathbb{R}^3$.

Encuentra su matriz asociada $A$ en la base canónica y su matriz asociada $B$ en la base \begin{align*}u_1&=(1,1,0),\\ u_2&=(1,0,1),\\ u_3&=(0,1,1).\end{align*}

Solución. Primero, mediante la identidad de polarización tenemos que la forma polar $b$ de $q$ cumple que $b(x,x’)$ es

\begin{align*} \frac{x’_1x_2+x’_2x_1+x’_1x_3+x’_3x_1+x’_2x_3+x’_3x_2}{2} ,\end{align*}

para $x=(x_1,x_2,x_3)$ y $x’=(x’_1,x’_2,x’_3)$.

Ahora, calculemos qué le hace esta forma bilineal a la base canónica de par en par.

\begin{align*}
&b(e_1,e_1)=b(e_2,e_2)=b(e_3,e_3)=0 \\
\text{y} \quad &b(e_1,e_2)=b(e_1,e_3)=b(e_2,e_3)=\frac{1}{2}.
\end{align*}

Por lo que su matriz asociada en la base canónica es

\begin{align*} A=\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}\end{align*}

Por otro lado, calculando lo que $b$ le hace a nuestra otra base

\begin{align*}
&b(u_1,u_1)=b(u_2,u_2)=b(u_3,u_3)=1 \\
\text{y} \quad &b(u_1,u_2)=b(u_1,u_3)=b(u_2,u_3)=\frac{3}{2}
\end{align*}

Y construyendo esta otra matriz:

\begin{align*}
B=\begin{pmatrix} 1 & \frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & 1 & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} & 1
\end{pmatrix}
\end{align*}

$\triangle$

Evaluar la forma bilineal con su matriz

En la entrada del teorema de Gauss vimos que si $b$ es una forma bilineal de $V$ y $e_1,\ldots,e_n$ es una base, entonces para cualesquiera vectores

\begin{align*}
x&=x_1e_1+\ldots+x_ne_n\\
y&=y_1e_1+\ldots+y_ne_n
\end{align*}

tenemos que $$b(x,y)=\sum_{i=1}^n \sum_{j=1}^n x_i y_j b(e_i,e_j).$$

Por la regla del producto de matrices, la expresión de la derecha es precisamente lo que se obtiene al realizar la siguiente operación:

$$^t{X} \begin{pmatrix}b(e_1,e_1) & b(e_1,e_2) & \ldots & b(e_1,e_n)\\ b(e_2,e_1) & b(e_2,e_2) & \ldots & b(e_2,e_n)\\ \vdots & & \ddots & \vdots \\ b(e_n,e_1) & b(e_n,e_2) & \ldots & b(e_n,e_n) \end{pmatrix} Y,$$

donde $X=(x_1,\ldots,x_n)$ y $Y=(y_1,\ldots,y_n)$.

Notemos que en medio tenemos justo la forma matricial de $b$ en la base $e_1,\ldots,e_n$. Al lado izquierdo tenemos al transpuesto del vector de coordenadas de $x$ en la base $e_1,\ldots, e_n$ y al lado derecho tenemos al vector de coordenadas de $y$ en esta misma base. Hemos demostrado lo siguiente.

Proposición. Sea $b$ una forma bilineal de $V$ y $\beta$ una base de $V$. Sea $A$ la matriz de $b$ en la base $\beta$. Sean $X$ y $Y$ los vectores de coordenadas de vectores $x$ y $y$ de $V$ en la base $\beta$, respectivamente. Entonces $$b(x,y)=\text{}^tXAY.$$

Algunas consecuencias de la proposición anterior son:

  • Una forma bilineal es simétrica si y sólo si su matriz en una base cualquiera es simétrica.
  • Si fijamos la base $\beta$ y la forma bilineal $b$, entonces la matriz que hace que $b(x,y)=\text{}^tXAY$ para todos $x,y$ es única.

La discusión anterior nos permite comenzar con una forma bilineal $b$ y una base $\beta$ y obtener una (y sólo una) matriz. Partiendo de una matriz y una base $\beta$ también podemos obtener una forma bilineal mediante la regla $$b(x,y)=\text{}^tXAY.$$

Cambios de base

En los resultados anteriores al fijar un espacio vectorial $V$ de dimensión $n$ y una base $\beta$ obtenemos una asociación biyectiva (de hecho un isomorfismo) entre formas bilineales de $V$ y matrices en $M_n(\mathbb{R})$.

Sin embargo, al cambiar la base de $V$, la matriz que representa a una forma bilineal puede cambiar.

Proposición. Supongamos que una forma bilineal $b$ tiene asociada una matriz $A$ con respecto a una base $\beta$ y una matriz $A’$ con respecto a otra base $\beta’$. Sea $P$ la matriz de cambio de base de $\beta$ a $\beta’$. Entonces
\begin{align*} A’=\text{ } ^tPAP.\end{align*}

Demostración. Sean $x,y \in V$ dos vectores cualesquiera. Escribamos $\beta = \{u_1, \cdots , u_n\}$ y $\beta’ = \{u’_1, \cdots , u’_n\}$. Usando $\beta$ escribamos

\begin{align*} x=x_1u_1 + \cdots + x_nu_n.\end{align*}

Definamos a $X$ como el vector columna de las coordenadas de $x$ en la base $\beta$, es decir:

$$X=\begin{pmatrix} x_1 \\
\vdots \\
x_n \end{pmatrix}.$$

Definimos análogamente a $X’, Y, Y’$ como los vectores columnas de coordenadas de $x$ en la base $\beta’$, de $y$ en la base $\beta$ y de $y$ en la base $\beta’$, respectivamente.

Sabemos entonces que

\begin{align*} b(x,y)= \text{ }^tXAY= \text{ }^tX’A’Y’\end{align*}

Además, sabemos que

\begin{align*}
X&=PX’\\
Y&=PY’
\end{align*}

De aquí se tiene la siguiente cadena de igualdades:

\begin{align*}
\text{ }^tX’A’Y’&= b(x,y)\\
&=\text{ }^tXAY\\
&=\text{ }^t(PX’)A(PY’)\\
&=\text{ }^tX’\text{ }^tPAPY’.
\end{align*}

Fijándonos en los extremos

\begin{align*} \text{ }^tX’A’Y’=\text{ }^tX’\text{ }^tPAPY’. \end{align*}

Por la unicidad de la matriz que representa a $b$ en la base $\beta’$, finalmente concluimos que

\begin{align*} A’=\text{ } ^tPAP.\end{align*}

$\square$

Más adelante…

Esta es una pequeña introducción a la relación entre las formas bilineales (y cuadráticas por extensión) y las matrices. Podemos ver que ésta nos dio otra manera de entender y calcular a las formas bilineales. Algo que no hemos explorado es el poder que esta relación nos entrega al aplicar todo lo que conocemos acerca de matrices a las matrices asociadas a una forma bilineal. Antes de llegar a eso, primero veremos el análogo complejo de lo que acabamos de estudiar.

Otro problema que enfrentamos es la dependencia de las matrices a su base. Aunque este no es un problema que podamos evitar, nos gustaría encontrar propiedades que se mantengan sin importar la base que sea elegida. Esto lo abordaremos un poco más adelante. De hecho, cuando lo hagamos estaremos listos para enunciar y demostrar un resultado muy interesante: la ley de inercia de Sylvester.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ y definamos $q: V \rightarrow \mathbb{R}$
    \begin{align*} q(x,y,z)= (x+2y+3z)^2+(y+z)^2. \end{align*}
    Prueba que $q$ es cuadrática y encuentra su forma polar. ¿Es esta forma cuadrática $q$ positiva definida? ¿Es positiva?
  2. Encuentra la matriz $A$ asociada a la forma cuadrática $q$ del ejercicio anterior con respecto a la base canónica y la matriz $B$ asociada a $q$ con respecto a la base $(1,1,1), (0,-1,-1),(0,0,2)$.
  3. Encuentra las matrices de cambio de base entre la base canónica y la base del inciso anterior. Verifica que se cumple el resultado de cambios de base.
  4. Encuentra una expresión de Gauss para $q$.
  5. Encuentra el rango de $A$ y de $B$. Encuentra el determinante de $A$ y de $B$ ¿Notas algo en particular?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Transposición de matrices, matrices simétricas y antisimétricas

Por Julio Sampietro

Introducción

En esta sección introducimos el concepto de transpuesta de una matriz, que consiste en solo ‘voltear’ una matriz. De ahí sale la operación de transposición de matrices. Si bien esta operación es sencilla, las aplicaciones son vastas, especialmente cuando veamos el concepto de espacio dual. Veremos propiedades básicas de esta operación y cómo se relaciona con suma, producto e inversa de matrices.

Luego definimos tres tipos de matrices importantes, las simétricas, antisimétricas y ortogonales. Estos tipos de matrices nos permiten entender un poco mejor los espacios de matrices, que son más grandes, y nos dan mucha información geométrica sobre nuestro espacio de trabajo. Profundizaremos en esto en la tercera unidad.

Transposición de matrices

Sea $A\in M_{m,n}(F)$ una matriz. Intuitivamente, la transpuesta de $A$ se obtiene al trazar una línea de «pendiente» $-1$ desde la entrada $(1,1)$ a lo largo de la diagonal y reflejar la matriz con respecto a esta línea. Daremos unos ejemplos para entender esto más adelante. Primero damos una definición formal.

Definición. La transpuesta de $A\in M_{m,n}(F)$, denotada por $^{t} A$ se obtiene intercambiando los renglones y las columnas de $A$. Consecuentemente $^t A$ es una matriz de tamaño $n\times m$, es decir $^t A \in M_{n,m}(F)$. Dicho de otra manera, si $A=[a_{ij}]$, entonces $^t A=[a_{ji}]$.

Observación. En otras fuentes es posible que encuentres una notación un poco diferente para matriz transpuesta. Algunas veces se pone el superíndice $t$ arriba a la derecha, así: $A^t$. Otras veces se usa una $T$ mayúscula así: $A^T$. Nosotros usaremos el superíndice a la izquierda.

Ejemplo 1. La transpuesta de

\begin{align*}
A= \begin{pmatrix} 1& 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix}
\end{align*}

es

\begin{align*}
^t A= \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.
\end{align*}

En general, la transpuesta de una matriz cuadrada en $M_n(F)$ también es cuadrada y está en $M_n(F)$.

$\triangle$

Es claro también que $^t I_n= I_n$.

Ejemplo 2. La transpuesta de

\begin{align*} A= \begin{pmatrix} 0 & 1 & 0 & 3\\ 4 & 7 & 2 & 0\end{pmatrix} \end{align*}

es

\begin{align*}
^t A= \begin{pmatrix} 0 &4\\ 1 & 7\\ 0 & 2\\ 3 & 0 \end{pmatrix}.
\end{align*}

$\triangle$

Propiedades de transposición de matrices

Hasta ahora hemos hablado de sumas de matrices, multiplicación por escalar y multiplicación de matrices. Una forma frecuente de trabajar con álgebra es preguntarse cómo una nueva definición interactúa con lo que ya hemos definido anteriormente.

Resumimos las propiedades de la transposición de matrices $A\mapsto {^t A}$ y cómo se relaciona con operaciones anteriores en el siguiente resultado.

Proposición. La operación de transponer satisface:

  1. $^t\left( ^t A\right) = A$ para toda $A\in M_{m,n}(F)$.
  2. $^t\left ( A+B\right) = {^t A} + {^t B}$ para todas $A,B\in M_{m,n}(F)$.
  3. $ ^t\left( cA\right)= c {^t A}$ si $c\in F$ es un escalar y $A\in M_{m,n}(F)$.
  4. ${}^t\left( AB\right)=\ {^tB} \, {^t A}$ si $A\in M_{m,n}(F)$ y $B\in M_{n,p}(F)$.
  5. ${}^t \left(A^k\right)= \left(^t A\right)^k$ si $A\in M_n(F)$ y $k$ es un entero positivo.
  6. Si $A\in M_n(F)$ es invertible, entonces $^t A$ también es invertible y
    \begin{align*}
    \left(^t A\right)^{-1}= {^t \left(A^{-1}\right)}.
    \end{align*}

Demostración: Las primeras tres propiedades son consecuencia casi inmediata de la definición y las dejamos como tarea moral. Una sugerencia es demostrarlas usando la notación de entradas.

Comencemos pues demostrando la cuarta propiedad. Primero, observamos que $^t B\in M_{p,n}(F)$ y $^t A\in M_{n,m}(F)$ por lo que el producto $^t B \, {^t A}$ tiene sentido. Luego si $A=[a_{ij}]$ y $B=[b_{jk}]$ tenemos por la regla del producto que

\begin{align*}
^t(AB)_{ki}&= (AB)_{ik}\\
& = \sum_{j=1}^{n} a_{ij} b_{jk}\\
&=\sum_{j=1}^{n} \left(^t B\right)_{kj} \left(^t A\right)_{ji}\\
& = \left( ^t B\, {^t A}\right)_{ki}.
\end{align*}

Así $^t (AB)= \ ^t B \,{^t A}$.

La quinta propiedad la demostramos por inducción sobre $k$. El caso base $k=1$ es claro. Asumamos entonces que se cumple para algún $k$, y verifiquemos que la propiedad sigue siendo cierta para $k+1$.

\begin{align*}
^t \left( A^{k+1}\right)&= {^t \left( A^{k} \cdot A\right)} \\
&=\ ^t A\ ^t\left(A^{k}\right) \\
&=\ ^t A \cdot \left(^t A\right)^{k}\\
&= \left(^t A\right)^{k+1}.
\end{align*}

Donde la segunda igualdad se debe a la cuarta propiedad y la tercera a la hipótesis de inducción. Por inducción, queda probado el resultado.

Finalmente la sexta propiedad se sigue de la cuarta, dado que

\begin{align*}
^t A \cdot \ ^t\left(A^{-1}\right)= \ ^t\left( A^{-1} \cdot A\right) = \ ^t I_n =I_n.\end{align*}

La igualdad simétrica se verifica de la misma manera, y queda demostrada la última propiedad.

$\square$

Observación. La transposición de matrices «voltea» el producto de matrices. Es decir, si en el producto $AB$ aparece $A$ a la izquierda y $B$ a la derecha, al transponer obtenemos $^tB\, {^tA}$, con $^tB$ a la izquierda y $^tA$ a la derecha.

Observación. Por la proposición anterior, la transposición de matrices preserva la invertibilidad de las matrices y así lo podemos ver como un mapeo $^t : GL_n(F)\to GL_n(F)$.

Problema. Sea $X\in F^n$ un vector con coordenadas $x_1, \dots, x_n$ considerado como una matriz en $M_{n,1}(F)$. Demuestre que para cualquier matriz $A\in M_n(F)$ se tiene

\begin{align*}
^t X \left( ^t A \cdot A\right) X= \sum_{i=1}^{n} \left( a_{i1} x_1+ a_{i2} x_2 +\dots + a_{in} x_n\right)^2. \end{align*}

Solución: Primero, usamos la proposición para transformar el lado izquierdo de la igualdad buscada:

\begin{align*}
^t X \left( ^t A\cdot A\right) X=\ ^tX\ ^t A A X=\ ^{t} \left( AX\right) \cdot AX.
\end{align*}

Luego nombrando $Y=AX$ tenemos que

\begin{align*}
Y=AX=\begin{pmatrix} a_{11} x_1+\dots + a_{1n} x_n\\ a_{21} x_1+\dots +a_{2n} x_n \\ \vdots \\ a_{n1} x_1+\dots +a_{nn} x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n\end{pmatrix} .
\end{align*}

Así

\begin{align*}
^t Y \cdot Y= \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
\end{align*}

y usando la regla del producto para matrices concluimos que esta última cantidad no es más que $y_1^2+\dots + y_n^2$. Finalmente, sustituyendo $y_i$ por su correspondiente $a_{i1} x_1 +\dots + a_{in} x_n$ obtenemos la igualdad buscada.

$\square$

Matrices simétricas, antisimétricas y ortogonales

En el álgebra lineal hay tres tipos de matrices muy importantes y relacionadas con la transposición de matrices. Todas ellas son matrices cuadradas.

  • Las matrices simétricas. Son aquellas matrices $A\in M_n (F)$ tales que $^t A=A$, equivalentemente $a_{ij}=a_{ji}$ para cualesquiera $1\leq i,j\leq n$. Más adelante veremos que son de fundamental importancia para la teoría de formas cuadráticas y espacios euclideanos (donde $F=\mathbb{R}$), y un cacho importante de nuestro curso se dedicará a estudiar sus propiedades. Por ejemplo todas las matrices simétricas de tamaños $2$ y $3$ son de la forma
    \begin{align*}
    \begin{pmatrix} a & b \\ b &c\end{pmatrix}, \hspace{1mm} a,b,c\in F\text{ y } \begin{pmatrix} a & b & c\\ b & d & e\\ c & e & f\end{pmatrix}, \hspace{1mm} a,b,c,d,e,f\in F.\end{align*}
  • Las matrices ortogonales. Estas son las matrices invertibles $A\in GL_n(F)$ que satisfacen $A^{-1}=\ ^{t}A$. Estas (como su nombre lo indica) tienen una interpretación geométrica muy importante, pues corresponden a isometrías de espacios euclideanos. También las estudiaremos a detalle más adelante.
  • Las matrices antisimétricas. Son matrices $A\in M_n(F)$ que cumplen con $A^{t}=-A$. Estas tienen que ver con formas alternantes, y cumplen $a_{ij}=-a_{ji}$. Si $F\in \{ \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, esta última condición nos implica que $a_{ii}=-a_{ii}$, de dónde $a_{ii}=0$. Entonces, si $F$ es alguno de estos las entradas en la diagonal son todas cero. Todas las matrices antisimétricas de tamaños $2$ y $3$ sobre el campo $\mathbb{C}$ se ven:
    \begin{align*}
    \begin{pmatrix} 0& a \\ -a &0\end{pmatrix}, \hspace{1mm} a\in \mathbb{C}\text{ y } \begin{pmatrix} 0 & a & b\\ -a & 0& c\\ -b & -c & 0\end{pmatrix}, \hspace{1mm} a,b,c\in \mathbb{C}.\end{align*}
    Sin embargo, si $F$ es por ejemplo $\mathbb{F}_2$, entonces la condición $2a_{ii}=0$ no nos aporta ninguna información nueva, ya que para todo elemento $x$ en $\mathbb{F}_2$, $2x=0$. De hecho, sobre campos de este estilo ¡no hay diferencia entre matrices simétricas y antisimétricas!

A continuación resumimos algunas propiedades iniciales de matrices simétricas y antisimétricas. La idea de las demostraciones es usar las propiedades de transposición de matrices.

Proposición. Todas las matrices en los enunciados siguientes son matrices cuadradas del mismo tamaño. Son ciertas:

  1. La suma de una matriz y su transpuesta es simétrica, la diferencia de una matriz y su transpuesta es antisimétrica.
  2. El producto de una matriz y su transpuesta es simétrica.
  3. Cualquier potencia de una matriz simétrica es simétrica.
  4. Cualquier potencia par de una matriz antisimétrica es simétrica, y cualquier potencia impar de una matriz antisimétrica es antisimétrica.
  5. Si $A$ es invertible y simétrica entonces $A^{-1}$ es simétrica.
  6. Si $A$ es invertible y antisimétrica, entonces $A^{-1}$ es antisimétrica.

Demostración:

  1. Si $A$ es una matriz, entonces $$
    ^t\left( A+\ ^{t}A\right)=\ ^t A + \ ^{t}\left(^{t}A\right) =\ ^{t}A+A= A+\ ^{t} A. $$ Es decir, $A+\ ^{t}A$ es igual a su transpuesta y por tanto es simétrica. El cálculo para verificar la antisimetría de $A-\ ^{t} A$ es similar.
  2. Queremos ver que $A ^{t}A$ es simétrica. Lo podemos hacer directamente $$^{t}\left( A ^{t} A\right) =\ ^{t}\left(^{t}A\right) ^{t} A= A ^{t}A,
    $$ lo que verifica la simetría de la matriz.
  3. Se sigue de la proposición anterior, pues si $A$ es simétrica
    \begin{align*}
    ^{t}\left(A^{n}\right)= \left( ^{t}A\right)^{n}= A^{n}.
    \end{align*}
  4. Hacemos el caso en el que la potencia es par y dejamos el otro como tarea moral, el razonamiento es análogo. Si $A$ es antisimétrica y $n=2k$ para algún $k$ entonces
    \begin{align*}
    ^{t}\left(A^{n}\right)= \left(^{t} A\right)^{n}= (-A)^{n}=(-1)^{2k} A^{n}=A^{n}.
    \end{align*} Aquí usamos que $(-1)^{2k}=1$.
  5. Si $A$ es simétrica, usando la proposición anterior tenemos que
    \begin{align*}
    ^{t}\left(A^{-1}\right)=\left(^t A\right)^{-1}= A^{-1}.
    \end{align*}
  6. Es análogo al inciso anterior.

$\square$

Algunos problemas

Acabamos la entrada con algunos problemas que servirán de práctica.

Problema 1. Describe las matrices simétricas $A\in M_n(F)$ que sean simultáneamente simétricas y triangulares superiores.

Solución: Sea $A=[a_{ij}]$ simétrica y triangular superior. Por definición $a_{ij}=0$ si $i>j$ por ser triangular superior, y $a_{ij}=a_{ji}$ por ser simétrica para cualesquiera $i,j\in \{1, \dots, n\}$. Así, si $i\neq j$ entonces $a_{ij}=0$, pues si $i<j$, entonces $0=a_{ji}=a_{ij}$. Se sigue que $A$ tiene que ser diagonal. Conversamente, es fácil verificar que cualquier matriz diagonal es simétrica y triangular superior. Es decir, la respuesta es precisamente las matrices diagonales.

$\triangle$

Problema 2. ¿Cuántas matrices simétricas hay en $M_n\left( \mathbb{F}_2\right)$?

Solución: Observamos que una matriz simétrica está determinada por las entradas que están sobre o por encima de la diagonal, pues sabemos que para llenar los otros espacios hay que reflejar estas entradas (de otra manera, se puede pensar como colorear solo un lado del papel y luego doblarlo). Conversamente, cada elección de suficientes números para llenar la diagonal y el área encima de ella determina una matriz simétrica.

Así, contemos cuántas entradas hay sobre o por encima de la diagonal: El primer renglón está enteramente por encima de la diagonal, lo que nos da $n$ entradas, luego el segundo renglón está, con excepción de una entrada, contenido en esta área superior, es decir tenemos $n-1$ entradas más. Al tercer renglón le quitamos dos entradas, al cuarto tres entradas y así sucesivamente hasta llegar al último renglón, donde la única entrada sobre o por encima de la diagonal es la última, es decir, una entrada que podemos escoger.

Sumando, tenemos

\begin{align*}
n+(n-1)+(n-2)+\dots +2+1=\frac{n(n+1)}{2}
\end{align*}

entradas que rellenar, y por tanto $\frac{n(n+1)}{2}$ elecciones de números que hacer. Ahora, ¿cuántos números podemos escoger? Al estar trabajando en $\mathbb{F}_2$, solo dos: $0$ ó $1$. Por un argumento combinatorio, concluimos que hay

\begin{align*}
2^{\frac{n(n+1)}{2}}
\end{align*}

matrices simétricas en $M_n\left(\mathbb{F}_2\right)$.

$\triangle$

Problema 3. Demuestra que toda matriz $A\in M_n(\mathbb{C})$ se puede escribir de manera única como $A=B+C$, con $B$ simétrica y $C$ antisimétrica.

Solución: Suponiendo que $A=B+C$ con $B$ simétrica y $C$ antisimétrica, obtenemos que

\begin{align*}
^t A=\ ^t(B+C)= \ ^t B + \ ^t C= B-C
\end{align*}

Así, resolviendo el sistema

\begin{align*}
\begin{cases}
A= B+C\\
^t A= B-C
\end{cases}
\end{align*}

obtenemos que

\begin{align*}
B=\frac{1}{2}\left( A+\ ^t A\right) \text{ y } C=\frac{1}{2}\left( A-\ ^{t} A\right).
\end{align*}

Así la elección de $B$ y $C$ es única, pues están totalmente determinadas. Además, definiendo $B$ y $C$ como en las igualdades de arriba podemos ver que cumplen las condiciones buscadas (probando así existencia).

$\square$

Más adelante…

La transposición de matrices es una operación importante, que más adelante veremos que está relacionada con la dualidad. Las matrices simétricas y antisimétricas son también muy importantes en álgebra lineal. De hecho, el teorema principal del curso (el teorema espectral) es un resultado acerca de matrices simétricas con entradas reales. Por el momento le pondremos una pausa al estudio de estas matrices, pero más adelante las retomaremos.

En la siguiente clase hablaremos de otra clase de matrices: las de bloque. Estas nos ayudarán a enunciar más cómodamente algunos resultados y procedimientos, como el uso de la reducción gaussiana para resolver sistemas de ecuaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Escribe, de manera explícita, todas las matrices simétricas, antisimétricas y ortogonales de $M_2(\mathbb{F}_2)$.
  • La siguiente matriz es una matriz antisimétrica en $M_4(\mathbb{R})$, pero algunas de sus entradas se borraron. ¿Cuáles son estas entradas? $$\begin{pmatrix} 0 & 2 & & 3 \\ & 0 & -4 & \\ 1 & 4 & & \frac{1}{2} \\ & -\frac{2}{3} & & 0 \end{pmatrix}.$$
  • Demuestra las tres primeras propiedades de la proposición de propiedades de transposición de matrices.
  • ¿Será cierto que las matrices de $M_n(F)$ que son simultáneamente invertibles y simétricas forman un subgrupo de $GL_n(F)$? En otras palabras, ¿es cierto que el producto de dos matrices invertibles y simétricas es una matriz invertible y simétrica? ¿Que puedes en este sentido de las matrices ortogonales? ¿De las antisimétricas?
  • Demuestra que cualquier potencia impar de una matriz antisimétrica es antisimétrica
  • Demuestra que en $M_n(\mathbb{F}_2)$, una matriz es simétrica si y sólo si es antisimétrica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Teorema espectral para matrices simétricas reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada demostramos el teorema espectral para matrices simétricas reales en sus dos formas. Como recordatorio, lo que probaremos es lo siguiente.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para ello, usaremos los tres resultados auxiliares que demostramos en la entrada de eigenvalores de matrices simétricas reales. Los enunciados precisos están en ese enlace. Los resumimos aquí de manera un poco informal.

  • Los eigenvalores complejos de matrices simétricas reales son números reales.
  • Si una transformación $T$ es simétrica y $W$ es un subespacio estable bajo $T$, entonces $W^\bot$ también lo es. Además, $T$ restringida a $W$ o a $W^\bot$ también es simétrica.
  • Es lo mismo que una matriz sea diagonalizable, a que exista una base formada eigenvectores de la matriz.

Además de demostrar el teorema espectral, al final de la entrada probaremos una de sus consecuencias más importantes. Veremos una clasificación de las matrices que inducen formas bilineales positivas.

Demostración de la primera versión del teorema espectral

Comenzamos mostrando la siguiente versión del teorema espectral.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Demostración. Como $V$ es espacio Euclideano, entonces tiene cierta dimensión finita $n$. Haremos inducción fuerte sobre $n$. Si $n=1$, el polinomio característico de $T$ es de grado $1$ y con coeficientes reales, así que tiene una raíz $\lambda$ real. Si $v$ es un eigenvector de $T$ para $\lambda$, entonces $\frac{v}{\norm{v}}$ también es eigenvector de $T$ y conforma una base ortonormal para $V$.

Supongamos que el resultado es cierto para todo espacio Euclideano de dimensión menor a $n$ y tomemos $V$ espacio Euclideano de dimensión $n$. Por el teorema fundamental del álgebra, el polinomio característico de $T$ tiene por lo menos una raíz $\lambda$ en $\mathbb{C}$. Como $T$ es simétrica, cualquier matriz $A$ que represente a $T$ también, y $\lambda$ sería una raíz del polinomio característico de $A$. Por el resultado que vimos en la entrada anterior, $\lambda$ es real.

Consideremos el kernel $W$ de la transformación $\lambda \text{id} – T$. Si $W$ es de dimensión $n$, entonces $W=V$, y por lo tanto $T(v)=\lambda v$ para todo vector $v$ en $V$, es decir, todo vector no cero de $V$ es eigenvector de $T$. De esta forma, cualquier base ortonormal de $V$ satisface la conclusión. De esta forma, podemos suponer que $W\neq V$ y que por lo tanto $1\leq \dim W \leq n-1$, y como $$V=W\oplus W^\bot,$$ se obtiene que $1\leq \dim W^\bot \leq n-1$. Sea $B$ una base ortonormal de $W$, que por lo tanto está formada por eigenvectores de $T$ con eigenvalor $\lambda$.

Como la restricción $T_1$ de $T$ a $W^\bot$ es una transformación simétrica, podemos aplicar la hipótesis inductiva y encontrar una base ortonormal $B’$ de eigenvectores de $T_1$ (y por lo tanto de $T$) para $W^\bot$.

Usando de nuevo que $$V=W\oplus W^\bot,$$ tenemos que $B\cup B’$ es una base de $V$ formada por eigenvectores de $T$.

El producto interior de dos elementos distintos de $B$, o de dos elementos distintos de $B’$ es cero, pues individualmente son bases ortonormales. El producto de un elemento de $B$ y uno de $B’$ es cero pues un elemento está en $W$ y el otro en $W^\bot$. Además, todos los elementos de $B\cup B’$ tiene norma $1$, pues vienen de bases ortogonales. Esto muestra que $B\cup B’$ es una base ortonormal de $V$ que consiste de eigenvectores de $T$.

$\square$

Demostración de la segunda versión del teorema espectral

Veamos ahora la demostración del teorema espectral en su enunciado con matrices.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $M_n(\mathbb{R})$, tales que $$A=P^{-1}DP.$$

Demostración. Como $A$ es una matriz simétrica, la transformación $T:F^n\to F^n$ dada por $T(X)=AX$ es simétrica. Aplicando la primer versión del teorema espectral, existe una base ortonormal de $F^n$ que consiste de eigenvectores de $T$. Digamos que estos eigenvectores son $C_1,\ldots,C_n$. Por definición de $T$, estos eigenvectores de $T$ son exactamente eigenvectores de $A$.

Anteriormente demostramos que si construimos a una matriz $B$ usando a $C_1,\ldots,C_n$ como columnas y tomamos la matriz diagonal $D$ cuyas entradas son los eigenvalores correspondientes $\lambda_1,\ldots,\lambda_n$, entonces $$A=BDB^{-1}.$$

Afirmamos que la matriz $B$ es ortogonal. En efecto, la fila $j$ de la matriz $^t B$ es precisamente $C_j$. De esta forma, la entrada $(i,j)$ del producto ${^tB} B$ es precisamente el producto punto de $C_i$ con $C_j$. Como la familia $C_1,\ldots,C_n$ es ortonormal, tenemos que dicho producto punto es uno si $i=j$ y cero en otro caso. De aquí, se concluye que ${^tB} B=I_n$.

Si una matriz es ortogonal, entonces su inversa también. Esto es sencillo de demostrar y queda como tarea moral. Así, definiendo $P=B^{-1}$, tenemos la igualdad $$A=P^{-1}DP,$$ con $D$ diagonal y $P$ ortogonal, justo como lo afirma el teorema.

$\square$

Matrices positivas y positivas definidas

Una matriz $A$ simétrica en $M_n(\mathbb{R})$ induce una forma bilineal simétrica en $\mathbb{R}^n$ mediante la asignación $$(x,y) \mapsto {^t x} A y,$$ con forma cuadrática correspondiente $$x \mapsto {^t x} A x.$$

Definición. Una matriz $A$ en $M_n(\mathbb{R})$ es positiva o positiva definida si su forma bilineal asociada es positiva o positiva definida respectivamente.

Una de las aplicaciones del teorema espectral es que nos permite dar una clasificación de las matrices simétricas positivas.

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Demostración. (1) implica (2). Supongamos que $A$ es positiva y tomemos $\lambda$ un eigenvalor de $A$. Tomemos $v$ un eigenvector de eigenvalor $\lambda$. Tenemos que:
\begin{align*}
\lambda \norm{v}^2 &=\lambda {^tv} v\\
&= {^t v} (\lambda v)\\
&={^t v} Av\\
&\geq 0.
\end{align*}

Como $\norm{v}^2\geq 0$, debemos tener $\lambda \geq 0$.

(2) implica (3). Como $A$ es matriz simétrica, por el teorema espectral tiene una diagonalización $A=P^{-1}DP$ con $P$ una matriz invertible y $D$ una matriz diagonal cuyas entradas son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$. Como los eigenvalores son no negativos, podemos considerar la matriz diagonal $E$ cuyas entradas son los reales $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}.$ Notemos que $E^2=D$, así que si definimos a la matriz $B=P^{-1}EP$, tenemos que $$B^2=P^{-1}E^2 P = P^{-1}DP = A.$$

Además, $B$ es simétrica pues como $E$ es diagonal y $P$ es ortogonal, tenemos que
\begin{align*}
{^tB} &= {^t P} {^t E} {^t (P^{-1})}\\
&= P^{-1} E P\\
&= B.
\end{align*}

(3) implica (4). Es inmediato, tomando $C=B$ y usando que $B$ es simétrica.

(4) implica (1). Si $A= {^tC} C$ y tomamos un vector $v$ en $\mathbb{R}^n$, tenemos que

\begin{align*}
{^t v} A v &= {^tv} {^tC} C v\\
&= {^t(Cv)} (Cv)\\
&=\norm{Cv}^2\\
&\geq 0,
\end{align*}

lo cual muestra que $A$ es positiva.

$\square$

También hay una versión de este teorema para matrices simétricas positivas definidas. Enunciarlo y demostrarlo queda como tarea moral.

En una entrada final, se verá otra consecuencia linda del teorema espectral: el teorema de descomposición polar. Dice que cualquier matriz con entradas reales se puede escribir como el producto de una matriz ortogonal y una matriz simétrica positiva.

Más allá del teorema espectral

Durante el curso introdujimos varias de las nociones fundamentales de álgebra lineal. Con ellas logramos llegar a uno de los teoremas más bellos: el teorema espectral. Sin embargo, la teoría de álgebra lineal no termina aquí. Si en tu formación matemática profundizas en el área, verás otros temas y resultados fundamentales como los siguientes:

  • El teorema de Cayley-Hamiltón: toda matriz se anula en su polinomio característico.
  • La clasificación de matrices diagonalizables: una matriz es diagonalizable si y sólo si su polinomio característico se factoriza en el campo de la matriz, y la multiplicidad algebraica de sus eigenvalores corresponde con la multiplicidad geométrica.
  • El teorema de la forma canónica de Jordan: aunque una matriz no se pueda diagonalizar, siempre puede ser llevada a una forma estándar «bonita».
  • Productos interiores con imágenes en $\mathbb{C}$, a los que también se les conoce como formas hermitianas.
  • Los polinomios mínimos de matrices y transformaciones, que comparten varias propiedades con el polinomio característico, pero dan información un poco más detallada.

Más adelante…

En esta entrada discutimos dos demostraciones del teorema espectral. Sólo nos falta discutir cómo podemos aplicarlo. En la siguiente entrada trabajaremos con algunos problemas, por ejemplo, ver cómo se usa para demostrar que una matriz simétrica no es diagonalizable.

Finalmente, discutiremos cómo podemos pensar en las nociones de continuidad y acotamiento en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la inversa de una matriz ortogonal es ortogonal.
  • Encuentra una base ortonormal de $\mathbb{R}^3$ conformada por eigenvectores de la matriz $\begin{pmatrix}10 & 0 & -7\\ 0 & 3 & 0 \\ -7 & 0 & 10\end{pmatrix}.$
  • Determina si la matriz anterior es positiva y/o positiva definida.
  • Enuncia y demuestra un teorema de clasificación de matrices simétricas positivas definidas.
  • Muestra que la matriz $$\begin{pmatrix}5 & 1 & 7\\1 & 10 & -7\\7 & -7 & 18\end{pmatrix}$$ es positiva.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices simétricas reales y sus eigenvalores

Por Leonardo Ignacio Martínez Sandoval

Introducción

Hemos llegado a la cima del curso. En estas últimas entradas probaremos uno de los teoremas más bellos en álgebra lineal: el teorema espectral para matrices simétricas reales. También hablaremos de varias de las consecuencias que tiene.

Hay dos formas equivalentes de enunciar el teorema.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para hablar de la demostración y de las consecuencias del teorema espectral para matrices simétricas reales, necesitaremos usar teoría de todas las unidades del curso. En particular, usaremos las siguientes definiciones:

  • Una matriz $A$ en $M_n(F)$ es simétrica si es igual a su transpuesta.
  • Una matriz $A$ en $M_n(F)$ es ortogonal si es invertible y $A^{-1}= {^tA}$.
  • Si $T:V\to V$ es una transformación lineal de un espacio vectorial $V$ a sí mismo y $W$ es un subespacio de $V$, entonces decimos que $W$ es estable bajo $T$ si $T(W)\subseteq W$.
  • Un producto interior es una forma bilineal simétrica y positiva definida.
  • Un espacio Euclideano es un espacio vectorial de dimensión finita con un producto interior.
  • Si $W$ es un subespacio de un espacio Euclideano $V$, entonces $W^\bot$ es el conjunto de todos los vectores que de $V$ que son ortogonales a todos los vectores de $W$.
  • Una matriz $A$ en $M_n(F)$ es diagonalizable si existen matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible, $D$ diagonal y tales que $A=P^{-1}DP$.

Y los siguientes resultados principales:

En esta entrada enunciaremos tres resultados auxiliares de interés propio. A partir de estos resultados, la demostración del teorema espectral para matrices simétricas reales y la equivalencia entre ambas versiones será mucho más limpia.

Los eigenvalores de matrices simétricas reales

El polinomio característico de una matriz $A$ en $M_n(\mathbb{R})$ tiene coeficientes reales. Por el teorema fundamental del álgebra, debe tener exactamente $n$ raíces en $\mathbb{C}$, contando multiplicidades. Si alguna de estas raíces $r$ no es real, entonces $A$ no puede ser diagonalizable en $M_n(\mathbb{R})$. La razón es que $A$ sería similar a una matriz diagonal $D$, y los eigenvalores de las matrices diagonales (incluso triangulares) son las entradas de la diagonal principal. Como $A$ y $D$ comparten eigenvalores (por ser similares), entonces $r$ tendría que ser una entrada de $D$, pero entonces $D$ ya no sería una matriz de entradas reales.

Lo primero que veremos es que las matrices simétricas reales «superan esta dificultad para poder diagonalizarse». Esta va a ser nuestra primer herramienta para demostrar el teorema espectral.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$ y $\lambda$ una raíz del polinomio característico de $A$. Entonces, $\lambda$ es un número real.

Demostración. El polinomio característico de $A$ es un polinomio con coeficientes reales, así que por el teorema fundamental del álgebra se tiene que $\lambda$ debe ser un número en $\mathbb{C}$. Así, podemos escribirlo de la forma $\lambda = a+ib$, con $a$ y $b$ números reales. Lo que mostraremos es que $b=0$.

Se tiene que $\lambda$ es un eigenvalor de $A$ vista como matriz en $M_n(\mathbb{C})$, y por lo tanto le corresponde un eigenvector $U$ en $\mathbb{C}^n$, es decir, un $U\neq 0$ tal que $$AU=\lambda U.$$ Este vector $U$ lo podemos separar en partes reales e imaginarias con vectores $V$ y $W$ en $\mathbb{R}^n$ tales que $$U=V+iW.$$

En estos términos,
\begin{align*}
AU&=A(V+iW)=AV+iAW \quad\text{y}\\
\lambda U &= (a+ib)(V+iW)\\
&=(aV-bW) + i (aW+bV),
\end{align*}

de modo que igualando partes reales e imaginarias en la expresión $AU=\lambda U$ tenemos que
\begin{align*}
AV&=aV-bW\quad\text{y}\\
AW&=aW+bV.
\end{align*}

Como $A$ es simétrica, tenemos que

\begin{equation}
\langle AV,W \rangle=\langle {^tA}V,W \rangle= \langle V, AW\rangle.
\end{equation}

Estudiemos las expresiones en los extremos, reemplazando los valores de $AV$ y $AW$ que encontramos arriba y usando la bilinealidad del producto interior. Se tiene que

\begin{align*}
\langle AV,W \rangle &= \langle aV-bW,W \rangle\\
&=a\langle V,W \rangle – b \langle W,W \rangle\\
&=a \langle V,W \rangle – b \norm{W}^2,
\end{align*}

y que

\begin{align*}
\langle V,AW \rangle &= \langle V,aW+bV \rangle\\
&=a\langle V,W \rangle + b \langle V,V \rangle\\
&=a \langle V,W \rangle + b \norm{V}^2.
\end{align*}

Substituyendo estos valores en la expresión (1), obtenemos la igualdad

$$a \langle V,W \rangle – b \norm{W}^2 = a \langle V,W \rangle + b \norm{V}^2,$$

que se simplifica a $$b(\norm{V}^2+\norm{W}^2)=0.$$

Estamos listos para dar el argumento final. Como $U=V+iW$ es un eigenvector, entonces no es nulo, de modo que no es posible que $V$ y $W$ sean ambos el vector $0$ de $\mathbb{R}^n$. Como el producto interior es positivo definido, entonces alguna de las normas $\norm{V}$ o $\norm{W}$ no es cero, de modo que $$\norm{V}^2+\norm{W}^2\neq 0.$$

Concluimos que $b=0$, y por lo tanto que $\lambda$ es un número real.

$\square$

La demostración anterior es ejemplo de un truco que se usa mucho en las matemáticas. Aunque un problema o un teorema no hablen de los números complejos en su enunciado, se puede introducir a $\mathbb{C}$ para usar sus propiedades y trabajar ahí. Luego, se regresa lo obtenido al contexto real. Aquí en el blog hay otra entrada en donde damos más ejemplos de «brincar a los complejos».

Un resultado auxiliar de transformaciones simétricas

A continuación damos la segunda herramienta que necesitaremos para probar el teorema espectral. Recuerda que si $V$ es un espacio Euclideano y $T:V\to V$ es una transformación lineal, entonces decimos que $T$ es simétrica si para todo par de vectores $u$ y $v$ en $V$ se tiene que $$\langle T(u),v\rangle = \langle u, T(v) \rangle.$$ Enunciamos el resultado en términos de transformaciones, pero también es válido para las matrices simétricas asociadas.

Teorema. Sea $V$ un espacio Eucideano y $T:V\to V$ una transformación lineal simétrica. Sea $W$ un subespacio de $V$ estable bajo $T$. Entonces:

  • $W^\bot$ también es estable bajo $T$ y
  • Las restricciones de $T$ a $W$ y a $W^\bot$ son transformaciones lineales simétricas en esos espacios.

Demostración. Para el primer punto, lo que tenemos que mostrar es que si $w$ pertenece a $W^\bot$, entonces $T(w)$ también, es decir, que $T(w)$ es ortogonal a todo vector $v$ en $W$.

Tomemos entonces un vector $v$ en $W$. Como $W$ es estable bajo $T$, tenemos que $T(v)$ está en $W$, de modo que $\langle w, T(v) \rangle =0$. Como $T$ es simétrica, tenemos entonces que $$\langle T(w),v \rangle = \langle w, T(v) \rangle = 0.$$ Esto es lo que queríamos probar.

Para la segunda parte, si $T_1$ es la restricción de $T_1$ a $W$ y tomamos vectores $u$ y $v$ en $W$, tenemos que
\begin{align*}
\langle T_1(u), v \rangle &= \langle T(u), v \rangle\\
&=\langle u, T(v) \rangle \\
&=\langle u, T_1(v) \rangle,
\end{align*}

lo cual muestra que $T_1$ es simétrica. La prueba para $W^\bot $ es análoga y queda como tarea moral.

$\square$

Matrices diagonalizables y bases ortonormales de eigenvectores

El tercer y último resultado enuncia una equivalencia entre que una matriz en $M_n(F)$ sea diagonalizable, y que exista una base especial para $F^n$. Es lo que usaremos para probar la equivalencia entre ambas formulaciones del teorema espectral para matrices simétricas reales.

Teorema. Sea $A$ una matriz en $M_n(F)$. Las siguientes dos afirmaciones son equivalentes:

  • $A$ es diagonalizable, es decir, existen matrices $P$ y $D$ en $M_n(F)$, con $P$ invertible y $D$ diagonal tales que $A=P^{-1}DP.$
  • Existe una base para $F^n$ que consiste de eigenvectores de $A$.

Demostración. Antes de comenzar la demostración, recordemos que si tenemos una matriz $B$ en $M_n(F)$ de vectores columna $$C_1,\ldots,C_n,$$ entonces los vectores columna del producto $AB$ son $$AC_1,\ldots AC_n.$$ Además, si $D$ es una matriz diagonal en $M_n(F)$ con entradas en la diagonal $d_1,\ldots,d_n$, entonces los vectores columna de $BD$ son $$d_1C_1,\ldots,d_nC_n.$$

Comencemos la prueba del teorema. Supongamos que $A$ es diagonalizable y tomemos matrices $P$ y $D$ en $M_n(F)$ con $P$ invertible y $D$ diagonal de entradas $d_1,\ldots,d_n$, tales que $A=P^{-1}DP$. Afirmamos que los vectores columna $C_1,\ldots,C_n$ de $P^{-1}$ forman una base de $F^n$ que consiste de eigenvectores de $A$.

Por un lado, como son los vectores columna de una matriz invertible, entonces son linealmente independientes. En total son $n$, como la dimensión de $F^n$. Esto prueba que son una base.

De $A=P^{-1}DP$ obtenemos la igualdad $AP^{-1}=P^{-1}D$. Por las observaciones al inicio de la prueba, tenemos al igualar columnas que para cada $j=1,\ldots,n$ se cumple $$AC_j = d_j C_j.$$ Como $C_j$ forma parte de un conjunto linealmente independiente, no es el vector $0$. Así, $C_j$ es un eigenvector de $A$ con eigenvalor $d_j$. Con esto terminamos una de las implicaciones.

Supongamos ahora que existe una base de $F^n$ que consiste de eigenvectores $C_1,\ldots,C_n$ de $A$. Para cada $j=1,\ldots,n$, llamemos $\lambda_j$ al eigenvalor correspondiente a $C_j$, y llamemos $D$ a la matriz diagonal con entradas $\lambda_1,\ldots,\lambda_n$.

Como $C_1,\ldots,C_n$ son vectores linealmente independientes, la matriz $B$ cuyas columnas son $C_1,\ldots, C_n$ es invertible. Además, por las observaciones al inicio de la prueba, se tiene que la columna $j$ de la matriz$AB$ es $AC_j$ y la columna $j$ de la matriz $BD$ es $\lambda_j C_j$. Entonces, por construcción, estas matrices son iguales columna a columna, y por lo tanto lo son iguales. De esta forma, tenemos que $AB=BD$, o bien, reescribiendo esta igualdad, que $$A=BDB^{-1}.$$ Así, la matriz invertible $P=B^{-1}$ y la matriz diagonal $D$ diagonalizan a $A$.

$\square$

Las matrices simétricas reales serán todavía más especiales que simplemente las matrices diagonalizables. Lo que asegura el teorema espectral es que podremos encontrar no sólo una base de eigenvectores, sino que además podemos garantizar que esta base sea ortonormal. En términos de diagonalización, la matriz $P$ no sólo será invertible, sino que además será ortogonal.

Más adelante…

En esta entrada enunciamos dos formas del teorema espectral y hablamos de algunas consecuencias que tiene. Además, repasamos un poco de la teoría que hemos visto a lo largo del curso y vimos cómo nos ayuda a entender mejor este teorema.

En la siguiente entrada, que es la última del curso, demostraremos las dos formas del teorema espectral que enunciamos en esta entrada y haremos un pequeño comentario sobre qué hay más allá del teorema espectral en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un ejemplo de una matriz simétrica en $M_n(\mathbb{C})$ cuyos eigenvalores no sean reales.
  • En el contexto del segundo teorema, muestra que la restricción de $T$ a $W^\bot$ es simétrica.
  • Realiza la demostración de que si $A$ y $B$ son matrices en $M_n(F)$ y los vectores columna de $B$ son $C_1,\ldots,C_n$, entonces los vectores columna de $AB$ son $AC_1,\ldots,AC_n$. También, prueba que si $D$ es diagonal de entradas $d_1,\ldots,d_n$, entonces las columnas de $BD$ son $d_1C_1,\ldots,d_nC_n$.
  • Encuentra una matriz $A$ con entradas reales similar a la matriz $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$ tal que ninguna de sus entradas sea igual a $0$. Encuentra una base ortogonal de eigenvectores de $A$ para $\mathbb{R}^3$.
  • Diagonaliza la matriz $$\begin{pmatrix}-2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\ \frac{19}{7} & \frac{30}{7} & \frac{65}{7} & \frac{24}{7}\\ \frac{6}{7} & – \frac{20}{7} & – \frac{48}{7} & – \frac{23}{7}\end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»